
Citation: Lee, S.-H.; Lee, S.-H.

U-Net-Based Learning Using

Enhanced Lane Detection with

Directional Lane Attention Maps for

Various Driving Environments.

Mathematics 2024, 12, 1206. https://

doi.org/10.3390/math12081206

Academic Editor: Longfei Zhou

Received: 23 March 2024

Revised: 9 April 2024

Accepted: 16 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

U-Net-Based Learning Using Enhanced Lane Detection with
Directional Lane Attention Maps for Various Driving Environments
Seung-Hwan Lee and Sung-Hak Lee *

School of Electronic and Electrical Engineering, Kyungpook National University, 80 Deahakro, Buk-Gu,
Daegu 41566, Republic of Korea; hyo98120@knu.ac.kr
* Correspondence: shak2@ee.knu.ac.kr; Tel.: +82-53-940-8639

Abstract: Recent advancements in optical and electronic sensor technologies, coupled with the
proliferation of computing devices (such as GPUs), have enabled real-time autonomous driving
systems to become a reality. Hence, research in algorithmic advancements for advanced driver
assistance systems (ADASs) is rapidly expanding, with a primary focus on enhancing robust lane
detection capabilities to ensure safe navigation. Given the widespread adoption of cameras on the
market, lane detection relies heavily on image data. Recently, CNN-based methods have attracted
attention due to their effective performance in lane detection tasks. However, with the expansion
of the global market, the endeavor to achieve reliable lane detection has encountered challenges
presented by diverse environmental conditions and road scenarios. This paper presents an approach
that focuses on detecting lanes in road areas traversed by vehicles equipped with cameras. In the
proposed method, a U-Net based framework is employed for training, and additional lane-related
information is integrated into a four-channel input data format that considers lane characteristics.
The fourth channel serves as the edge attention map (E-attention map), helping the modules achieve
more specialized learning regarding the lane. Additionally, the proposition of an approach to assign
weights to the loss function during training enhances the stability and speed of the learning process,
enabling robust lane detection. Through ablation experiments, the optimization of each parameter
and the efficiency of the proposed method are demonstrated. Also, the comparative analysis with
existing CNN-based lane detection algorithms shows that the proposed training method demonstrates
superior performance.

Keywords: lane detection; U-Net; E-attention map; weighted loss function

MSC: 68T45

1. Introduction

As electronic sensor technology evolves, computing devices (such as GPUs) are be-
coming more ubiquitous and advancements in computer vision and machine learning
algorithms (such as CNNs) are progressing. Accordingly, the potential for real-time au-
tonomous driving systems has increased significantly. As a result, algorithmic research on
advanced driver assistance systems (ADASs) is accelerating, with reliable lane detection
playing a crucial role in ensuring safe driving.

Autonomous driving systems primarily employ a range of sensors, including cam-
eras and Lidar. Cameras are used to detect and analyze various elements (such as lanes,
vehicles, and pedestrians) from captured images. In contrast, Lidar is used to perceive
and assess driving situations by capturing distance information within the surrounding
environment. Cameras are mainly used due to their relatively low cost and widespread
availability, meaning image-based ADASs are more prevalent. However, market expansion
has meant that ensuring reliable lane detection in diverse countries and environments
has become a challenging task. Figure 1 demonstrates the diversity in road conditions,

Mathematics 2024, 12, 1206. https://doi.org/10.3390/math12081206 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081206
https://doi.org/10.3390/math12081206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1030-381X
https://doi.org/10.3390/math12081206
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081206?type=check_update&version=2

Mathematics 2024, 12, 1206 2 of 23

temporal and meteorological-dependent variables, and the heterogeneous driving environ-
ments observed across different nations. These intricate factors pose obstacles to reliable
lane detection.

Mathematics 2024, 12, 1206 2 of 24

availability, meaning image-based ADASs are more prevalent. However, market expan-
sion has meant that ensuring reliable lane detection in diverse countries and environments
has become a challenging task. Figure 1 demonstrates the diversity in road conditions,
temporal and meteorological-dependent variables, and the heterogeneous driving envi-
ronments observed across different nations. These intricate factors pose obstacles to relia-
ble lane detection.

(a) (b) (c)

Figure 1. Various environments during driving: (a) lane marking is severely deteriorated; (b) lane
markings are nearly erased due to rainwater; (c) lighting conditions are insufficient, making the lane
markings barely visible.

Recently, numerous approaches have been introduced that employ camera images for
lane detection. In particular, deep learning algorithms have garnered significant attention
following the success of AlexNet in the ImageNet competition, resulting in the wide-
spread adoption of lane detection using trained models based on this CNN architecture
[1–4]. In this study, lane detection methods are primarily categorized into two types: heu-
ristics-based lane detection methods that predate the introduction of CNNs, and methods
that apply CNNs. The heuristic-based methods mainly involve detecting lanes using em-
pirical rules or expert knowledge. However, during vehicle operation, various environ-
mental factors should be considered, because certain elements (such as fog, nighttime con-
ditions, vehicle headlights, and lighting from other vehicles) and factors (such as taillights)
can impede image-based lane detection. To mitigate these influences, techniques such as
filtering, color space transformations, and region-of-interest delineation are employed [5].
Lane detection using CNNs includes the image-to-image approach, where an autoencoder
learns from a segmentation map as the target [6]. Here, the U-Net architecture adopts a strat-
egy that minimizes information loss by connecting the encoder and decoder through Skip
connections [7]. Das et al. proposed a method utilizing a U-Net-based architecture to detect
driver drowsiness by monitoring the state of the driver’s eyes, thereby enhancing road safety
[8]. Additionally, a method utilizing YOLO has been developed that treats lanes as single ob-
jects for detection [9]. Furthermore, a stable training method has been proposed that uses gen-
erative adversarial networks (GANs), which are typically used for image generation, to reduce
complex post-processing in semantic segmentation problems [10].

In this study, an algorithm that focuses intensively on learning the lane regions for vari-
ous driving conditions is proposed. Detecting lanes that are obscured due to lighting or
obstacles is a challenging task. However, this problem can be addressed by inputting ad-
ditional edge information on the lanes being driven during training and focusing on learn-
ing them during loss calculations. Furthermore, refining the training data and adjusting
the module structure enable stable learning. To summarize, our study adds the following
important contributions:
• To train a modified U-Net architecture for detecting lane markings in the driving area

through setting up a custom dataset.

Figure 1. Various environments during driving: (a) lane marking is severely deteriorated; (b) lane
markings are nearly erased due to rainwater; (c) lighting conditions are insufficient, making the lane
markings barely visible.

Recently, numerous approaches have been introduced that employ camera images for
lane detection. In particular, deep learning algorithms have garnered significant attention
following the success of AlexNet in the ImageNet competition, resulting in the widespread
adoption of lane detection using trained models based on this CNN architecture [1–4]. In
this study, lane detection methods are primarily categorized into two types: heuristics-based
lane detection methods that predate the introduction of CNNs, and methods that apply
CNNs. The heuristic-based methods mainly involve detecting lanes using empirical rules
or expert knowledge. However, during vehicle operation, various environmental factors
should be considered, because certain elements (such as fog, nighttime conditions, vehicle
headlights, and lighting from other vehicles) and factors (such as taillights) can impede
image-based lane detection. To mitigate these influences, techniques such as filtering,
color space transformations, and region-of-interest delineation are employed [5]. Lane
detection using CNNs includes the image-to-image approach, where an autoencoder learns
from a segmentation map as the target [6]. Here, the U-Net architecture adopts a strategy
that minimizes information loss by connecting the encoder and decoder through Skip
connections [7]. Das et al. proposed a method utilizing a U-Net-based architecture to detect
driver drowsiness by monitoring the state of the driver’s eyes, thereby enhancing road
safety [8]. Additionally, a method utilizing YOLO has been developed that treats lanes as
single objects for detection [9]. Furthermore, a stable training method has been proposed
that uses generative adversarial networks (GANs), which are typically used for image
generation, to reduce complex post-processing in semantic segmentation problems [10].

In this study, an algorithm that focuses intensively on learning the lane regions for
various driving conditions is proposed. Detecting lanes that are obscured due to lighting
or obstacles is a challenging task. However, this problem can be addressed by inputting
additional edge information on the lanes being driven during training and focusing on
learning them during loss calculations. Furthermore, refining the training data and ad-
justing the module structure enable stable learning. To summarize, our study adds the
following important contributions:

• To train a modified U-Net architecture for detecting lane markings in the driving area
through setting up a custom dataset.

• To remove unnecessary information from images and extract only the required data
through data preprocessing.

• To ensure the robustness of loss calculation and to reflect information across differ-
ent tasks, weight maps are assigned to areas where lane markings may potentially

Mathematics 2024, 12, 1206 3 of 23

exist during the calculation of the loss function, while dynamic hyperparameters are
incorporated into the loss function.

• To demonstrate the learning safety and usability of the proposed method, we validate
it through ablation experiments and comparison experiments.

In the remainder of this paper, related research is introduced in Section 2, and the
proposed method is explained in detail in Section 3. Section 4 demonstrates the effectiveness
of the proposed method through comparative experiments with other approaches. Finally,
Section 5 presents the summary, improvements, and future research directions.

2. Related Works

To achieve stable autonomous driving, various challenges need to be addressed, such
as detecting obstacles, pedestrians, and lanes. Research on lane detection from images
obtained through cameras mounted on vehicles started in the 1990s [11,12]. Since AlexNet’s
triumph in the ImageNet competition, deep learning algorithms have been recognized
as promising tools, resulting in the widespread adoption of lane detection using models
trained with CNN architectures. Lane detection methods can be broadly divided into
heuristic- and CNN-based techniques.

2.1. Heuristic-Based Lane Detection

Heuristic-based lane detection methods are primarily employed in traditional com-
puter vision techniques, where detecting lanes is based on empirical rules or expert knowl-
edge. One of these methods is the Hough transform, which is a technique for detecting
geometric shapes in images. It detects lines by mapping them from the (x, y) coordinate
space to the (ρ, θ) parameter space [13] and is commonly applied under the assumption
that most lanes consist of straight lines. However, not all lanes are straight. To address
this problem, research has been conducted on addressing the curved shapes of lanes.
Ding et al. [14] proposed a method for detecting curved lanes using a bird’s-eye view.
Additionally, Duong et al. [15] suggested segmenting curves into straight lines from a
microscopic perspective and applied the Hough transform to detect the lanes. Another
approach was presented by Wang et al. [16], who used the Catmull–Rom spline to form
arbitrary shapes through control points, describing a wider range of lane structures to
detect curved lanes. Another method was based on the B-snake for lane detection and
tracking algorithms, where arbitrary shapes were formed by a set of control points of a
B-Spline to explain the lane structure [17]. In addition, Jung et al. [18] proposed a method
for tracking curved lanes using a linear parabolic lane model.

Since vehicle-mounted cameras are exposed to the external environment, they can be
susceptible to water droplets forming on the lens surface (due to rain or humidity) and
contamination from dust. Moreover, images captured during driving can exhibit irregular
lighting components and significant glare due to the vehicle’s headlights and taillights.
These internal and external camera issues contribute a considerable amount of noise in the
captured images. Srivastava et al. [19] proposed an effective noise removal method for lane
detection using Median, Wiener, and hybrid filters. Wang et al. [20] suggested restricting
the road area to the Region of Interest (ROI) and improving image quality through his-
togram equalization. ROI identification involves blocking out non-road information before
enhancing poor lighting conditions through image processing. Javeed et al. [21] proposed
detecting lanes using the ROI and Otsu’s method, while Yeongho et al. [22] suggested
blocking out factors due to unnecessary lighting in the ROI using adaptive thresholding,
leaving only lane information. The images acquired during driving are prone to color
distortion due to the headlights and taillights of the vehicle and noise from the camera.
By converting from RGB to a different color space and performing image processing, such
distortion can be prevented. Lee et al. [23] proposed a method of preventing distortion by
converting RGB to the CIELab space and then separating only the luminance channel for
image processing. Lane markings are typically displayed in clear white or yellow colors
on dark road backgrounds to ensure visibility in the driver’s line of sight. By employing

Mathematics 2024, 12, 1206 4 of 23

this characteristic, the boundaries of lanes can be extracted through Sobel and Canny edge
filters [24]. Alternatively, there are lane detection methods that use algorithms such as
RANSAC to build mathematical models based on pixel positions as datasets [25]. After
detection, lanes are usually tracked on a frame-by-frame basis. One of the representative
lane tracking techniques involves the use of the Kalman filter, which recursively corrects
the estimated value of the current state based on the predicted value of the previous state,
allowing real-time lane tracking [26].

2.2. CNN-Based Lane Detection

Image-to-image learning is a prominent lane detection method based on CNNs that
generates a segmentation map from driving images. This approach requires pairs of driving
and label images that label the lanes from the driving images. U-Net is a method that uses
this approach, connecting the encoder and decoder with skip connections to preserve infor-
mation while detecting lanes [27]. Qin et al. [28] proposed a lane detection learning method
by replacing U-Net’s skip connection with long short-term memory (LSTM), allowing
finer control of information transmission from the encoder to the decoder when detecting
lanes. Lee et al. [29] suggested a real-time lane detection method that replaced U-Net’s
convolution layer with a Depthwise separable convolution layer, reducing the number of
parameters used in training and achieving a lightweight structure. Feng et al. [30] proposed
a lane detection method using ResNet, which is similar to U-Net and prevents information
loss during backpropagation through skip connections between the encoder and decoder.
However, unlike U-Net, ResNet does not decrease or increase the size of the input data
in the encoder and decoder. Another approach is to find drivable areas instead of lanes,
which involves using a segmentation map of drivable regions as the label image instead of
a segmentation map of the lanes. Lyu et al. [31] proposed a method for segmenting road
areas by training with distributed LSTM layers instead of convolution layers. Another
approach involves treating lanes as objects rather than segmentation and then detecting
them as objects. Xiang et al. [9] proposed a method that uses YOLO v3 to treat lanes as
objects, which are then detected. Another approach involves using a generative adversarial
network (GAN). Mohsen et al. [10] used Embedding Loss GAN (EL-GAN) to make the
output of semantic segmentation networks more realistic and structurally preserved. This
approach enhances the similarity between the actual labels and the output, simplifies the
post-processing stage, and achieves higher accuracy.

An attention map visually represents the model’s focus level on given inputs and is
used in deep learning models to concentrate on specific parts or emphasize features. The at-
tention mechanism has the potential to enhance the detection performance of modules [32].
Li et al. [33] generated an attention map associated with prediction results to focus on the
most important parts of the image. They also designed a spatial feature transformer (SFT)
to extract discriminative features from the attention map and proposed a new dual-channel
CNN architecture for fusing features extracted from the RGB stream and attention map.
Zhang et al. [34] proposed a learning model called self-attention GAN, which adds struc-
ture to modules to focus attention on complex areas relevant to image generation tasks,
increasing the efficiency of learning. In self-attention GAN, a CNN structure is added to
create the attention map, as illustrated in Figure 2. Here, f(x) and g(x) represent different
feature spaces, and h(x) is used to control the weights for synthesizing the attention map
from f(x) and g(x). The research in this paper emphasizes the directional edge filter instead
of feature maps created through training to generate an edge image highlighting the left
and right lanes of the driving area for the attention map. These attention maps are then
integrated into the input data of the training as the fourth channel, resulting in the creation
of four-channel input data.

Mathematics 2024, 12, 1206 5 of 23

Mathematics 2024, 12, 1206 5 of 24

maps are then integrated into the input data of the training as the fourth channel, resulting
in the creation of four-channel input data.

Figure 2. Self-attention generative adversarial networks. (f(x), g(x), h(x): feature space).

3. Proposed Method
3.1. Overview of Proposed Method

Figure 3 illustrates the overall process flow of the proposed learning algorithm. Fig-
ure 3a displays the entire structure, including preprocessing and post-processing for train-
ing, while Figure 3b presents the module structure used in training.

(a)

Figure 2. Self-attention generative adversarial networks. (f(x), g(x), h(x): feature space).

3. Proposed Method
3.1. Overview of Proposed Method

Figure 3 illustrates the overall process flow of the proposed learning algorithm.
Figure 3a displays the entire structure, including preprocessing and post-processing for
training, while Figure 3b presents the module structure used in training.

Mathematics 2024, 12, 1206 5 of 24

maps are then integrated into the input data of the training as the fourth channel, resulting
in the creation of four-channel input data.

Figure 2. Self-attention generative adversarial networks. (f(x), g(x), h(x): feature space).

3. Proposed Method
3.1. Overview of Proposed Method

Figure 3 illustrates the overall process flow of the proposed learning algorithm. Fig-
ure 3a displays the entire structure, including preprocessing and post-processing for train-
ing, while Figure 3b presents the module structure used in training.

(a)

Figure 3. Cont.

Mathematics 2024, 12, 1206 6 of 23
Mathematics 2024, 12, 1206 6 of 24

(b)

Figure 3. Overview of flow chart: (a) framework of the proposed method, and (b) detailed structure
of customized U-Net (L channel represent brightness, a channel represents the color between red
and green, b channel represents the color between yellow and blue).

In this study, the Lab color space is utilized for preprocessing the training data. The
luminance channel undergoes bilateral filtering and multiscale Retinex (MSR) processing
to remove noise and enhance local contrast, resulting in an improved image. Additionally,
a directional edge filter is applied to generate an edge index image that emphasizes the
left and right lanes of the roadway area during driving. These processed images are then
combined with the RGB image to create training input data that comprises four channels.
Subsequently, the U-Net architecture is modified to accommodate the four-channel tensor,
and an additional layer is added before and after the neck stage of the U-Net. However, adding
these layers increases the parameter count by a factor of approximately four, resulting in issues
such as overfitting, excessive memory usage, and increased training time. To address this
problem, the standard convolution layer is replaced with the Depthwise separable convolu-
tion layer proposed by Francois et al. [35] to reduce the parameters. Additionally, dropout is
employed to substitute for the input and output of the added layers to prevent overfitting. The
loss comprises a total of four components: a binary cross-entropy (BCE) loss and three mean
absolute error (MAE) losses. The weights of the loss are then adjusted using a param-tuner.
Each subsequent section is explained block by block in the following order: Section 3.2—Train-
ing Data Tuning, Section 3.3—Weighted Loss Function, and Section 3.4—Architecture of
Customized U-Net.

3.2. Training Data Tuning
Data preprocessing for training is explained in Figure 4. The input data are trans-

formed into the Lab color space. Moreover, by only using the luminance information
while preserving the color information of image channels a and b, any loss in color infor-
mation is minimized. The L channel input undergoes two main processes. The first in-
volves removing noise, and lanes are highlighted to acquire the RGB image through bilat-
eral filtering and the MSR process. In the second process, an attention map is generated to
focus on lanes during training. The edge attention map (E-attention map) is formed by the
directional edge filter and the ROI to establish the target lane of the road. The input data
consist of three RGB channels and one directional edge image channel, which are com-
bined to generate four-channel input data.

Figure 3. Overview of flow chart: (a) framework of the proposed method, and (b) detailed structure
of customized U-Net (L channel represent brightness, a channel represents the color between red and
green, b channel represents the color between yellow and blue).

In this study, the Lab color space is utilized for preprocessing the training data. The
luminance channel undergoes bilateral filtering and multiscale Retinex (MSR) processing
to remove noise and enhance local contrast, resulting in an improved image. Additionally,
a directional edge filter is applied to generate an edge index image that emphasizes the
left and right lanes of the roadway area during driving. These processed images are then
combined with the RGB image to create training input data that comprises four channels.
Subsequently, the U-Net architecture is modified to accommodate the four-channel tensor,
and an additional layer is added before and after the neck stage of the U-Net. However,
adding these layers increases the parameter count by a factor of approximately four,
resulting in issues such as overfitting, excessive memory usage, and increased training time.
To address this problem, the standard convolution layer is replaced with the Depthwise
separable convolution layer proposed by Francois et al. [35] to reduce the parameters.
Additionally, dropout is employed to substitute for the input and output of the added
layers to prevent overfitting. The loss comprises a total of four components: a binary
cross-entropy (BCE) loss and three mean absolute error (MAE) losses. The weights of the
loss are then adjusted using a param-tuner. Each subsequent section is explained block by
block in the following order: Section 3.2—Training Data Tuning, Section 3.3—Weighted
Loss Function, and Section 3.4—Architecture of Customized U-Net.

3.2. Training Data Tuning

Data preprocessing for training is explained in Figure 4. The input data are trans-
formed into the Lab color space. Moreover, by only using the luminance information while
preserving the color information of image channels a and b, any loss in color information is
minimized. The L channel input undergoes two main processes. The first involves removing
noise, and lanes are highlighted to acquire the RGB image through bilateral filtering and
the MSR process. In the second process, an attention map is generated to focus on lanes
during training. The edge attention map (E-attention map) is formed by the directional
edge filter and the ROI to establish the target lane of the road. The input data consist
of three RGB channels and one directional edge image channel, which are combined to
generate four-channel input data.

Mathematics 2024, 12, 1206 7 of 23Mathematics 2024, 12, 1206 7 of 24

Figure 4. Process of training data tuning (L channel represent brightness, a channel represents the
color between red and green, b channel represents the color between yellow and blue).

3.2.1. Image Enhancement
The first image enhancement step involves applying a bilateral filter to the input L

channel, removing noise while enhancing the local contrast of the lane with MSR. Unlike
a Gaussian filter, the bilateral filter consists of two sigma parameters that can adjust the
extent and range of applied blurring by using each range of sigma and spatial sigma.
These characteristics can be understood by comparing the equations of Gaussian and bi-
lateral filters.

𝐺(𝑥, 𝑦) = 12𝜋𝜎௫𝜎௬ 𝑒(ି(௫ି ఓೣ)మଶఙమೣ ି(௬ି ఓ೤)మଶఙ೤మ)
 (1)

𝐵𝐹(𝑖, 𝑗, 𝑘, 𝑙) = ଵே 𝑒(ି(೔షೖ)మమ഑మೣ ି(ೕష೗)మమ഑೤మ) × 𝑒(ି(಺(೔,ೕ) ష಺(ೖ,೗))మమ഑ೝమ)
 (2)

where Equation (1) represents a two-dimensional Gaussian function, where 𝐺(𝑥, 𝑦)
denotes the probability density function for 𝑥 and 𝑦 . Terms 𝜎௫ and 𝜎௬ represent the
standard deviations in the 𝑥 and 𝑦 directions, respectively, while 𝜇௫ and 𝜇௬ denote
the means in the 𝑥 and 𝑦 directions. These parameters determine the width and height
of the Gaussian function, controlling the degree of blur. Term 𝐵𝐹(𝑖, 𝑗, 𝑘, 𝑙) represents the
output value at position (𝑖, 𝑗) in the bilateral filter, where 𝑁 is a normalization constant
ensuring that the total weight sum is 1. Terms 𝜎௫ and 𝜎௬ indicate the standard deviations
for the spatial differences, with 𝜎௫ representing the difference between 𝑖 and 𝑘, and 𝜎௬
representing the difference between 𝑗 and 𝑙 . Term 𝜎௥ is the standard deviation for
brightness differences, representing the brightness variation between adjacent pixels.
Adjusting this parameter determines the extent of the blur applied.

The bilateral filter has three adjustable parameters: the size of the kernel, the spatial
sigma determining the degree of blur, and the range sigma (which controls the extent of
blur). It is necessary to apply each sigma option differently depending on the time of day
(i.e., day or night). The luminance information in the image allows for measuring the over-
all brightness of the scene. Lee et al. [23] proposed a method for determining the day and
night in an image based on the measured average value, and then configuring parameters
suitable for daytime and nighttime accordingly.

Applying Retinex theory to each sigma value to generate single-scale Retinex (SSR)
images allows for obtaining optimized results that effectively suppress noise while mini-
mizing contrast degradation. The concept of Retinex originates from the understanding that
human vision is more sensitive to relative illumination than the overall background. When
Gaussian blur is applied to the original image, only the background components remain.
Subtracting these background components from the original image extracts the relative il-
lumination component. After undergoing this process for each Gaussian sigma value,

Figure 4. Process of training data tuning (L channel represent brightness, a channel represents the
color between red and green, b channel represents the color between yellow and blue).

3.2.1. Image Enhancement

The first image enhancement step involves applying a bilateral filter to the input L
channel, removing noise while enhancing the local contrast of the lane with MSR. Unlike
a Gaussian filter, the bilateral filter consists of two sigma parameters that can adjust the
extent and range of applied blurring by using each range of sigma and spatial sigma.
These characteristics can be understood by comparing the equations of Gaussian and
bilateral filters.

G(x, y) =
1

2πσxσy
e
(− (x−µx)2

2σ2
x

− (y−µy)2

2σ2
y

)
(1)

BF(i, j, k, l) =
1
N

e
(− (i−k)2

2σ2
x

− (j−l)2

2σ2
y

)
× e

(− (I(i,j)−I(k,l))2

2σ2
r

)
(2)

where Equation (1) represents a two-dimensional Gaussian function, where G(x, y) denotes
the probability density function for x and y. Terms σx and σy represent the standard
deviations in the x and y directions, respectively, while µx and µy denote the means in
the x and y directions. These parameters determine the width and height of the Gaussian
function, controlling the degree of blur. Term BF(i, j, k, l) represents the output value at
position (i, j) in the bilateral filter, where N is a normalization constant ensuring that the
total weight sum is 1. Terms σx and σy indicate the standard deviations for the spatial
differences, with σx representing the difference between i and k, and σy representing the
difference between j and l. Term σr is the standard deviation for brightness differences,
representing the brightness variation between adjacent pixels. Adjusting this parameter
determines the extent of the blur applied.

The bilateral filter has three adjustable parameters: the size of the kernel, the spatial
sigma determining the degree of blur, and the range sigma (which controls the extent of
blur). It is necessary to apply each sigma option differently depending on the time of
day (i.e., day or night). The luminance information in the image allows for measuring
the overall brightness of the scene. Lee et al. [23] proposed a method for determining the
day and night in an image based on the measured average value, and then configuring
parameters suitable for daytime and nighttime accordingly.

Applying Retinex theory to each sigma value to generate single-scale Retinex (SSR)
images allows for obtaining optimized results that effectively suppress noise while mini-
mizing contrast degradation. The concept of Retinex originates from the understanding
that human vision is more sensitive to relative illumination than the overall background.
When Gaussian blur is applied to the original image, only the background components
remain. Subtracting these background components from the original image extracts the
relative illumination component. After undergoing this process for each Gaussian sigma
value, multiple SSR images are generated, which are then combined into a single multiscale
Retinex image with weighted fusion. This process is illustrated in Equations (3) and (4).

Mathematics 2024, 12, 1206 8 of 23

SSRi(x, y) = log(Ii(x, y))− log(Ii(x, y) ∗ Gσi (x, y)) (3)

MSR(x, y) = ∑n
i=1 wiSSRi(x, y) (4)

where SSRi(x, y) represents the SSR value of image Ii(x, y), denoting the corrected bright-
ness value of each pixel, while Ii(x, y) represents the pixel value of the input image, where
(x, y) indicates the coordinates of the image. Moreover, log(Ii(x, y)) denotes the natural
logarithm value of the pixel value of the input image, while Gσi (x, y) represents the spatial
weight, which comprises a Gaussian filter that is used to smooth the brightness around
the pixel. Finally, Ii(x, y) ∗ Gσi (x, y) computes the spatial average for each pixel of input
image I, obtaining the illumination component by subtracting it from the original image.
After multiplying the calculated single-scale SSRi by each weight and summing them, an
MSR image is generated. The synthesized L-channel MSR image is then combined with the
preserved a and b information and converted from the Lab space to the RGB color space.
The detailed image enhancement procedure is shown in Algorithm 1.

Algorithm 1 Image Enhancement

1: Input: ImgRGB
2: Initialize: ImgLab = cvtcolor

(
ImgRGB

)
3: Lch, ach, bch = splitcolor(ImgLab)

4: ImgDenoised = 1
N e

(− (i−k)2

2σ2
x

− (j−l)2

2σ2
y

)
e
(− (L_ch(i,j)−L_ch(k,l))2

2σ2
r

)

5: for i = 1, 2, 3 do
6: SSRi(x, y) = log

(
ImgDenoisedi(x, y)

)
− log

(
ImgDenoisedi(x, y) ∗ Gσi (x, y)

)
7: MSR(x, y) = wiSSRi(x, y)
8: end for
9: Output: ImgMSR

3.2.2. E-Attention Map and Targeting a Specific Area

To some extent, it is possible to predict the angle of the lane lines in the road area where
the vehicle is currently driving from the camera installed on the vehicle [23]. Accordingly,
we set up filters to extract only the edge information of the lane lines in a specific direction
(the directional edge filter) to emphasize both the left and right lane lines. Using this
designed directional edge filter, edge images emphasizing the left and right lane lines
are generated separately and then combined into one image through normalization and
summation. The entire process is illustrated in Figure 5.

The generated edge images only retain information about the road area, while the sky
area is considered unnecessary and is removed entirely using the ROI. Subsequently, these
edge images are incorporated as the fourth channel of the RGB image generated in the first
step, resulting in the final creation of four-channel input data. The detailed procedure is
shown in Algorithm 2.

Mathematics 2024, 12, 1206 9 of 24

Figure 5. The process of creating an E-attention map using a directional edge filter.

Algorithm 2 E-Attention Map and Targeting a Specific Area
1: Input: 𝐿௖௛, 𝐼𝑚𝑔ெௌோ
2: for 𝑖 = 1, 2, 3 do
3: for 𝑗 = 1,2, 3 do
4: 𝐼𝑚𝑔௅௘௙௧௅௔௡௘ = 𝐿௖௛(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) ∗ 𝑆𝑜𝑢𝑡ℎ_𝑊𝑒𝑠𝑡_𝐹𝑖𝑙𝑡𝑒𝑟(𝑖, 𝑗)
5: 𝐼𝑚𝑔ோ௜௚௛௧௅௔௡௘ = 𝐿௖௛(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) ∗ 𝑆𝑜𝑢𝑡ℎ_𝐸𝑎𝑠𝑡_𝐹𝑖𝑙𝑡𝑒𝑟(𝑖, 𝑗)
6: end for
7: end for
8: 𝐼𝑚𝑔௖௢௠௕௜௡௘ௗ = ଵଶ × 𝐼𝑚𝑔௅௘௙௧௅௔௡௘ + ଵଶ × 𝐼𝑚𝑔ோ௜௚௛௧௅௔௡௘
9: 𝐼𝑚𝑔ோைூ_௖௢௠௕௜௡௘ௗ = 𝑅𝑒𝑔𝑖𝑜𝑛_𝑜𝑓_𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝐼𝑚𝑔௖௢௠௕௜௡௘ௗ)
10: 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎ସ௖௛௔௡௡௘௟ = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐼𝑚𝑔ெௌோ, 𝐼𝑚𝑔ோைூ_௖௢௠௕௜௡௘ௗ)
11: Output: 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎ସ௖௛௔௡௡௘௟
3.3. Weighted Loss Function

Comparing regions where the likelihood of lane absence is high could degrade the
performance of the loss function. Therefore, we propose a method to enhance lane detec-
tion accuracy by introducing a weighted map with Gaussian-filtered loss functions. The
aim is to facilitate more precise training by adding information about potential lane areas
to the label image during training. Specifically, Gaussian masks with different sigma val-
ues are applied to the label image to highlight areas where lanes could exist. During loss
function computation, individual loss terms for each blurred label image are calculated
separately and treated as separate loss functions. The sigma values of the Gaussian filters
are used differently to induce the model to learn various levels of lane information, help-
ing to focus on local details and capture the lanes more effectively.

As illustrated in Figure 6, the process involves using Gaussian masks with different
sigma values that are generated from the label image through the Gaussian mask builder.
These masks (denoted as Gaussian masks 1, 2, and 3) are employed to compute various
MAE losses between the model’s output image and the original label image. Additionally,
BCE losses are computed from the original label image and output image, and all adjusted
loss functions are processed through a parameter tuner.

Figure 5. The process of creating an E-attention map using a directional edge filter.

Mathematics 2024, 12, 1206 9 of 23

Algorithm 2 E-Attention Map and Targeting a Specific Area

1: Input: Lch, ImgMSR
2: for i = 1, 2, 3 do
3: for j = 1, 2, 3 do
4: ImgLe f tLane = Lch(width, height) ∗ South_West_Filter(i, j)
5: ImgRightLane = Lch(width, height) ∗ South_East_Filter(i, j)
6: end for
7: end for
8: Imgcombined = 1

2 × ImgLe f tLane +
1
2 × ImgRightLane

9: ImgROI_combined = Region_o f _Interest(Imgcombined)
10: input_data4channel = channel_concatenate

(
ImgMSR, ImgROI_combined

)
11: Output: input_data4channel

3.3. Weighted Loss Function

Comparing regions where the likelihood of lane absence is high could degrade the
performance of the loss function. Therefore, we propose a method to enhance lane detection
accuracy by introducing a weighted map with Gaussian-filtered loss functions. The aim is
to facilitate more precise training by adding information about potential lane areas to the
label image during training. Specifically, Gaussian masks with different sigma values are
applied to the label image to highlight areas where lanes could exist. During loss function
computation, individual loss terms for each blurred label image are calculated separately
and treated as separate loss functions. The sigma values of the Gaussian filters are used
differently to induce the model to learn various levels of lane information, helping to focus
on local details and capture the lanes more effectively.

As illustrated in Figure 6, the process involves using Gaussian masks with different
sigma values that are generated from the label image through the Gaussian mask builder.
These masks (denoted as Gaussian masks 1, 2, and 3) are employed to compute various
MAE losses between the model’s output image and the original label image. Additionally,
BCE losses are computed from the original label image and output image, and all adjusted
loss functions are processed through a parameter tuner.

Mathematics 2024, 12, 1206 10 of 24

Figure 6. Process of weighted loss function (Mask 1: kernel size 6 and sigma 2; Mask 2: kernel size
13 and sigma 7; Mask 3: kernel size 21 and sigma 15).

Four loss functions are employed in this process. The binary cross-entropy (BCE) loss
is applied to the original label image and the output image, while the mean absolute error
(MAE) loss is used for the label image with the Gaussian filter applied and the output
image. The BCE loss is commonly used in binary classification problems for measuring
the difference between the output image and the target label image, considering whether
a pixel value exists at a given location. In contrast, the MAE loss computes the absolute
difference between the predicted and ground truth values for each sample. This is calcu-
lated for the result passed through the Gaussian mask, considering the potential positions
of the lanes, by summing the differences for all samples and then computing the average.
Equations (5) and (6) represent these two processes.

𝐿𝑜𝑠𝑠஻஼ா = − 1𝑁 ෍ 𝑦௜ log൫𝑝(𝑦௜)൯ + (1 − 𝑦௜)log (1 − 𝑝(𝑦௜))ே
௜ୀଵ (5)

𝐿𝑜𝑠𝑠ெ஺ா = 1𝑁 ෍(𝑦௜ − 𝑡௜)ଶே
௜ୀଵ (6)

where 𝐿𝑜𝑠𝑠஻஼ா refers to the BCE loss function, N represents the total number of data
points, and 𝑦௜ represents the actual label, indicating the actual label of each data point in
binary classification as either 0 or 1. Term 𝑝(𝑦௜) represents the probability of the label
being 1 predicted by the model for each data point. The BCE loss function calculates the
error between the model’s predicted values and the actual values for each data point. The
model is trained in the direction of minimizing this error. Term 𝐿𝑜𝑠𝑠ெ஺ா refers to the MAE
loss function, where N represents the total number of data points, 𝑦௜ represents the actual
label, and 𝑡௜ represents the probability of 1 being predicted by the model. The MAE loss
function measures the absolute error between the actual and predicted values for each
data point and averages the errors over all data points. 𝛽ଵ = 𝑒௅௢௦௦ಾಲಶభ + 𝑒௅௢௦௦ಾಲಶమ + 𝑒௅௢௦௦ಾಲಶయ𝑒௅௢௦௦ಳ಴ಶ + 𝑒௅௢௦௦ಾಲಶభ + 𝑒௅௢௦௦ಾಲಶమ + 𝑒௅௢௦௦ಾಲಶయ (7)

Figure 6. Process of weighted loss function (Mask 1: kernel size 6 and sigma 2; Mask 2: kernel size 13
and sigma 7; Mask 3: kernel size 21 and sigma 15).

Four loss functions are employed in this process. The binary cross-entropy (BCE) loss
is applied to the original label image and the output image, while the mean absolute error

Mathematics 2024, 12, 1206 10 of 23

(MAE) loss is used for the label image with the Gaussian filter applied and the output
image. The BCE loss is commonly used in binary classification problems for measuring
the difference between the output image and the target label image, considering whether
a pixel value exists at a given location. In contrast, the MAE loss computes the absolute
difference between the predicted and ground truth values for each sample. This is calculated
for the result passed through the Gaussian mask, considering the potential positions of
the lanes, by summing the differences for all samples and then computing the average.
Equations (5) and (6) represent these two processes.

LossBCE = − 1
N

N

∑
i=1

yilog (p(yi)) + (1 − yi)log(1 − p(yi)) (5)

LossMAE =
1
N

N

∑
i=1

(yi − ti)
2 (6)

where LossBCE refers to the BCE loss function, N represents the total number of data points,
and yi represents the actual label, indicating the actual label of each data point in binary
classification as either 0 or 1. Term p(yi) represents the probability of the label being 1
predicted by the model for each data point. The BCE loss function calculates the error
between the model’s predicted values and the actual values for each data point. The model
is trained in the direction of minimizing this error. Term LossMAE refers to the MAE loss
function, where N represents the total number of data points, yi represents the actual label,
and ti represents the probability of 1 being predicted by the model. The MAE loss function
measures the absolute error between the actual and predicted values for each data point
and averages the errors over all data points.

β1 =
eLossMAE1 + eLossMAE2 + eLossMAE3

eLossBCE + eLossMAE1 + eLossMAE2 + eLossMAE3
(7)

β2 =
eLossBCE

eLossBCE + eLossMAE1 + eLossMAE2 + eLossMAE3
(8)

where eLossBCE represents the loss between the output predicted by the model and the
target label, which is set as an exponentiated value of the exponential function. Terms
eLossMAE1 , eLossMAE2 , and eLossMAE3 represent the loss between the label passed through the
Gaussian masks according to each sigma value and the output, which are set as exponenti-
ated values of the exponential function. This is designed to accelerate learning based on
the softmax function. The parameter tuning formula adjusts the terms where the loss is
small to be more heavily weighted during the loss calculation, while terms where the loss
is high are weighted less. Parameter adjustment can accelerate learning to some extent.
The detailed procedure is shown in Algorithm 3.

Algorithm 3 Weighted Loss Function

1: Input: ImgLabel , Imgpredict

2: LossOrigin = LossBCE

(
ImgLabel , Imgpredict

)
3: for i = 1, 2, 3 do
4: Imgpotential_ predict = Imgpredict & Gaussian_blurσi (ImgLabel)

5: Imgpotential_ Label = ImgLabel & Gaussian_blurσi (ImgLabel)

6: Lossi = LossMAE

(
Imgpotential_ predict, Imgpotential_ Label

)
7: end for
8: β1 = eLoss1+eLoss2+eLoss3

eLossorigin+eLoss1+eLoss2+eLoss3

9: β2 = eLossorigin

eLossorigin+eLoss1+eLoss2+eLoss3

10: Lossall = β1 × LossOrigin + β2 × (Loss1 + Loss2 + Loss3)
11: Output: Lossall → backpropagation()

Mathematics 2024, 12, 1206 11 of 23

3.4. Architecture of the Customized U-Net

In this paper, training is conducted based on U-Net. The 4-channel input data require
a larger amount processing compared to the 3-channel input data. To process the four-
channel input data effectively, each layer in the encoder and decoder of the original U-Net
is augmented by one layer. An additional layer was added to the encoder part just before
entering the neck, and similarly, an extra layer was added to the decoder immediately after
coming out from the neck. Adding just one layer significantly increases the number of
parameters to be trained nearly fourfold. Therefore, as the structure becomes deeper with
added layers, overfitting can occur. As the layers deepen, the phenomenon of gradient
vanishing occurs, and as the number of parameters to be trained increases, optimization
only occurs in the training data. To mitigate this problem, the inputs and outputs of the
additional layers are replaced with dropout. Dropout is a regularization technique in neu-
ral networks aimed at reducing overfitting by randomly removing some neurons during
training. This can reduce network dependency and improve generalization performance.
Furthermore, increasing the number of parameters extends the training time and requires
more memory. Therefore, it is necessary to reduce the number of parameters while min-
imizing performance degradation. Depthwise separable convolution was proposed by
Francois et al. [35] to accomplish this aim. Figure 7 illustrates the modified U-Net structure.

Mathematics 2024, 12, 1206 12 of 24

Figure 7. Architecture of customized U-Net.

4. Experiments and Results
4.1. Settings

The performance validation experiments for the proposed approach were conducted
in two parts. The first experiment involved optimizing the parameters of the proposed
modules and demonstrating the efficiency of each block by applying the modules to indi-
vidual blocks. In the second experiment, the proposed method was compared with differ-
ent approaches to showcase its efficiency. For the training, a randomly selected subset of
30,000 images was used from the BDD100k dataset. All the training images were resized
to 256 × 256. Figure 8 illustrates the input and label pair data used for the training. The
test was conducted using both the BDD100k dataset, which was not used in the training
samples, and data directly captured by a camera model named 99250AR010, which pro-
vides FHD quality. The options for the modules used in training were consistent across
all cases: batch size = 24, epoch = 120, and a learning rate of 2 × 10ିସ. The training and
experiments were implemented on an RTX 4090 GPU (Nvidia, Santa Clara, CA, USA) and
an i7-13700 CPU (Intel, Santa Clara, CA, USA).

Figure 7. Architecture of customized U-Net.

4. Experiments and Results
4.1. Settings

The performance validation experiments for the proposed approach were conducted
in two parts. The first experiment involved optimizing the parameters of the proposed
modules and demonstrating the efficiency of each block by applying the modules to
individual blocks. In the second experiment, the proposed method was compared with
different approaches to showcase its efficiency. For the training, a randomly selected subset
of 30,000 images was used from the BDD100k dataset. All the training images were resized

Mathematics 2024, 12, 1206 12 of 23

to 256 × 256. Figure 8 illustrates the input and label pair data used for the training. The
test was conducted using both the BDD100k dataset, which was not used in the training
samples, and data directly captured by a camera model named 99250AR010, which provides
FHD quality. The options for the modules used in training were consistent across all cases:
batch size = 24, epoch = 120, and a learning rate of 2 × 10−4. The training and experiments
were implemented on an RTX 4090 GPU (Nvidia, Santa Clara, CA, USA) and an i7-13700
CPU (Intel, Santa Clara, CA, USA).

Mathematics 2024, 12, 1206 13 of 24

(a) (b)

Figure 8. Training data pair set: (a) RGB scene data and (b) label data.

4.2. Evaluation Metric
First, we describe the evaluation method for lane detection. The aim of this study was

not to create a segmentation map identical to the label data. The objective was to detect
the lanes in the roadway area where the vehicle was driving. To achieve this, unnecessary
information was restricted and only essential information was injected into the training.
Therefore, evaluating the difference between the label image and the output image in
terms of true positive, false positive, and false negative would not align with the goal of
this study. Only the lanes in the driving area were considered for evaluation. Figure 9
illustrates cases where both the left and right lanes were accurately detected, as well as
cases where only the left or right lane was accurately detected.

(a)

Figure 8. Training data pair set: (a) RGB scene data and (b) label data.

4.2. Evaluation Metric

First, we describe the evaluation method for lane detection. The aim of this study was
not to create a segmentation map identical to the label data. The objective was to detect
the lanes in the roadway area where the vehicle was driving. To achieve this, unnecessary
information was restricted and only essential information was injected into the training.
Therefore, evaluating the difference between the label image and the output image in terms
of true positive, false positive, and false negative would not align with the goal of this study.
Only the lanes in the driving area were considered for evaluation. Figure 9 illustrates cases
where both the left and right lanes were accurately detected, as well as cases where only
the left or right lane was accurately detected.

Mathematics 2024, 12, 1206 13 of 24

(a) (b)

Figure 8. Training data pair set: (a) RGB scene data and (b) label data.

4.2. Evaluation Metric
First, we describe the evaluation method for lane detection. The aim of this study was

not to create a segmentation map identical to the label data. The objective was to detect
the lanes in the roadway area where the vehicle was driving. To achieve this, unnecessary
information was restricted and only essential information was injected into the training.
Therefore, evaluating the difference between the label image and the output image in
terms of true positive, false positive, and false negative would not align with the goal of
this study. Only the lanes in the driving area were considered for evaluation. Figure 9
illustrates cases where both the left and right lanes were accurately detected, as well as
cases where only the left or right lane was accurately detected.

(a)

Figure 9. Cont.

Mathematics 2024, 12, 1206 13 of 23Mathematics 2024, 12, 1206 14 of 24

(b)

(c)

Figure 9. Example of ground truth for evaluation criteria: (a) both lanes’ detection, (b) left lane de-
tection, and (c) right lane detection.

4.3. Ablation Experiments for Option Adjustment
In this section, blocks were progressively applied to test the performance of each

block. The experiment was defined through six cases. Case 1 represents the result where
all the proposed blocks are applied. Case 2 involves training with 3-channel input data
instead of 4-channel input data to validate the effectiveness of the 4-channel input data.
Case 3 involves comparing with the case where lane direction is not considered, using the
Sobel filter instead of the directional edge filter to generate the 4th channel edge image.
Case 4 uses a simple vertically and horizontally separated ROI weight map instead of the
loss weight map to demonstrate the effectiveness of the Gaussian mask builder. Case 5
involves uniformly combining 𝐿𝑜𝑠𝑠஻஼ா and 𝐿𝑜𝑠𝑠ெ஺ாଵ , and 𝐿𝑜𝑠𝑠ெ஺ாଶ, and 𝐿𝑜𝑠𝑠ெ஺ாଷ
without weighting to demonstrate the effectiveness of the param-tuner. Case 6 involves
the numerator of beta1 and beta2 being exchanged in the param-tuner to determine
whether the training will be accelerated or decelerated when the weights are determined.
By conducting experiments in various environments, the reliability of the experiments is
increased. The experiments are conducted in five scenarios, each comprising 100 images:
(1) daytime conditions; (2) conditions where lane detection is challenging due to reflec-
tions from sunlight or rainwater; (3) nighttime conditions; (4) conditions where lane de-
tection is challenging due to reflections from other vehicles, streetlights, or billboards dur-
ing the night and rainy conditions; and (5) indoor environments such as bridges and tun-
nels. Table 1 presents the detection rate. Figures 10–14 illustrate the results of each case.

Table 1. Evaluation table.

Scenario Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Day
Left lane 94% 64% 89% 88% 98% 91%

Right lane 91% 60% 85% 89% 91% 95%
Accuracy 92.5% 62% 87% 88.5% 94.5% 93%

Figure 9. Example of ground truth for evaluation criteria: (a) both lanes’ detection, (b) left lane
detection, and (c) right lane detection.

4.3. Ablation Experiments for Option Adjustment

In this section, blocks were progressively applied to test the performance of each
block. The experiment was defined through six cases. Case 1 represents the result where
all the proposed blocks are applied. Case 2 involves training with 3-channel input data
instead of 4-channel input data to validate the effectiveness of the 4-channel input data.
Case 3 involves comparing with the case where lane direction is not considered, using the
Sobel filter instead of the directional edge filter to generate the 4th channel edge image.
Case 4 uses a simple vertically and horizontally separated ROI weight map instead of
the loss weight map to demonstrate the effectiveness of the Gaussian mask builder. Case
5 involves uniformly combining LossBCE and LossMAE1, and LossMAE2, and LossMAE3
without weighting to demonstrate the effectiveness of the param-tuner. Case 6 involves the
numerator of beta1 and beta2 being exchanged in the param-tuner to determine whether
the training will be accelerated or decelerated when the weights are determined. By
conducting experiments in various environments, the reliability of the experiments is
increased. The experiments are conducted in five scenarios, each comprising 100 images:
(1) daytime conditions; (2) conditions where lane detection is challenging due to reflections
from sunlight or rainwater; (3) nighttime conditions; (4) conditions where lane detection
is challenging due to reflections from other vehicles, streetlights, or billboards during the
night and rainy conditions; and (5) indoor environments such as bridges and tunnels.
Table 1 presents the detection rate. Figures 10–14 illustrate the results of each case.

Table 1. Evaluation table.

Scenario Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Left lane 94% 64% 89% 88% 98% 91%

Day Right lane 91% 60% 85% 89% 91% 95%

Accuracy 92.5% 62% 87% 88.5% 94.5% 93%

Mathematics 2024, 12, 1206 14 of 23

Table 1. Cont.

Scenario Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Left lane 92% 58% 83% 87% 90% 98%

Day rain Right lane 93% 59% 81% 88% 81% 89%

Accuracy 92.5% 58.5% 82% 87.5% 85.5% 93.5%

Left lane 93% 58% 83% 82% 88% 96%

Night Right lane 97% 61% 80% 79% 84% 91%

Accuracy 95% 59.5% 81.5% 80.5% 86% 93.5%

Left lane 90% 59% 83% 80% 93% 91%

Night rain Right lane 91% 48% 70% 77% 89% 81%

Accuracy 90.5% 53.5% 76.5% 78.5% 91% 86%

Left lane 99% 71% 88% 91% 92% 96%

Tunnel Right lane 94% 72% 85% 91% 93% 93%

Accuracy 96.5% 71.5% 86.5% 91% 92.5% 94.5%

Total Average 93.4% 61% 82.7% 85.2% 89.9% 92.1%

Case 1: 4-channel input data + bilateral filter/MSR + directional edge filter + Loss gaussian weight map + param
tuning (acc). Case 2: 3-channel input data + bilateral filter/MSR. Case 3: 4-channel input data + bilateral filter/
MSR + Sobel edge filter. Case 4: 4-channel input data + bilateral filter/MSR + directional edge filter + Loss
ROI weight map. Case 5: 4-channel input data + bilateral filter/MSR + directional edge filter + Loss gaussian
weight map. Case 6: 4-channel input data + bilateral filter/MSR + directional edge filter + Loss gaussian weight
map + param tuning (break).

Mathematics 2024, 12, 1206 15 of 24

Day rain
Left lane 92% 58% 83% 87% 90% 98%

Right lane 93% 59% 81% 88% 81% 89%
Accuracy 92.5% 58.5% 82% 87.5% 85.5% 93.5%

Night
Left lane 93% 58% 83% 82% 88% 96%

Right lane 97% 61% 80% 79% 84% 91%
Accuracy 95% 59.5% 81.5% 80.5% 86% 93.5%

Night rain
Left lane 90% 59% 83% 80% 93% 91%

Right lane 91% 48% 70% 77% 89% 81%
Accuracy 90.5% 53.5% 76.5% 78.5% 91% 86%

Tunnel
Left lane 99% 71% 88% 91% 92% 96%

Right lane 94% 72% 85% 91% 93% 93%
Accuracy 96.5% 71.5% 86.5% 91% 92.5% 94.5%

Total Average 93.4% 61% 82.7% 85.2% 89.9% 92.1%
Case 1: 4-channel input data + bilateral filter/MSR + directional edge filter + Loss gaussian weight
map + param tuning (acc). Case 2: 3-channel input data + bilateral filter/MSR. Case 3: 4-channel
input data + bilateral filter/MSR + Sobel edge filter. Case 4: 4-channel input data + bilateral filter/MSR
+ directional edge filter + Loss ROI weight map. Case 5: 4-channel input data + bilateral filter/MSR
+ directional edge filter + Loss gaussian weight map. Case 6: 4-channel input data + bilateral fil-
ter/MSR + directional edge filter + Loss gaussian weight map + param tuning (break).

(a) (b) (c) (d) (e) (f)

Figure 10. The result of the evaluation in scenario 1 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Figure 10. The result of the evaluation in scenario 1 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Mathematics 2024, 12, 1206 15 of 23Mathematics 2024, 12, 1206 16 of 24

(a) (b) (c) (d) (e) (f)

Figure 11. The result of the evaluation in scenario 2 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

(a) (b) (c) (d) (e) (f)

Figure 12. The result of the evaluation in scenario 3 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Figure 11. The result of the evaluation in scenario 2 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Mathematics 2024, 12, 1206 16 of 24

(a) (b) (c) (d) (e) (f)

Figure 11. The result of the evaluation in scenario 2 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

(a) (b) (c) (d) (e) (f)

Figure 12. The result of the evaluation in scenario 3 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Figure 12. The result of the evaluation in scenario 3 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Mathematics 2024, 12, 1206 16 of 23Mathematics 2024, 12, 1206 17 of 24

(a) (b) (c) (d) (e) (f)

Figure 13. The result of the evaluation in scenario 4 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

(a) (b) (c) (d) (e) (f)

Figure 14. The result of the evaluation in scenario 5 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Figure 13. The result of the evaluation in scenario 4 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Mathematics 2024, 12, 1206 17 of 24

(a) (b) (c) (d) (e) (f)

Figure 13. The result of the evaluation in scenario 4 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

(a) (b) (c) (d) (e) (f)

Figure 14. The result of the evaluation in scenario 5 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Figure 14. The result of the evaluation in scenario 5 (the red dotted box represents the Lab. dataset):
(a) proposed method (Case 1), (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, and (f) Case 6.

Mathematics 2024, 12, 1206 17 of 23

The loss for each case is represented in Figure 15. From the graph, it is evident that
Case 1 exhibited the most stable decrease in loss. This result indicated that the 4-channel
input was significantly more stable in terms of learning compared to the 3-channel input.
This implies that providing additional information about the lanes during training ensured
stable learning.

Mathematics 2024, 12, 1206 18 of 24

The loss for each case is represented in Figure 15. From the graph, it is evident that
Case 1 exhibited the most stable decrease in loss. This result indicated that the 4-channel
input was significantly more stable in terms of learning compared to the 3-channel input.
This implies that providing additional information about the lanes during training en-
sured stable learning.

Figure 15. Loss graph displaying evaluation.

4.4. Results of Performance Comparison Experiments
In this section, the superiority of the proposed method is demonstrated by comparing

the results with those obtained using different approaches. All the experiments were con-
ducted using the same set of 30,000 training data samples. The learning rate was set to 2 × 10ିସ, the batch size was 24, and the number of epochs was 120. Table 2 presents a com-
parison of the accuracies. U-Net [7], DSU-Net [29], ConvLSTM [28], and the proposed
method were compared. It is evident that the detection rate of the proposed method was
higher in both the left and right lane categories. For performance evaluation, comparison
experiments were conducted in five scenarios, each comprising 100 images, to increase the
reliability of the experiments. Table 2 and Figures 16–20 depict the results of each case.
Despite the deterioration in image quality due to the structural limitation of the U-Net
ConvLSTM model, which outputs only at 256 × 128 resolution, lane detection can still be
visually confirmed. Since there are environmental differences between day and night, the
comparison was split accordingly. Lee at al. proposed a method that applies Depthwise
separable convolution to the conventional U-Net architecture, significantly reducing pa-
rameters by nearly four times for real-time operation [29]. Similarly, our approach also em-
ploys Depthwise separable convolution to reduce parameters; however, to enhance detection
rates, we increased the depth of the existing standard U-Net architecture. As a result, the pa-
rameters required for training increased nearly fourfold.

Figure 15. Loss graph displaying evaluation.

4.4. Results of Performance Comparison Experiments

In this section, the superiority of the proposed method is demonstrated by compar-
ing the results with those obtained using different approaches. All the experiments were
conducted using the same set of 30,000 training data samples. The learning rate was set
to 2 × 10−4, the batch size was 24, and the number of epochs was 120. Table 2 presents a
comparison of the accuracies. U-Net [7], DSU-Net [29], ConvLSTM [28], and the proposed
method were compared. It is evident that the detection rate of the proposed method was
higher in both the left and right lane categories. For performance evaluation, comparison
experiments were conducted in five scenarios, each comprising 100 images, to increase
the reliability of the experiments. Table 2 and Figures 16–20 depict the results of each case.
Despite the deterioration in image quality due to the structural limitation of the U-Net
ConvLSTM model, which outputs only at 256 × 128 resolution, lane detection can still be
visually confirmed. Since there are environmental differences between day and night, the
comparison was split accordingly. Lee at al. proposed a method that applies Depthwise
separable convolution to the conventional U-Net architecture, significantly reducing param-
eters by nearly four times for real-time operation [29]. Similarly, our approach also employs
Depthwise separable convolution to reduce parameters; however, to enhance detection
rates, we increased the depth of the existing standard U-Net architecture. As a result, the
parameters required for training increased nearly fourfold.

Table 2. Comparison experiments with other algorithms.

Scenario U-Net DS U-Net ConvLSTM Proposed

Left lane 69% 75% 74% 94%

Day Right lane 70% 69% 75% 91%

Accuracy 69.5% 72% 74.5% 92.5%

Mathematics 2024, 12, 1206 18 of 23

Table 2. Cont.

Scenario U-Net DS U-Net ConvLSTM Proposed

Left lane 66% 72% 70% 92%

Day rain Right lane 65% 77% 70% 93%

Accuracy 65.5% 74.5% 70% 92.5%

Left lane 68% 65% 76% 93%

Night Right lane 67% 68% 73% 97%

Accuracy 67.5% 66.5% 74.5% 95%

Left lane 71% 80% 77% 90%

Night rain Right lane 63% 73% 84% 91%

Accuracy 67% 76.5% 80.5% 90.5%

Left lane 64% 72% 75% 99%

Tunnel Right lane 59% 73% 77% 94%

Accuracy 61.5% 72.5% 76% 96.5%

Total Average 66.2% 72.4% 75.1% 93.4%

Mathematics 2024, 12, 1206 19 of 24

Table 2. Comparison experiments with other algorithms.

Scenario U-Net DS U-Net ConvLSTM Proposed

Day
Left lane 69% 75% 74% 94%

Right lane 70% 69% 75% 91%
Accuracy 69.5% 72% 74.5% 92.5%

Day rain
Left lane 66% 72% 70% 92%

Right lane 65% 77% 70% 93%
Accuracy 65.5% 74.5% 70% 92.5%

Night
Left lane 68% 65% 76% 93%

Right lane 67% 68% 73% 97%
Accuracy 67.5% 66.5% 74.5% 95%

Night rain
Left lane 71% 80% 77% 90%

Right lane 63% 73% 84% 91%
Accuracy 67% 76.5% 80.5% 90.5%

Tunnel
Left lane 64% 72% 75% 99%

Right lane 59% 73% 77% 94%
Accuracy 61.5% 72.5% 76% 96.5%

Total Average 66.2% 72.4% 75.1% 93.4%

(a) (b) (c) (d)

Figure 16. The result of the comparison in scenario 1 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed
method.

Figure 16. The result of the comparison in scenario 1 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Mathematics 2024, 12, 1206 19 of 23Mathematics 2024, 12, 1206 20 of 24

(a) (b) (c) (d)

Figure 17. The result of the comparison in scenario 2 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

(a) (b) (c) (d)

Figure 18. The result of the comparison in scenario 3 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Figure 17. The result of the comparison in scenario 2 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Mathematics 2024, 12, 1206 20 of 24

(a) (b) (c) (d)

Figure 17. The result of the comparison in scenario 2 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

(a) (b) (c) (d)

Figure 18. The result of the comparison in scenario 3 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.
Figure 18. The result of the comparison in scenario 3 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Mathematics 2024, 12, 1206 20 of 23Mathematics 2024, 12, 1206 21 of 24

(a) (b) (c) (d)

Figure 19. The result of the comparison in scenario 4 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

(a) (b) (c) (d)

Figure 20. The result of the comparison in scenario 5 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Figure 19. The result of the comparison in scenario 4 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Mathematics 2024, 12, 1206 21 of 24

(a) (b) (c) (d)

Figure 19. The result of the comparison in scenario 4 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

(a) (b) (c) (d)

Figure 20. The result of the comparison in scenario 5 (the red dotted box represents the Lab. dataset): (a)
U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.
Figure 20. The result of the comparison in scenario 5 (the red dotted box represents the Lab. dataset):
(a) U-Net lane detection, (b) Depthwise separable U-Net, (c) U-Net ConvLSTM, and (d) proposed method.

Mathematics 2024, 12, 1206 21 of 23

5. Conclusions

In this paper, a learning approach for stable lane detection in various environments
was proposed. First, the training dataset was refined, where the RGB color space was
transformed into the Lab color space and only the L channel information was used to
prevent color distortion. Situation-appropriate bilateral filters and MSR were applied to
suppress noise and increase contrast, refining images captured in harsh road environments
for lane detection. Additionally, a method was proposed for enhancing efficiency in training
by combining edge images passed through a directional edge filter (emphasizing lane
information) as the fourth channel. Directional edge filters were employed to emphasize
the left and right lanes in the edge image. The refined training dataset was referred
to as four-channel input data. To train with the four-channel input data, the structure
of U-Net was modified, with layers added for deeper learning. In addition, the input
and output of the added layers were disregarded to prevent overfitting. Furthermore,
the Depthwise separable convolutions technique was applied to reduce the number of
parameters, providing overall lightening of the model. Finally, to prevent unnecessary
areas outside the lane from affecting the loss calculation, the loss was only computed in
regions where lanes potentially existed. Adjusting the impact of loss through a parameter
tuner accelerated the learning. The proposed learning approach demonstrated more stable
training and better detection rates compared to other methods, as evidenced by loss graphs,
comparison tables, and result images. However, as this method was only evaluated on
a single structure based on U-Net, it will be necessary to evaluate this new learning
approach on a wider range of modules. Furthermore, our proposed method cannot operate
in real-time, due to the increased number of parameters for higher detection rates. In
future research, we will explore ways to reduce the parameter count while maintaining
high detection rates to enable real-time operation. Additionally, our goal is to continue
researching by experimenting with real-time lane detection using embedded ASIC boards.
Future research should consider both lane detection and other vehicle recognition tasks,
along with a consideration of real-time operation by embedding systems into vehicles.

Author Contributions: Conceptualization, S.-H.L. (Sung-Hak Lee); methodology, S.-H.L. (Seung-Hwan
Lee) and S.-H.L. (Sung-Hak Lee); software, S.-H.L. (Seung-Hwan Lee); validation, S.-H.L. (Seung-Hwan
Lee) and S.-H.L. (Sung-Hak Lee); formal analysis, S.-H.L. (Seung-Hwan Lee) and S.-H.L. (Sung-Hak Lee);
investigation, S.-H.L. (Seung-Hwan Lee) and S.-H.L. (Sung-Hak Lee); resources, S.-H.L. (Seung-Hwan
Lee) and S.-H.L. (Sung-Hak Lee); data curation, S.-H.L. (Seung-Hwan Lee) and S.-H.L. (Sung-Hak Lee);
writing—original draft preparation, S.-H.L. (Seung-Hwan Lee); writing—review and editing, S.-H.L.
(Sung-Hak Lee); visualization, S.-H.L. (Seung-Hwan Lee); supervision, S.-H.L. (Sung-Hak Lee); project
administration, S.-H.L. (Sung-Hak Lee); funding acquisition, S.-H.L. (Sung-Hak Lee). All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF), funded by the Ministry of Education, Korea (NRF-
2021R1I1A3049604, 50%) and supported by Innovative Human Resource Development for Local
Intellectualization program through the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (IITP-2024-RS-2022-
00156389, 50%).

Data Availability Statement: The data presented in this study are openly available in https://bair.
berkeley.edu/blog/2018/05/30/bdd/ (accessed on 20 March 2024) and the data presented in this
study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer

Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360.
2. Li, J.; Mei, X.; Prokhorov, D.; Tao, D. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene. IEEE

Trans. Neural Netw. Learn. Syst. 2017, 28, 690–703. [CrossRef] [PubMed]

https://bair.berkeley.edu/blog/2018/05/30/bdd/
https://bair.berkeley.edu/blog/2018/05/30/bdd/
https://doi.org/10.1109/TNNLS.2016.2522428
https://www.ncbi.nlm.nih.gov/pubmed/26890928

Mathematics 2024, 12, 1206 22 of 23

3. Tian, Y.; Zhang, Y.; Zhang, H. Recent Advances in Stochastic Gradient Descent in Deep Learning. Mathematics 2023, 11, 682.
[CrossRef]

4. Oros, G.I.; Dzitac, S. Applications of Subordination Chains and Fractional Integral in Fuzzy Differential Subordinations. Mathe-
matics 2022, 10, 1690. [CrossRef]

5. Zhou, Y.; Xu, R.; Hu, X.; Ye, Q. A Robust Lane Detection and Tracking Method Based on Computer Vision. Meas. Sci. Technol.
2006, 17, 736–745. [CrossRef]

6. Tang, J.; Li, S.; Liu, P. A Review of Lane Detection Methods Based on Deep Learning. Pattern Recognit. 2021, 111, 107623. [CrossRef]
7. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

8. Das, S.; Pratihar, S.; Pradhan, B.; Jhaveri, R.H.; Benedetto, F. IoT-Assisted Automatic Driver Drowsiness Detection through Facial
Movement Analysis Using Deep Learning and a U-Net-Based Architecture. Information 2024, 15, 30. [CrossRef]

9. Zhang, X.; Yang, W.; Tang, X.; Liu, J. A Fast Learning Method for Accurate and Robust Lane Detection Using Two-Stage Feature
Extraction with YOLO V3. Sensors 2018, 18, 4308. [CrossRef] [PubMed]

10. Ghafoorian, M.; Nugteren, C.; Baka, N.; Booij, O.; Hofmann, M. EL-GAN: Embedding Loss Driven Generative Adversarial
Networks for Lane Detection. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Spring: Berlin/Heidelberg, Germany, 2019; Volume 11129, pp. 256–272. [CrossRef]

11. Kenue, S.K. Lanelok: Detection of Lane Boundaries and Vehicle Tracking Using Image-Processing Techniques-Part II: Template
Matching Algorithms. In Proceedings of the Mobile Robots IV, Philadelphia, PA, USA, 6–7 November 1989; Chun, W.H., Wolfe,
W.J., Eds.; SPIE: Bellingham, WA, USA, 1990; Volume 1195, pp. 234–245.

12. Goldbeck, J.; Huertgen, B. Lane Detection and Tracking by Video Sensors. In Proceedings of the 199 IEEE/IEEJ/JSAI International
Conference on Intelligent Transportation Systems, Tokyo, Japan, 5–8 October 1999; pp. 74–79. [CrossRef]

13. Illingworth, J.; Kittler, J. A Survey of the Hough Transform. Comput. Vis. Graph. Image Process. 1988, 44, 87–116. [CrossRef]
14. Ding, Y.; Xu, Z.; Zhang, Y.; Sun, K. Fast Lane Detection Based on Bird’s Eye View and Improved Random Sample Consensus

Algorithm. Multimed. Tools Appl. 2017, 76, 22979–22998. [CrossRef]
15. Duong, T.T.; Pham, C.C.; Tran, T.H.P.; Nguyen, T.P.; Jeon, J.W. Near Real-Time Ego-Lane Detection in Highway and Urban Streets.

In Proceedings of the 2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Republic of Korea,
26–28 October 2016; pp. 1–4. [CrossRef]

16. Wang, Y.; Shen, D.; Teoh, E. Lane Detection Using Catmull-Rom Spline. In Proceedings of the IEEE International Conference on
Intelligent Vehicles, Stuttgart, Germany, 28–30 October 1998; pp. 51–57.

17. Wang, Y.; Teoh, E.K.; Shen, D. Lane Detection and Tracking Using B-Snake. Image Vis. Comput. 2004, 22, 269–280. [CrossRef]
18. Jung, C.R.; Kelber, C.R. Lane Following and Lane Departure Using a Linear-Parabolic Model. Image Vis. Comput. 2005, 23,

1192–1202. [CrossRef]
19. Srivastava, S.; Singal, R.; Lumba, M. Efficient Lane Detection Algorithm Using Different Filtering Techniques. Int. J. Comput. Appl.

2014, 88, 6–11. [CrossRef]
20. Wang, J.; Wu, Y.; Liang, Z.; Xi, Y. Lane Detection Based on Random Hough Transform on Region of Interesting. In Proceedings

of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 1735–1740.
[CrossRef]

21. Javeed, M.A.; Ghaffar, M.A.; Ashraf, M.A.; Zubair, N.; Metwally, A.S.M.; Tag-Eldin, E.M.; Bocchetta, P.; Javed, M.S.; Jiang, X. Lane
Line Detection and Object Scene Segmentation Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehicles in
Complex Road Conditions. Electronics 2023, 12, 1079. [CrossRef]

22. Son, Y.; Lee, E.S.; Kum, D. Robust Multi-Lane Detection and Tracking Using Adaptive Threshold and Lane Classification. Mach.
Vis. Appl. 2019, 30, 111–124. [CrossRef]

23. Lee, S.H.; Kwon, H.J.; Lee, S.H. Enhancing Lane-Tracking Performance in Challenging Driving Environments through Parameter
Optimization and a Restriction System. Appl. Sci. 2023, 13, 9313. [CrossRef]

24. Phueakjeen, W.; Jindapetch, N.; Kuburat, L.; Suvanvorn, N. A Study of the Edge Detection for Road Lane. In Proceedings of
the 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of
Thailand—Conference 2011, Khon Kaen, Thailand, 17–19 May 2011; pp. 995–998. [CrossRef]

25. Guo, J.; Wei, Z.; Miao, D. Lane Detection Method Based on Improved RANSAC Algorithm. In Proceedings of the 2015 IEEE
Twelfth International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan, 25–27 March 2015; pp. 285–288.
[CrossRef]

26. Borkar, A.; Hayes, M.; Smith, M.T. Robust Lane Detection and Tracking with Ransac and Kalman Filter. In Proceedings of the
16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3261–3264. [CrossRef]

27. Tran, L.A.; Le, M.H. Robust U-Net-Based Road Lane Markings Detection for Autonomous Driving. In Proceedings of the 2019
International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 62–66. [CrossRef]

28. Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust Lane Detection from Continuous Driving Scenes Using Deep
Neural Networks. IEEE Trans. Veh. Technol. 2020, 69, 41–54. [CrossRef]

29. Lee, D.H.; Liu, J.L. End-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous Driving. Signal
Image Video Process. 2023, 17, 199–205. [CrossRef]

https://doi.org/10.3390/math11030682
https://doi.org/10.3390/math10101690
https://doi.org/10.1088/0957-0233/17/4/020
https://doi.org/10.1016/j.patcog.2020.107623
https://doi.org/10.3390/info15010030
https://doi.org/10.3390/s18124308
https://www.ncbi.nlm.nih.gov/pubmed/30563274
https://doi.org/10.1007/978-3-030-11009-3_15
https://doi.org/10.1109/itsc.1999.821030
https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1007/s11042-016-4184-6
https://doi.org/10.1109/ICCE-Asia.2016.7804748
https://doi.org/10.1016/j.imavis.2003.10.003
https://doi.org/10.1016/j.imavis.2005.07.018
https://doi.org/10.5120/15330-3651
https://doi.org/10.1109/ICINFA.2010.5512220
https://doi.org/10.3390/electronics12051079
https://doi.org/10.1007/s00138-018-0977-0
https://doi.org/10.3390/app13169313
https://doi.org/10.1109/ECTICON.2011.5948010
https://doi.org/10.1109/ISADS.2015.24
https://doi.org/10.1109/ICIP.2009.5413980
https://doi.org/10.1109/ICSSE.2019.8823532
https://doi.org/10.1109/TVT.2019.2949603
https://doi.org/10.1007/s11760-022-02222-2

Mathematics 2024, 12, 1206 23 of 23

30. Feng, J.; Wu, X.; Zhang, Y. Lane Detection Base on Deep Learning. In Proceedings of the 2018 11th International Symposium on
Computational Intelligence and Design, Hangzhou, China, 8–9 December 2018; Volume 1, pp. 315–318. [CrossRef]

31. Lyu, Y.; Bai, L.; Huang, X. Road Segmentation Using CNN and Distributed LSTM. In Proceedings of the 2019 IEEE International
Symposium on Circuits and Systems, Sapporo, Japan, 26–29 May 2019. [CrossRef]

32. Li, L.; Xu, M.; Wang, X.; Jiang, L.; Liu, H. Attention Based Glaucoma Detection: A Large-Scale Database and CNN Model. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 10563–10572. [CrossRef]

33. Li, J.; Lin, D.; Wang, Y.; Xu, G.; Zhang, Y.; Ding, C.; Zhou, Y. Deep Discriminative Representation Learning with Attention Map
for Scene Classification. Remote Sens. 2020, 12, 1366. [CrossRef]

34. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the
Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K.,
Salakhutdinov, R., Eds.; PMLR: New York, NY, USA, 2019; Volume 97, pp. 7354–7363.

35. Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ISCID.2018.00078
https://doi.org/10.1109/ISCAS.2019.8702174
https://doi.org/10.1109/CVPR.2019.01082
https://doi.org/10.3390/rs12091366

	Introduction
	Related Works
	Heuristic-Based Lane Detection
	CNN-Based Lane Detection

	Proposed Method
	Overview of Proposed Method
	Training Data Tuning
	Image Enhancement
	E-Attention Map and Targeting a Specific Area

	Weighted Loss Function
	Architecture of the Customized U-Net

	Experiments and Results
	Settings
	Evaluation Metric
	Ablation Experiments for Option Adjustment
	Results of Performance Comparison Experiments

	Conclusions
	References

