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Abstract: Piezoelectric semiconductor materials possess a unique combination of piezoelectric and
semiconductor effects, exhibiting multifaceted coupling properties such as electromechanical, acous-
tic, photoelectric, photovoltaic, thermal, and thermoelectric capabilities. This study delves into the
anti-plane mechanical model of an interface crack between a strip of piezoelectric semiconductor
material and an elastic material. By introducing two boundary conditions, the mixed boundary
value problem is reformulated into a set of singular integral equations with a Cauchy kernel. The
details of carrier concentration, current density, and electric displacement near the crack are provided
in a numerical analysis. The findings reveal that the distribution of the current density, carrier
concentration, and electric displacement is intricately influenced by the doping concentration of
the piezoelectric semiconductor. Moreover, the presence of mechanical and electric loads can either
expedite or decelerate the growth of the crack, highlighting the pivotal role of external stimuli in
influencing material behavior.

Keywords: piezoelectric semiconductor; interface crack; force-electric-carrier coupling; singular
integral equation

MSC: 45F15

1. Introduction

Piezoelectric semiconductor (PSC) devices, such as elemental crystal selenium, tel-
lurium, doped BaTiO3, and some lead series piezoelectric ceramics, have been favored by
researchers because of their combined piezoelectric and semiconductor characteristics [1,2].
Due to the development of epitaxial single crystal layer transducers and thin-film transduc-
ers, PSCs, such as zinc oxide (ZnO), cadmium sulfide (CdS), and other compounds, can use
vacuum evaporation or sputtering technology to form very thin coatings [3-7]. However,
these structures inevitably produce cracks and other defects inside the coating or at the
interface junction during the manufacturing process, which will reduce the reliability of
the device and shorten the service life of the device under the action of loads [8].

Many scholars have theoretically analyzed the fracture mechanics behavior of PSCs.
The mechanical behavior of cracks or holes in PSCs under anti-plane shear force and uni-
form electrical loads were investigated in Refs. [9-11]. Fan et al. [12] proposed an iterative
method for calculating the intensity field and current of PSCs, realizing a mechanical
analysis of cracked PSC plates using the finite element method. Qin et al. [13] studied
the fracture behavior of GaN PSC ceramics under combined mechanical and electrical
loads by using the three-point bending test and a numerical analysis. In Refs. [14-16], the
two-dimensional and three-dimensional crack problems of PSCs were further considered
by using an iterative method. Using standard integral transformation and singular integral
equation techniques, Zhao et al. [17] analyzed the transient response of mode III cracks in
PSC materials under anti-plane shear mechanical and in-plane electrical combined shocks.
Sladek et al. [18,19] provided numerical analysis results for crack problems in PSCs under
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dynamic and transient thermal loads. Generalized boundary conditions and sample geom-
etry were considered in the study, and the coupling control partial differential equations
of stress, electric field and current were demonstrated in a locally weak form in a small
virtual subdomain.

As a typical structural element, coating substrate systems are widely used in var-
ious types of engineering equipment [20-22]. Using linear piezoelectric theory, Kwon
and Lee [23] obtained a semi-analytical solution for the interface crack problem between
piezoelectric ceramics and an elastic material. The problem was simplified into a pair of
dual integral equations by Fourier transform and numerically solved. Based on the Stroh
complex potential theory and an impermeable crack model, Ou and Chen [24] studied the
problem of interface cracks in elastic/piezoelectric bi-materials. The numerical results of
the near-end stress and electric fields of 35 dissimilar bi-materials composed of five elastic
dielectric materials and seven piezoelectric ceramics were presented. In Refs. [25,26], an
extended finite element method and meshless method based on the local Petrov—Galerkin
method were proposed to analyze the interface cracks problem between piezoelectric mate-
rials. The mechanical behavior of fine-grained piezoelectric/substrate structures with spiral
dislocations and interface edge cracks under multi field coupling were studied in [27]. The
interface crack model with a contact zone at the crack tip was established and transformed
into a Dirichlet and Riemann boundary value problem to obtain a solution [28,29]. A simple
equation and a closed analytical formula for determining the actual length of the contact
zone were derived. Taking into account the micro-crack damage situation of the material,
a new piezoelectric thin-film interface model was developed to characterize the damage
behavior of the interface by Rizzoni et al. [30]. The dynamic behavior of elastic laminates
with interface delamination and interaction surfaces was simulated using the boundary
integral equation method [31]. Furthermore, the transient response of a piezoelectric inter-
face crack under a mechanical impact and the problem of moving interface cracks [32,33],
interface multiple cracks [34-36], and inhomogeneous piezoelectric interface cracks [37,38]
were studied.

Different to traditional piezoelectric materials, PSC structures have unique characteris-
tics of electromechanical carrier multi-field coupling. In the practical application of PSC
devices and components, the interface characteristics play a leading role in the reliabil-
ity and performance of the system [39-41]. For PSC composite structures, debonding or
interfacial fractures between two adjacent layers are a typical failure mechanism. To the
authors’ best knowledge, there is no report on the study of interface cracks in the substrate
structures of PSC coatings. The purpose of this paper is to establish a finite domain interface
crack problem model for piezoelectric semiconductors, and to transform complex mixed
boundary value problems into singular integral equation solutions. Different mechanical
and electrical loads were used to conduct a more in-depth study of the fracture behavior of
the piezoelectric semiconductor material.

In this paper, an analysis model of the interface crack of the elastic substrate structure
of PSC coating is established, two boundary conditions are given, and the expressions of
displacement, potential, and carrier components are obtained by Fourier transform. By
introducing new unknown functions, the mixed boundary value problem is transformed
into a system of singular integral equations with a Cauchy kernel for the solution. Variations
in the interface crack intensity factor and energy release rate under two boundary conditions
are discussed in detail.

2. Description of the Problem

As shown in Figure 1, an interface crack with a length of 2a exists at the interface
between the PSC strip with a thickness of 11 and the elastic strip with a thickness of hy,
where the xoy plane is the isogenous plane and the polarization direction of the PSC is the z
axis. The Cartesian coordinate system is used here, and the upper and lower surfaces of the
structure are subjected to loads. Due to the symmetry of the problem, only the part where
x > 01is considered.
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Figure 1. Schematic diagram of a coating substrate model with an interface crack.

The electric field intensity, electron density and current intensity within the plate are
represented by E;, n, J; respectively. According to the equilibrium equation of the force, the
Gaussian theorem, and the charge conservation, one can obtain [41,42]:

O_i(jl,;}sC) =0, Di,i = —qn, ]i,i =0, O'i(jj‘) =0, 1)
where Tijs D;, g represent the stress tensor, electrical shift, and electronic charge, respectively.
The superscript (psc) and (e) denote the PSC and elastic layers, respectively. Here, i,
j=1,2,3, and the “j” after the comma in the subscript means that the derivative of the
corresponding coordinate direction will be taken. According to the piezoelectric theory
and the semiconductor theory, the constitutive relationship of the n-type PSC is [43,44]:

(71(3PSC> = cg;“)aug /0x + e150¢/0x,

Uz(gsc) = ciisc)aug; /9y + e150¢/dy,

D; = ej50u3/0x — €110¢/0x,

Dy = e150u3/0y — €110¢/ 9y, 2)
J1 = —qnop119¢/0x + qd119n/9x,

J2 = —qnop119¢/dy + qd110n/dy.

02(5) = cii)8u3 /dy,

where c44, €15, €11 represent the elastic constant, piezoelectric constant, and dielectric
constant, and dq1, j17 are the diffusion coefficient and mobility of the electrons. Here, u;
represents the displacement vector and ¢ represents the potential function.

Substituting Equation (2) into (1) yields:

CEJZSC) V%tépsc) +e15V2p =0,
615V2u§psc) — snvch = —qgn,
—noy11V24> +dn Vin = 0,
c&i) Vzuée) =0,

©)

where V2 = % + % is the two-dimensional Laplace operator, with Equation (3) de-

formable as:
(psc)

2., H11Cy4 M0
Vin = d (82 +C(PSC)€ )Tl,
11\ €15 44 11
Vzu(PSC) - €159 ,
> ey en (4)

2 g
\ ¢= > (s
efstCy 11

Vuge) =0.



Mathematics 2024, 12, 1208 40f13

3. Boundary Conditions

This paper considers two boundary conditions, as follows.
For the anti-plane problem, one obtains:

(PSC)(x y) = ( )(x y) =0,
P2 (), ¢ = gl ), n = i), ©

() = ul (x,y) =0, ul¥ = ul? (x,y).

—

The following boundary conditions are considered:

) (x,07) = 03 (x,07) =0, (2] < a),
ulP* (x,0) = uff) (x,0), (%] > a), ®)
) (x,0) = 3 (x,0), (%] = a),
ugpsc)(x,O) =0, ¢(x,0) =0, n(x,0) =0, (|]x| >a)
case 1
o3 (1 —ha) = ") (1) = p(x), ;
DE(xn) =0, ) = 1) 7
DI (x,0) = 0, J7*(x,0) = 0,(Jx| < 9),
case 2
o (x, —hy) = o2 (x, 1) = p(x), .
DI (x,1y) = D(x), 7 (x,) = 0, ©
D (x,0) = 0, ] (x,0) = 0, (|x| < ).
4. Theoretical Analysis and Solution
First, we consider case 1. In order to solve the problem, (4) can be written as:
(psc)
V2 — B =0, B = sy qno )

di1 (615 + ci4 )811) '

Since the crack is symmetrical concerning x = 0, the region of x > 0, ¥ > 0 can be
considered. The Fourier cosine transformation of Equation (9) results in:

d an (s + /32)11 =0,
i(s,y) = [y n(x, y cos(sx)dx, (10)
(x = 2 [77i(s,y) cos(sx)ds.

Take s? + B2 = w? and assume that w > 0, Equation (10) can be written as

i(s,y) = A(s)e Y + B(s)e“?. (11)
Then,
2 o]
n(x,y) = E/o [A(s)e™Y + B(s)e“Y] cos(sx)ds. (12)
In the same way,
(psc) o E/OO Cl(s)eisy + CZ(S)eS
Ug (x/]/) 7)o [ _c:i;‘fllltgA(s)e_wy c:;;illzoB( ) wy COS(Sx)dS, (13)

W () = 2 [ IDa(e)e + Da(s)e] cos(sx)ds, (14



Mathematics 2024, 12, 1208 50f13

P(x,y) = i/ooo{El (s)e™™ + Ex(s)e™ + P:l]l;lm [A(s)e™ Y 4 B(s)e“] } cos(sx)ds. (15)
Substituting Equations (12)—(15) into (2) yields:
2 o0
(Tz(g)(x,y) = ;/0 cii) [—sD1(s)e™™ + sDy(s)e¥] cos(sx)ds, (16)
(05) ) = 2 [ ] B =Cils)e ¥ + Cas)e] .
o3 (%Y) 71/0 S{ eis|—Eq(s)eY + Ea(s)e] cos(sx)ds, (17)

_ e15[—sC1(s)e Y +sCy(s)e%]
Dy(x, ]/ 2]0 { _lill SlEl( )eisy—ﬁ—SzEz(s)eSy] }COS(Sx)ds as)
+2 I ﬁzw [A(s)e“Y — B(s)e“Y] cos(sx)ds,

]2(9(, y) = *Qﬂo}ln%/ooo [*SEl (s)e—sy —+ SEz(S)esy] COS(Sx)dS. (19)

To obtain the solution, the following three dislocation density functions are introduced:

g1(x) = a—"( ©0) = 27— : s) + B(s)] sin(sx)ds,

&waz%ﬁ—un»fw3uo>

S Tcl )+ Cafs) — ﬁ[%&(s) + B(s)] — [Dy(s) + Dz(s)]} sin(sx)ds, 20
g3(x) = g—f(x 0) zfo —s[El( )+ Ex(s) + yilll}mA(s) + y‘fﬁioB(s)} sin(sx)ds.

Performing the sine transform on (20) and substituting Equation (6) into Equations (16),
(18) and (19), unknown functions A(s), B(s), C1(s), Ca(s), E1(s), Ex(s) D1(s), Dy(s) will be
determined. Substituting Equation (7) into Equations (16), (18) and (19) yields:

02(3 = 2f0 —sD1(s) 4+ sDy(s)] cos(sx)ds = ZEE),
(psc)
_ 2 [ A _ _ _J(x)encgy  —p(x)ersquopar+J(x )615 (21)
X y) fO (U S B(S)] COS(SX)dS qdn (915+€11C$ ))
J(x,y) = 2 [5°[—sE1(s) + sEx(s)] cos(sx)ds = ﬂ{r(lg;n.

A(s), B(s), C1(s), Ca(s), E1(s), Ea(s) D1(s), Da(s) are substituted into Equation (21) to
obtain the following system of singular integral equations:

1% [as(r) + €ga00)

2[ —2shy 6729}118—25}12 1+e—25h2] (e) (PSC))

I 0 sin(sr) cos(sx)drds = %,
—2shy ,—2sh — —2shy _ ,—2sh c
(e7=Mem =2 — 1)+C§)+ i%w) (7T —e™™M) “
1@ w(l—e"2Mh) . (22)
LI &) )52 TMH) sin(sr) cos(sx)drds
_J )81165112 —p(x)ersqnopa1+J(x)els
qd11(315+511C4(155C))

h
L, [83( uuno g1(r } I ?M]) sin(sr) cos(sx)drds = _q]y(lgzm .
The singularity of the above equations is separated to obtain:

(e) , (psc)
1 f_ [83 +Cz(14 )gz( )} {R3(x,r) _ %}dr _ %,

Caq
1 fa 1 JWen e —p(x)esqnom +1(x)el (23)
S R , _ d — 44 15
7'L'f agl (7’) [ Z(x 7’) r—xi| r qd11(€15+€11C§i“))

Ly [830) — ga (][R ) — g ar = o0
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_ ,—2sh

Ri(x,7) = [, {2% — 2} sin(sr) cos(sx)ds + 11,
0 _ ,—2wh

Ro(x,7) = [ {% - 2} sin(sr) cos(sx)ds + 71,

(24)
0 2 —2shq _ ,—2shy ,—2shy 1+ —2shy i
R3(x,7) = [, [ ‘ c(efJP“) ik — 2 5 sin(sr) cos(sx)ds
(8—251116725/1271) 4(1;1) z(;]%sc)( 2shy 6—29111)
1 Ciq FC 4
+x
For Equation (23), changing the integration interval to [—1, 1] results in:
1 (psc = 1 p(@) (e +e )
f { 2(7) + f3(7 )H 3(x/7)+m—ﬁ}d”—c(7e)/
44
(psc) (= )2
1 1 = [ — ] 35 T®)ency  —p(X)esqropin +](X)eqs (25)
= 7)| === + Ra(%, 7 }dr - ,
ﬂf;l fl( ) 2( ) qd11(315+51(1c)i§ ))
1 = s —Jx
Ef*1 {fe’(r) Hn”o } [ (%, 1’)} dr = qnopin’

where
X =ax,r = ar, fl( ) = g1(r ), fz(;)( ( )s f3(?) F((,))’
: s = =5 (26)

fl()_m fZ() \/W
L A@d = 1 pEdr = [ BEd=o.

Equation (25) is discretized into the following algebraic equation systems:

N N (pse)
+
%k):l Ci}ZSC)FZ(rk)[ Hem T 7‘[R3(11.Xt,ﬁ7”k):| + %1;1 F3(rk){ =Xt xt + 7R3 (axt, m’k)} - %'
= = 44
g %Fl(rk)[ Te—xt x +71’R2(€lxt,117’k)} = e p(xf)e15q(n($u+](xf)e%5/
=1 k=t g1 (efstenncyy ) (27)
N _
%kﬂl F3(rk){ = x + 7tR1 (axy, ark)} + leno N, Z -F (rk){ i TRy (aXt,ark)} = qnlo(’fltl),
N N
L xR =0, » NE(n) =0, ¥ §h(n) =0,
k=1 k=1 k=1

where
@k R
Iy = COS N n,k=1,2,..., N;xt=cos—m,t=1,2,..., N—1. (28)

Next, we will consider case 2.
Considering the boundary conditions, the following equations can be obtained through

093, Dy, | at the crack surface:

2 [ [=sD1(s) + sDa(s)] cos(sx)ds = ’ig)),
44
(psc)
2 (o0 _ Munolegy  D(x)—p(x)ess] (29)
£ [T w[A(s) — B(s)] cos(sx)ds = 4 ,
fO ( )} ( ) d11(e%5+cgsc)€n)

2 [[=sE1(s) + sEx(s)] cos(sx)ds = 0.
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A(s), B(s), C1(s), Ca(s), E1(s), Ea(s) D1(s), Da(s) into Equation (29) can be substituted to
obtain the following singular integral equation system:

(e) (pSC))

=/, [83 r) +c428c)g2( )} [Ta(x,r) — %}dr — %,
D(x)- P(X)€15} 30
L )| T(x,r) — L |dr = — H11”0[544 , (30)
nffagl( >[ 2(x,7) rfx} 17111(515815+cz<14 Ve11)

117, [0 = 2 (0] [T () = A Jar =0,

00 _ ,—2sh
Ti(x, 1) = [, {2% 2} sin(sr) cos(sx)ds + Hx,

oo [2w(1— —2why
T(x,7) = [, {%Ml)) 2} sin(sr) cos(sx)ds + ,+x,

2 [6725}11 _E—ZShl 6725h2 _1_,'_6725112]

[ee] .
T3(x,7) = [, O — 2 5 sin(sr) cos(sx)ds
( —2shyq e—ZShz l)Jr z(14> [(léx) (e—ZShz 76725}11)
Caq +
=t

Equation (30) is normalized as:

o () o
1 f |:C4ESC )+f3( ):| |:T3(x,r) + 741»} _ ?EE:| dr — P X)(Cit(li) Caq ),
(Psc) 1y (= ~
1 1 — 1 — ] 4= F11”0[644 D(x)—p(x)el5] (31)
= 7)| == + Ta(x,7)|dr = = ,
w1 Al) [ B 2( )] di (ersers+enen)

LI [A0) - 540 [~ + Tz ] ar =0

Equation (31) is discretized into the following algebraic equation systems:

N
%kz iZSC)FZ (T’k) [ = + T3 (axt, ark)}
N (), (psc)
+%k21 F3(”k)[ % + T3(axt, ark)} = %ﬁﬂ),
= Caq
N (psc)D _
1 1110 [C44 (xt) P(xt)fls}
iF T , — ,
kgl N 1(7’]() |: Tr—xt xt + 7T Z(Q.X't ark):| d11(615615+cgsc>€11) (32)
N
%kgl E5(rk) { = xt + ﬂTl(axt,ark)}
N
+‘u11]}zo %kgl *Fl(f’k)[ o xt + nTl(axt, ark)} =0,
N N N
L WA =0 & §B(n) =0, L {F(n) =0.

5. Field Intensity Factors and Energy Release Rates
The stress intensity factor, electrical displacement intensity factor, and current density
intensity factor at a are defined as:

K;, = lim /27t(x — a)M"(x,0) = t/aQl, (33)

where

K] = [K9 KP KT, M* = [o93 D, 1o)7, [Q5] = [Q7 QP @', -
Q" = - [ RM) +B1)|, Q°=HR(1), Q =-HLR1)+R(1).
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Here, F;(1) (i = 1, 2, 3) are obtained through the interpolation of F;(r1), F;(r2), and
Fi(r3). K, (m =1, 2) indicates the intensity factors of case 1 and case 2.
For the energy release rate, the expression given in Ref. [45] is used:

oy _ wDrE
C_ K7KT — K¥K ) (35)
2
where

KE = lim \/27t(x — a)Ex(x,0),
X1—a

KY = lim+\/27r(x —a)y23(x,0). (36)
X1—a

From Equations (32)-(35), the energy release rates are:

H11M0

6t = ol [ R + RO - RO

: EO-RO|) @)

6. Numerical Analysis

Zn0O, CdS and cadmium selenide are typical n-type PSCs due to their inherent defects.
ZnO, with a thickness of & = 6 x 1073 m and a crack length of 22 = 2 x 1072 mm, is
considered in this paper. The material parameters are [46,47]:

e = 4247 x 1019 N/m2, €15 = —0.48 N/m?, &1 = 7.570 x 10~11 F/m,
11 = 0.02m?/Vs, di; =52 x 1074 m? /s, cg? =2.65 x 101 N/m?.

In Figure 2, variations in the stress intensity factor with 2a/h; is depicted when
n (x,y) =0and hy = hy. It is evident that as 2a/h; gradually increases, the stress intensity
factor at the crack tip also increases, indicating a higher likelihood of crack propagation.
These findings align with those reported in Ref. [23], thus reinforcing the consistency and
validity of the results.

7 T T T T T

—+—D(z) =0

D(z) =0.5
—+—D(z) = -0.5
—*— Kwon and Lee, 2001

1 1 1 1 1 1 L 1
3 3.5 4 4.5 5 5.5 6 6.5 7

Za/h1

Figure 2. Variations in stress intensity factor K” with 2a/h; (case 2) [23].

Figures 3 and 4 depict the variations of the stress intensity factor and current density
intensity factor at the crack tip with the crack length under different mechanical loads. As
the crack length increases, both the stress intensity factor and current density intensity factor
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exhibit continuous growth. This trend indicates that longer cracks experience higher levels
of stress and electrical current densities at their tips, indicating an increased likelihood
of crack propagation. Furthermore, the influence of a mechanical load on these factors
is evident. As the mechanical load increases, both the stress intensity factor and current
density intensity factor also increase. This implies that higher mechanical loads exert a
more significant effect on promoting crack propagation by intensifying stress and electrical
activity at the crack tip. In summary, the observed trends underscore the critical role of
crack length and mechanical load in determining the likelihood of crack propagation. The
results suggest that longer cracks and higher mechanical loads contribute to increased
stress and current density intensity factors, ultimately leading to a greater propensity for

crack propagation.

1.4

- ==~ p=9x10°N/m?
— p=7x10°N/m?

p=4x10"N/m>
— p=2x10°N/m*

2 3 4

5

a x 1073(m)

Figure 3. Variations in K” with 4 for different p (case 1).

——p=19x10°N/m’
—p=7x10°N/m?

p =4 x10°N/m’
———p=2x10°N/m’
1 2 3 4 5 6 7
a x 1073(m)

Figure 4. Variations in K/ with a for different p (case 1).
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Figure 5 depicts variations in the energy release rate at crack a end with the crack
length under different current densities. The plot reveals that the energy release rate G
can either increase or decrease, depending on the direction and magnitude of the current
when the absolute value of the current density increases. Specifically, at [y = 0, the energy
release rate of crack a end reaches a peak. However, as the electrical load increases further,
there is a subsequent decrease in G. This indicates that a further increase in electrical load
consistently suppresses crack growth, highlighting the complex interplay between current
density and crack propagation dynamics.

= -0.
Z b = q=0.002m =
S 0.8+ ;" —+—3a=0.003m ‘: |
1 —5—4=0.004m F
b » —5—a=0.005m %
2 —%—@=0.008m %
%X o
—1.2% &
1.4 :
-500 0 500
J(A/m?)

Figure 5. Variations in G with Jj for different a (case 1).

Figure 6 shows variations in the energy release rate at crack a end and the current
intensity under different carrier concentrations. It can be observed that G has a trend
of increasing or decreasing, depending on the direction and magnitude of the electrical
load. When the current density is zero, the energy release rate reaches the peak, and the
crack is in the most dangerous situation. The results show that carrier concentration can
accelerate or slow the crack propagation, depending on the current density. At a given
carrier concentration, the presence of an electric load can also accelerate or slow the growth
of the crack, depending on the direction, magnitude, and type of electric load.

0 ——————— e === —
01F - -
02} 5 1

+ =
03 +++++ +++++
+ o
Z 04ld s
5 1 ng=1x10"(1/m’) g
G 05 + ny=5x10"(1/m?)
-0.6 —= == n,=5x10"(1/m?)
07 —= == n,=1x10"°(1/m?)
08 n0=2x101"’(1/m3)
-0.9 .
~500 0 500
J(A/m?)

Figure 6. Variations in G with Jj for different ng (case 1).
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Figure 7 illustrates variations in the energy release rate at crack a4 end with the electric
displacement under different carrier concentrations. The plot reveals a consistent decreas-
ing trend in the energy release rate G as the absolute value of the current density increases.
This observation shows that higher current densities tend to suppress crack propagation.
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Figure 7. Variations in G with D for different n (case 2).

Moreover, the results highlight the influence of carrier concentration on crack propaga-
tion dynamics, demonstrating that carrier concentration can either accelerate or decelerate
crack propagation, depending on the magnitude of the electric displacement. The findings
emphasize the significant impact of both current density and carrier concentration on the
energy release rate and subsequent crack behavior, underscoring the intricate interplay
between electrical properties and crack propagation in the material.

7. Conclusions

This paper establishes an anti-plane mechanical model of an interface crack between
a strip of piezoelectric semiconductor and an elastic substrate. Two types of boundary
conditions were considered, and the carrier density, current density, and potential shift
near the crack were obtained through numerical calculations. By incorporating the cou-
pling effect of external forces, electricity, and carriers, the expressions for displacement,
electric potential, and carrier were derived using Fourier transform techniques. The results
show that various factors, including thickness size, mechanical load, and electrical load,
significantly influence the propagation of a crack. When the current density is zero, the
energy release rate reaches its peak, and the crack is in its most dangerous state. As the
absolute value of the current density increases, the energy release rate G continuously
decreases. Moreover, the carrier concentration plays a crucial role in either accelerating or
retarding crack propagation, depending on factors such as the direction, size, and the type
of electric load applied. The research findings emphasize the complex interaction between
mechanical and electrical properties in the context of crack propagation in piezoelectric
semiconductor substrate structures. The obtained research results provide useful references
for coating substrate structures.
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