
Citation: Du, Y.; Wang, Z. Stationary

Distribution of Stochastic

Age-Dependent Population–Toxicant

Model with Markov Switching.

Mathematics 2024, 12, 1212. https://

doi.org/10.3390/math12081212

Academic Editors: Andreas C.

Georgiou and Panagiotis-Christos

Vassiliou

Received: 1 February 2024

Revised: 2 April 2024

Accepted: 9 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Stationary Distribution of Stochastic Age-Dependent
Population–Toxicant Model with Markov Switching
Yanyan Du and Zong Wang *

School of Science, Qingdao University of Technology, Qingdao 266520, China; mduyanyan@163.com
* Correspondence: wangzong95@163.com

Abstract: This work focuses on the convergence of the numerical invariant measure for a stochastic age-
dependent population–toxicant model with Markov switching. Considering that Euler–Maruyama (EM)
has the advantage of fast computation and low cost, explicit EM was used to discretize the time variable.
With the help of the p-th moment boundedness of the analytical and numerical solutions of the model,
the existence and uniqueness of the corresponding invariant measures were obtained. Under suitable
assumptions, the conclusion that the numerical invariant measure converges to the invariant measure
of the analytic solution was proven by defining the Wasserstein distance. A numerical simulation was
performed to illustrate the theoretical results.
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1. Introduction

The large amount of waste discharged by industrial and agricultural industries has
caused serious ecological problems (see [1–3]). In particular, the presence of toxicants in
the environment is one of the main factors with respect to the reduction in species diversity
as well as the extinction of some species. Therefore, it is very important to study the
effects of toxicants released in the environment on biological populations by establishing
mathematical models. Hallam et al. [4,5] first proposed the deterministic population model
in a polluted environment. Next, Liu and Ma [6] established the threshold for the Lotka–
Volterra model to analyze the dynamic behavior of a population. Feng and Wang [7]
provided some sufficient conditions for weak persistence and extinction. For further details
on the results and theory of the deterministic population–toxicant model, see [8–11].

The aforementioned model parameters are usually assumed to be constants. In fact,
in practical problems, the model parameters are affected not only by environmental noise
but also by random switching in terms of temperature and climate. In recent years, the
stochastic age-dependent population model with Markov switching has attracted the
attention of many scholars. For example, Li [12] established a class of stochastic age-
dependent population models with Markov switching and proved the convergence of the
numerical approximation solution. Then, Ma and Zhang [13] investigated the convergence
of the semi-implicit method for the stochastic age-dependent population model. Using
Burkholder–Davis–Gundy inequality, Rathinasamy [14] proved that the split-step θ meth-
ods converged to the analytical solutions of the model under given conditions. Motivated
by [12,13], Liu et al. [15] proposed a stochastic population model with Markov switching in
a polluted environment and obtained the threshold between weak persistence and extinc-
tion. However, few authors have studied the stochastic age-dependent population model
with Markov switching in a polluted environment. This paper introduces a continuous-
time Markov chain into the random parameters of the stochastic age-structured population
model in a polluted environment and studies the approximation of its invariant measure.
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It is important to find an effective algorithm to approximate the original system’s
invariant measure to study the dynamic behavior of a stochastic population. There have
been several research results on the invariant measures of stochastic differential equations
(see [16–19]). On the other hand, due to the difficulty of finding general explicit solutions
to stochastic differential equations with Markov switching, the numerical approximation
method and its ergodic have become interesting hot spots [20,21]. For example, Mao
and Yuan [22] investigated the convergence of stationary distributions of EM numerical
schemes for stochastic differential equations with Markov switching. Subsequently, under
local Lipschitz conditions, Bao [23] proved the approximation of invariant measures for
stochastic difference equations with Markov switching. Although the numerical invariant
measures for stochastic differential equations have been well studied, there are few studies
on the numerical invariant measures of a stochastic age-dependent population model with
Markov switching. Based on the ideas of [22,23], in this work, we focus on the existence
and uniqueness of the invariant measure for a random age-dependent population–toxicant
model with Markov switching using the explicit EM method, which has the advantage
of being a simpler calculation, and prove that the numerical invariant measure converges
to the underlying invariant measure. Due to the complexity of random population sys-
tems with Markov switching, it is difficult to express the exact solution to such a system.
Therefore, it is extremely important to develop accurate and efficient numerical approxima-
tion methods to calculate the density of populations and toxic substances in population
models. However, there are few studies on the numerical approximation of a stochastic
age-dependent population model with Markov switching. The main difficulty is that the
transition rate matrices of Λt may be different for every step of a jump. The novelties of
this study are as follows:

• A stochastic age-dependent population–toxicant model with Markov switching is es-
tablished. The ergodicity of the invariant measure for this model is obtained, applying
stochastic techniques such as Gronwall inequality, Young inequality, and so on.

• Under certain suitable conditions, the explicit EM semi-discrete method is used for the
time variables, and the convergence of the numerical invariant measure is analyzed.

The structure of this article is as follows: In Section 2, a new stochastic age-dependent
population model is proposed, and some necessary preliminary knowledge is introduced
for the following analysis. In Section 3, the existence and uniqueness of the invariant
measure for the exact solution under the given conditions are proven, and the boundedness
of the p-th moment for the numerical solution is obtained using Gronwall inequality.
Furthermore, the convergence of the numerical invariant measure is proven by defining
the Wasserstein distance. In Section 4, we verify the theoretical results with numerical
examples. The conclusions of this study are presented in Section 5.

2. Model and Preliminaries
2.1. Model Formulation

To begin with, we provide the following stochastic age-dependent population model
in a polluted environment, which was proposed by Zhao [24]:



∂P(a, t)
∂t

+
∂P(a, t)

∂a
= −µ(a, t, C0(t))P(a, t) + g(t, P(a, t))

dWt

dt
, in Q

dC0(t)
dt

= k(t)Ce(t)− (l(t) + m(t))C0(t), in t ∈ [0, T]

dCe(t)
dt

= −h(t)Ce(t) + u(t), in t ∈ [0, T]

P(0, t) = ϕ(t) =
∫ A

0
β(a, t, C0(t))P(a, t)da, in t ∈ [0, T]

P(a, 0) = P0(a), in a ∈ (0, A)

0 ≤ C0(0) ≤ 1, 0 ≤ Ce(0) ≤ 1,

N(t) =
∫ A

0
P(a, t)da. in t ∈ [0, T]

(1)
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All parameters in model (1) are assumed to be positive and are summarized in the
Table 1.

Table 1. List of parameters, variables, and their meanings in model (1).

Parameter Biological Meaning

P(a, t) The density of the population
m(t) The depuration rate of the toxicant
C0(t) Toxic substances in organisms
Ce(t) Toxic substances in the environment
l(t) The net organismal excretion rate of the toxicant

µ(a, t, C0(t)) The mortality rate function of the population
β(a, t, C0(t)) The fertility rate function of the population

h(t) The total loss rate of the toxicant from the environment
k(t) The net organismal uptake rate of the toxicant from the environment

g(t, P(a, t)) The diffusion coefficient dependent on a, t, and P(a, t)
N(t) The total density of the population at time t
u(t) The exogenous total toxicant input into the environment at time t

In fact, the parameters of a stochastic age-dependent population model may experi-
ence abrupt changes caused by phenomena such as environmental shift in different regimes.
Therefore, we can develop a model with regime switching using a finite-state Markov chain.
Let Λt, t > 0 be a right-continuous Markov chain in the probability space taking values in
a finite state of S = {1, 2, . . . , N} for some positive integer (N < ∞) with transition rules
being specified by

P(Λt+∆ = j|Λt = i) =

{
qij∆ + o(∆), i ̸= j,

1 + qii∆ + o(∆), i = j,
(2)

where ∆ > 0 , o(∆) denotes that lim∆→0
o(∆)

∆ = 0. qij is the transition rate from state i to j
satisfying qii = − ∑

i ̸=j
qij. We assume that the Markov chain ({Λt}) is independent of {Wt}t≥0

and that the transition matrix (Q := (qij)N×N) is irreducible and conservative. Under this con-
dition, the Markov chain has a unique stationary distribution (π = (π1, π2, . . . , πN) ∈ R1×N),
which can be determined by solving the equation πQ = 0 (where 0 is zero vector) subject to

N
∑

k=1
πk = 1 and πk > 0, ∀k ∈ S.

Inspired by [15], we introduce colored noise (i.e., the Markov chain) into the stochastic
age-dependent population model (1). The following model is obtained:

∂P(a, t)
∂t

+
∂P(a, t)

∂a
= −µ(a, t, C0(t), Λt)P(a, t) + g(t, P(a, t), Λt)

dWt

dt
, in Q

dC0(t)
dt

= k(Λt)Ce(t)− (l(Λt) + m(Λt))C0(t), in t ∈ [0, T]

dCe(t)
dt

= −h(Λt)Ce(t) + u(t), in t ∈ [0, T]

P(0, t) = ϕ(t) =
∫ A

0
β(a, t, C0(t), Λt)P(a, t)da, in t ∈ [0, T]

P(a, 0) = x1 = P0(a), in a ∈ (0, A)

0 ≤ C0(0) ≤ 1, 0 ≤ Ce(0) ≤ 1,

N(t) =
∫ A

0
P(a, t)da, in t ∈ [0, T]

(3)

where Q = (0, A)× [0, T], P0(a) is the initial population density.

Remark 1. The parameters of the system are not constant but randomly switch over time. The
system can use many biological models: susceptible–infected–recovered (SIR), susceptible–infected–
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vaccinated (SIV), the Lotka–Volterra model, and so on. Our future work will focus on sensitivity
analysis of the system.

Remark 2. In the real world, population systems are usually affected by random perturbations in
the environment, such as seasons, temperature, and so on. In addition, the jump due to instanta-
neous changes (e.g., high temperature, a rainstorm, and policy implementation) in the state of the
population system need to be taken into account [25]. To depict these phenomena, it is necessary
to introduce non-Gaussian noise, such as the Lévy process, a discontinuous function with right
continuity and left limits [26]. The stochastic population models driven by Lévy noise are rarely
analyzed for the control problem. This will also be part of our future work.

2.2. Preliminaries

• Let (Ω,F ,P) be a complete probability space with {Ft}0≤t≤T as the natural filtration
generated by Brownian motion (Wt), which means Ft = σ{Ws; 0 ≤ s ≤ t} augmented
with all P-null sets of F0.

• E stands for the expectation corresponding to P.
• C denotes a positive constant whose value may change in different occurrences.

• V = H1([0, A]) ≡ {φ|φ ∈ L2([0, A]), ∂φ
∂a ∈ L2([0, A]), where ∂φ

∂a represents generalized
partial derivatives, and is a Sobolev space.

• ⟨·, ·⟩ denotes the duality product between V and V′, and (·, ·) is the scalar product in H.

For an operator (B ∈ L(M, H)) in the space of all bounded linear operators from M
into H, we | · | denotes the norm in H (H = L2([0, A])) such that

V ↪→ H ≡ H′ ↪→ V′. (4)

The integral version of Equation (3) is given by the following equation:

Pt = x1 −
∫ t

0
[
∂P(s)

∂a
+ µ(a, s, C0(s), Λs)P(s)]ds +

∫ t

0
g(s, P(s), Λs)dWs,

C0 = x2 +
∫ t

0
[k(Λt)Ce(t)− (l(Λt) + m(Λt))C0(t)]ds,

Ce = x3 +
∫ t

0
[−h(Λt)Ce(t) + u(t)]ds,

(5)

where P(a, 0) = x1, C0(0) = x2, Ce(0) = x3, g(t, ·, i) : S × L2
H → L(M, H) is the family of

nonlinear operators, and Ft is almost surely measurable in t.
Now, let us provide the following necessary assumptions:

Assumption 1. Assume

0 ≤ β(a, t, C0(t), Λt) ≤ β̄ < ∞, 0 ≤ µ0 ≤ µ(a, t, C0(t), Λt) ≤ µ̄ < ∞,

k0 + h0 ≤ k(Λt) + h(Λt) ≤ k̂ + ĥ < ∞, l0 + m0 ≤ l(Λt) + m(Λt) ≤ M̂ < ∞,
(6)

where β̄, k̂, ĥ, M̂, and µ̄ denote positive constants.

Assumption 2. There exists a positive constant ψi such that for i ∈ S, t ∈ [0, T],

∥g(t, Px1,i(t), i)− g(t, Px̄1,i(t), i)∥2 ≤ ψi|Px1,i(t)− Px̄1,i(t)|2, (7)

where x1 and x̄1 are the two different initial values.
Further, for each i ∈ S and Px1,i(t) ∈ H, t ∈ [0, T],

∥g(t, Px1,i(t), i)∥2 ≤ L + ψi|Px1,i(t)|2, (8)

where L depends on the initial value of the function g(t, 0, i).
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Assumption 3. Assume
0 ≤ u0 ≤ u(t) ≤ ū < ∞, (9)

where ū is a positive constant.

Remark 3. Assumption 1 implies that the coefficients of system (5) are all finite numbers and non-
negative. Assumption 2 guarantees the existence and uniqueness of the solution for system (5). From a
biological point of view, Assumption 3 indicates that the exogenous total toxicant input is finite.

We replace ((P(t), C0(t), Ce(t)), Λt) with ((Px1,i(t), Cx2,i
0 (t), Cx3,i

e (t)), Λi
t), especially the

initial value ((P(0), C0(0), Ce(0)), Λ0) = ((x1, x2, x3), i) ∈ H ×R×R× S. For any p ∈ (0, 1],
setting x := (x1, x2, x3), the norm of vector x − x̄ in space H := H × R × R is defined as
|x − x̄| :=

√
|x1 − x̄1|+ |x2 − x̄2|+ |x3 − x̄3|. We define a metric on H× S as follows:

dp((x, i), (x̄, i)) :=
∫
H
|x − x̄|p + I{i ̸=j}, (x, i), (x̄, i) ∈ H× S,

where IG denotes the indicator function of set G, and x̄ = (x̄1, x̄2, x̄3) is a different initial
value. For p ∈ (0, 1], we define the Wasserstein distance between ν ∈ P(H × S) and
ν′ ∈ P(H× S) by

Wp(ν, ν′) = infEdp(Xk, Xk′),

where the infimum is taken over all pairs of random variables (Xk, Xk′ on H× S with
respective laws ν, ν′). Let Pt((x1, x2, x3), i; ·) be the transition probability kernel of the pair
((Px1,i(t), Cx2,i

0 (t), Cx3,i
e (t)), Λi

t), a time-homogeneous Markov process (see [27]). Recall that
π ∈ P(H× S) is called an invariant measure of ((Px1,i(t), Cx2,i

0 (t), Cx3,i
e (t)), Λi

t) if

π(A × {i}) =
N

∑
j=1

∫
H
Pt((x1, x2, x3), j; A × {i})π(d(x1, x2, x3)× {j}), t ≥ 0, A ∈ H, i ∈ S (10)

holds. For any p > 0, let

diag(ρ) ≜ diag(ρ1, . . . , ρN), Qp ≜ Q +
p
2

diag(ρ), ηp ≜ −max
γ

Reγ, (11)

where ρi is a positive constant, and γ ∈ spec(Qp), spec(Qp) denotes the spectrum of Qp
(i.e., the multi-set of its eigenvalues). Reγ is the real part of γ, and diag(ρ1, . . . , ρN) denotes
the diagonal matrix whose diagonal entries starting in the upper-left corner are ρ1, . . . , ρN ,
respectively.

3. Invariant Measure

With the help of the p-th moment boundedness of the analytical and numerical solu-
tions of the model, the existence and uniqueness of the corresponding invariant measures
are obtained. Under suitable assumptions, the conclusion that the numerical invariant
measure converges to the invariant measure of the analytic solution is proven by defining
the Wasserstein distance.

Under Assumptions 1–3, using the method similar to that described in [28], we can
prove the existence and uniqueness of the solution. Therefore, it is omitted. In this section,
we first prove the existence and uniqueness of the corresponding invariant measure. Then,
we discuss the numerical invariant measure of the Euler–Maruyama method and the
convergence of the numerical invariant measure under the Wasserstein measure.

3.1. Invariant Measure of Exact Solution

Theorem 1. Let N < ∞ and Assumptions 1–3 hold with maxi∈S ρi > 0. Then, the exact solution
of system (3) admits a unique invariant measure (π ∈ P(H× S)).
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Proof. Let ((Px1,i(t), Cx2,i
0 (t), Cx3,i

e (t)), Λi
t) be the exact solution of Equation (3) with

((x1, x2, x3), i) as initial values, where ((x1, x2, x3), i) ∈ H× S. A simple application of the
Feynman–Kac formula shows that Qp,t = etQp , where Qp is given in Equation (11). Then,
the spectral radius (Ria(Qp,t), i.e., Ria(Qp,t) = supλ∈spec(Qp,t)

|λ|) of Qp,t equals e−ηpt.
Since all coefficients of Qp,t are positive, the Perron–Frobenius theorem (see, e.g., [29])
shows that −ηp is a simple eigenvalue of Qp, all other eigenvalues having a strictly smaller
real part. Note that the eigenvector of Qp,t corresponding to e−ηpt is also an eigenvector of
Qp corresponding to −ηp. According to the Perron–Frobenius theorem, for Qp, it can be

found that there is a positive eigenvector (ξ(p) = (ξ
(p)
1 , . . . , ξ

(p)
N ) ≫ 0, where 0 ∈ H is a zero

vector) corresponding to the eigenvalue −ηp, and ξ(p) ≫ 0 means that each component is

ξ
(p)
i > 0. Let

p0 = 1 ∧ min
i∈S,ρi>0

{−2qii/ρi}. (12)

Combined with Lemma 2.1 of [23], we can obtain

Qpξ
(p)
i = −ηpξ

(p)
i ≪ 0, (13)

and
sup
t≥0

E(|Px1,i(t)|p + |Cx2,i
0 (t)|p + |Cx3,i

e (t)|p) ≤ C. (14)

Furthermore,

eηptE((1 + |Cx3,i
e (t)|2)p/2ξ

(p)
Λi

t
)

=(1 + |x3|2)
p
2 ξ

(p)
i +E

∫ t

0
eηps(1 + |Cx3,i

e (s)|2)
p
2

{
ηpξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
ds

+E
∫ t

0
eηps

{
p
2
(1 + |Cx3,i

e (s)|2)
p−2

2 2⟨Cx3,i
e (s),−h(Λi

s)C
x3,i
e (s) + u(s)⟩

}
ξ
(p)
Λi

s
ds

≤(1 + |x3|2)
p
2 ξ

(p)
i +

p
2
E
∫ t

0
eηps(1 + |Cx3,i

e (s)|2)
p−2

2 K(1 + |Cx3,i
e (s)|2)ξ(p)

Λi
s

ds,

(15)

where K := max{ū, 2(ĥ + k̂) + 1} is a positive constant. In the last step, we use the
fundamental inequality (2ab ≤ a2 + b2) for any a, b ≤ 0. Finally, using Gronwall inequality
and taking the sup on both sides of Equation (15), we obtain the following result:

sup
t≥0

E|Cx3,i
e (t)|p ≤ C(1 + |x3|p). (16)

Using similar methods, it is not difficult to obtain

sup
t≥0

E|Cx2,i
0 (t)|p ≤ C(1 + |x2|p). (17)

On the other hand, according to the Itô formula, for any p ∈ (0, p0), we can obtain

eηptE((1 + |Px1,i(t)|2)p/2ξ
(p)
Λi

t
)

=(1 + |x1|2)
p
2 ξ

(p)
i +E

∫ t

0
eηps(1 + |Px1,i(s)|2)

p
2

{
ηpξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
ds

+E
∫ t

0
eηps

{
p
2
(1 + |Px1,i(s)|2)−1(2⟨Px1,i

s ,− ∂Px1,i(s)
∂a

− µ(a, t, C0(t), Λi
s)Px1,i(s)⟩+ ∥g(s, Px1,i(s), Λi

s)∥2)ξ
(p)
Λi

s

+
p(p − 2)

2
(1 + |Px1,i(s)|2)−2∥Px1,i(s) ∗ g(s, Px1,i(s), Λi

s)∥2ξ
(p)
Λi

s

}
(1 + |Px1,i(s)|2)

p
2 ds,

(18)
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due to p(p−2)
2 < 0 and

⟨Px1,i(s),− ∂Px1,i(s)
∂a

⟩ = −
∫ A

0
Px1,i(s)da(Px1,i(s)) =

1
2
(
∫ A

0
β(a, t, C0(t), Λt)Px1,i(s)da)2

≤ 1
2

∫ A

0
β2(a, t, C0(t), Λt)da

∫ A

0
(Px1,i(s))2da

≤ 1
2

A2 β̄2|Px1,i(s)|2.

(19)

It follows from Equation (18) that

eηptE((1 + |Px1,i(t)|2)p/2ξ
(p)
Λi

t
)

≤(1 + |x1|2)
p
2 ξ

(p)
i +E

∫ t

0
eηps

{
p
2
(1 + |Px1,i(s)|2)−1((2µ̄ + A2 β̄2)|Px1,i(s)|2

+ ∥g(s, Px1,i(s), Λi
s)∥2) + ηpξ

(p)
Λi

s
+ Qξ(p)(Λi

s)

}
ξ
(p)
Λi

s
(1 + |Px1,i(s)|2)

p
2 ds

≤(1 + |x1|2)
p
2 ξ

(p)
i +E

∫ t

0
eηps

{
p
2
(1 + |Px1,i(s)|2)

p
2 −1(L + C̄|Px1,i(s)|2)

}
ξ
(p)
Λi

s
ds

≤C(1 + |x1|p) +
p
2
E
∫ t

0
eηpsR(1 + |Px1,i(s)|2)

p
2 ξ

(p)
Λi

s
ds,

(20)

where C̄ = 2µ̄ + A2 β̄2 + ψi, R := max{C̄, L}. Then, according to the Gronwall inequality
and taking sup over t ≥ 0 for Equation (21), we have

sup
t≥0

E|Px1,i(t)|p ≤ C(1 + |x1|p). (21)

Equations (16), (17), and (21) lead to Equation (14).
In order to show the uniqueness and ergodicity of invariant measures, based on

references [19,22,30], we can define a probability measure

χt(A) :=
1
t

∫ t

0
Ps(x, i; A)ds, ∀t > 0, A ∈ (H× S).

Then, for any ε > 0, according to Equation (21) and Chebyshev’s inequality, there
exists a sufficiently large r > 0 such that

χt(Kr × S) = 1
t

∫ t

0
Ps(x, i; Kr × S)ds

≥ 1 −
supt≥0 E(|Px1,i

t |p + |Cx2,i
0 (t)|p + |Cx3,i

e (t)|p)
rp ≥ 1 − ε.

(22)

Hence, χt is tight, due to the compact embedding (V ⋐ H); then, Kr = {x ∈ H; |x| ≤ r}
is a compact subset of H. Borrowing the proof method of [[23], Theorem 2.3], σ∗ > 0 is con-
stant such that Wp(∆((x1,x2,x2),i)Pt, ∆((x̄1,x̄2,x̄3),j)Pt) ≤ Ce−σ∗t holds. Therefore, conclusions
about the existence and uniqueness of the result for the invariant measure can be obtained
but omit details to avoid repetition.

3.2. Numerical Invariant Measure
The simulation of a discrete Markov chain was proposed in [27]. Now, let t1, t2, . . . , tm

be deterministic grid points of [0, T]. ∆ = tk+1 − tk denotes increments of time. tk = k∆,
k ≥ 1, ∆ = T

N ≤ 1. For system (5), we can define the discrete-time Euler–Maruyama approx-
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imate solution (Px1,i
∆ (tk+1) ≈ Px1,i(tk+1), Cx2,i

0,∆ (tk+1) ≈ Cx2,i
0 (tk+1), Cx3,i

e,∆ (tk+1) ≈ Cx3,i
e (tk+1)

on t = 0, ∆, 2∆, . . . , N∆) using the following iterative scheme:

Px1,i
∆ (tk+1) = Px1,i

∆ (tk)− [
∂Px1,i

∆ (tk+1)

∂a
+ µ(a, tk, C0(tk), Λi

tk
)Px1,i

∆ (tk)]∆

+ g(tk, Px1,i
∆ (tk), Λi

tk
)∆Wk,

Cx2,i
0,∆ (tk+1) = Cx2,i

0,∆ (tk) + [k(Λi
tk
)Cx3,i

e,∆ (tk)− (l(Λi
tk
) + m(Λi

tk
))Cx2,i

0,∆ (tk)]∆,

Cx3,i
e,∆ (tk+1) = Cx3,i

e,∆ (tk) + [−h(Λi
tk
)Cx3,i

e,∆ (tk) + u(tk)]∆.

(23)

where the initial values are P∆(0) = x1, C0,∆(0) = x2, Ce,∆(0) = x3, Λ0 = i, Px1,i
∆ (tk, 0) =∫ A

0 β(a, tk, C0(tk), Λi
tk
)Px1,i

∆ (tk)da, and ∆Wk = Wk+1 − Wk is Brownian motion. Then

Px1,i
∆ (t) = x1 −

∫ t

0
[
∂Px1,i

∆ (s)
∂a

+ µ(a, ⌊s/∆⌋∆, C0(s), Λi
⌊s/∆⌋∆)P̄x1,i

∆ (⌊s/∆⌋∆)]ds

+
∫ t

0
g(⌊s/∆⌋∆, P̄x1,i

∆ (⌊s/∆⌋∆), Λi
⌊t/∆⌋∆)dWs,

Cx2,i
0,∆ (t) = x2 +

∫ t

0
[k(Λi

⌊s/∆⌋∆)C̄
x3,i
e,∆ (⌊s/∆⌋∆)− (l(Λi

⌊s/∆⌋∆) + m(Λi
⌊s/∆⌋∆))C̄

x2,i
0,∆ (⌊s/∆⌋∆)]ds,

Cx3,i
e,∆ (t) = x3 +

∫ t

0
[−h(Λi

⌊s/∆⌋∆)C̄
x3,i
e,∆ (⌊s/∆⌋∆) + u(⌊s/∆⌋∆)]ds,

(24)

where for Λi
0 = i ∈ S, P̄x1,i

∆ (t) = ∑N
k=0 Px1,i

∆ (tk)I[tk,tk+1)
(t), C̄x2,i

0,∆ (t) = ∑N
k=0 Cx2,i

0,∆ (tk)I[tk,tk+1)
(t),

C̄x3,i
e,∆ (t) = ∑N

k=0 Cx3,i
e,∆ (tk)I[tk,tk+1)

(t). IG is the indicator function of set G. By a straightforward

calculation, one has Px1,i
⌊t/∆⌋∆ = P̄x1,i

⌊t/∆⌋∆, Cx2,i
0,⌊t/∆⌋∆ = C̄x2,i

0,⌊t/∆⌋∆, Cx3,i
e,⌊t/∆⌋∆ = C̄x3,i

e,⌊t/∆⌋∆, t ≥ 0
(i.e., the discrete-time EM scheme (23) coincides with the corresponding continuous-time EM
scheme (24) at the grid points whenever they enjoy the same starting points). ⌊a⌋ denotes the
integer part of a.

By a similar method [19], we set Xx,i
k := (Px1,i

k , Cx2,i
0,k , Cx3,i

e,k ) and x := (x1, x2, x3), Zx,i
k =

(Xx,i
k , Λi

k). {Zx,i
k }k≥0 is a non-homogenous Markov process with transition probability kernel

P∆
m∆,k∆(x, j; A×{i}) := P(Xx,i

k∆ ∈ A×{i}|Xx,j
m∆ = (x, j)), ∀k ≥ m ≥ 0. If π∆ ∈ P(H ×S) satisfies

π∆(A × {i}) =
N

∑
j=1

∫
H
P∆

k∆(x, j; A × {i})π∆(dx × {j}), k ≥ 0, A ∈ H, i ∈ S, (25)

then π∆ is called an invariant measure of (Xxx ,i
k , Λi

k). Let

q0 := max
i∈S

(−qii), ρ0 = max
i∈S

|ρi|, ξ̂0 ≜ max
i∈S

ξ
(p)
i , ξ̆0 ≜ (max

i∈S
ξ
(p)
i )−1,

J∗ := max{3p4p(ψ0 + µ̄)(q0ξ̂0ξ̆0 + µ̄
p
2 ), 41+p pψ0[3

p
2 (µ̄2 + ψ0) + q0ξ̂0ξ̆0]}.

To prove the p-th moment boundedness of the numerical solution for the EM scheme,
first, we cite the classical conclusion in the next Lemma (see [31]).

Lemma 1 (In Mao [31]). Let h(x, w) be a scalar bounded measurable random function of x
independent of Fs, and let ζ be an Fs-measurable random variable. Then,

E(h(ζ, w)|Fs) = H(ζ), (26)

where H(ζ) = Eh(x, w).

Lemma 1 provides great convenience for proof of Lemma 2. The following lemma
shows that the continuous approximation is bounded.
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Lemma 2. Under Assumptions 1–3, if

∆ <
1

4(ψ0 + ū)2 ∧ 1
2g∗

∧ 1
8µ̄2 ∧ (

ηp − e∗

J∗
)2/p, (27)

then we have

sup
t∈[0,T]

E(|Px1,i
∆ (t)|p + |Cx2,i

0,∆ (t)|p + |Cx3,i
e,∆ (t)|p) ≤ C(|x1|p + |x2|p + |x3|p), (28)

where g∗ := max{k̂ + ĥ, M̂} and e∗ := p(µ̄ + A2 β̄2) for any p ∈ (0, p0), and the initial values
are((x1, x2, x3), i) ∈ H× S.

Proof. In the following proof, let Wt,∆ = |Wt − W⌊t/∆⌋∆|2 and

P̄x1,i
∆ := P̄x1,i

∆ (⌊t/∆⌋∆), C̄x2,i
0,∆ := C̄x2,i

e,∆ (⌊t/∆⌋∆), C̄x3,i
e,∆ := C̄x3,i

e,∆ (⌊t/∆⌋∆).

First, by (8), one obtains from (24) that

|P̄x1,i
∆ | ≤ |Px1,i

∆ (t)|+ (|
∂Px1,i

∆ (t)
∂a

|+ |µ̄P̄x1,i
∆ |)∆ + |g(⌊t/∆⌋∆, P̄x1,i

∆ , Λi
⌊t/∆⌋∆)|

√
Wt,∆

≤ |Px1,i
∆ (t)|+ |

∂Px1,i
∆ (t)
∂a

|∆ + µ̄|P̄x1,i
∆ |∆ + (L + ψ0|P̄x1,i

∆ |)
√

Wt,∆,

(29)

and

|Px1,i
∆ (t)− P̄x1,i

∆ | ≤ (|
∂Px1,i

∆ (t)
∂a

|+ |µ̄P̄x1,i
∆ |)∆ + (L + ψ0|P̄x1,i

∆ |)
√

Wt,∆. (30)

Therefore, taking ∆ < 1
8µ̄2 , we arrive at

|P̄x1,i
∆ |2 ≤ 4|Px1,i

∆ (t)|2 + 4|
∂Px1,i

∆ (t)
∂a

|2∆2 + 4µ̄2|P̄x1,i
∆ |2∆2 + 4(L + ψ0|P̄x1,i

∆ |)2Wt,∆

≤ 4|Px1,i
∆,t |

2 + 4|
∂Px1,i

∆ (t)
∂a

|2∆ + 4µ̄2|P̄x1,i
∆ |2∆ + 4(L + ψ0|P̄x1,i

∆ |)2Wt,∆

≤ 8|Px1,i
∆ (t)|2 + 8|

∂Px1,i
∆ (t)
∂a

|2∆ + 8(L + ψ0|P̄x1,i
∆ |)2Wt,∆,

(31)

and

|Px1,i
∆ (t)− P̄x1,i

∆ |2 ≤ 4|
∂Px1,i

∆ (t)
∂a

|2∆2 + 4|µ̄P̄x1,i
∆ |2∆2 + 2(L + ψ0|P̄x1,i

∆ |)2Wt,∆

≤ 32µ̄2|Px1,i
∆ (t)|2∆2 + 36µ̄2|

∂Px1,i
∆ (t)
∂a

|2∆2 + 6(L + ψ0|P̄x1,i
∆ |)2Wt,∆.

(32)

Next, by applying the Itô formula for p ∈ (0, p0) and ρ > 0, we can obtain

eρtE((1 + |Px1,i
∆ (t)|2)p/2ξ

(p)
Λi

t
)

≤(1 + |x1|2)p/2ξ
(p)
i +E

∫ t

0
eρs

{
ρξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
(1 + |Px1,i

∆ (s)|2)p/2ds

+E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p
2 ξ

(p)
Λi

s

{
p
2
(1 + |Px1,i

∆ (s)|2)−1
(

2⟨Px1,i
∆ (s),−

∂Px1,i
∆ (s)
∂a

⟩

− 2⟨Px1,i
∆ (s), µ̄P̄x1,i

∆ ⟩+ ∥g(⌊s/∆⌋∆, P̄x1,i
∆ , Λi

⌊s/∆⌋∆)∥
2
)

ξ
(p)
Λi

s

+
p(p − 2)

2
(1 + |Px1,i

∆ (s)|2)−2∥Px1,i
∆ (s) ∗ g(⌊s/∆⌋∆, P̄x1,i

∆ , Λi
⌊s/∆⌋∆), Λi

s)∥2
}

ds,

(33)
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Using inequality Equation (19) and p(p − 2) < 0, we can obtain

eρtE((1 + |Px1,i
∆ (t)|2)p/2ξ

(p)
Λi

t
)

≤(1 + |x1|2)p/2ξ
(p)
i +E

∫ t

0
eρs

{
ρξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
(1 + |Px1,i

∆ (s)|2)p/2ds

+E
∫ t

0
eρs

{
p
2
(1 + |Px1,i

∆ (s)|2)−1
(

2⟨Px0,i
∆,s , µ̄P̄x1,i

∆ ⟩+ A2 β̄2|Px1,i
∆ (s)|2

+ ∥g(⌊s/∆⌋∆, P̄x1,i
∆ , Λi

⌊s/∆⌋∆)∥
2
)

ξ
(p)
Λi

s

}
(1 + |Px1,i

∆ (s)|2)p/2ds

≤(1 + |x1|2)p/2ξ
(p)
i + Ceρt +E

∫ t

0
eρs

{
ρξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
(1 + |Px1,i

∆ (s)|2)p/2ds

+E
∫ t

0
eρs

{
p
2
(1 + |Px1,i

∆ (s)|2)
p−2

2

(
I1 + (9µ̄ + A2 β̄2)|Px1,i

∆ (s)|2
)

ξ
(p)
Λi

s

}
ds,

(34)

where I1 := (ψ0 + µ̄)|P̄x1,i
∆ |2, ψ0 := max

i∈S
|ψi|. By using the conclusion of [32], for any s ≤ ∆,

due to qii < 0, we have

P(Λi
s ̸= Λi

0) = 1 − P(Λi
s = Λi

0) ≤ 1 − eqiis ≤ 1 − eqii∆ ≤ −qii∆ ≤ q0∆. (35)

Applying the results of Lemma 1, we obtain

E(|Px1,i
∆ (⌊s/∆⌋∆)|p)1Λi

⌊s/∆⌋∆ ̸=Λi
s
)

= E(E((|Px1,i
∆ (⌊s/∆⌋∆)|p)1Λi

⌊s/∆⌋∆ ̸=Λi
s
)|F⌊s/∆⌋∆)

= E((|Px1,i
∆ (⌊s/∆⌋∆)|p)E(1Λi

⌊s/∆⌋∆ ̸=Λi
s
|Λi

⌊s/∆⌋∆))

≤ q0∆E(|Px1,i
∆ (⌊s/∆⌋∆)|p),

(36)

where {Wt}t≥0 is independent of {Λt}t≥0. Furthermore, due to ∂φ
∂a ∈ L2([0, A]), we have∫ T

0 |∂φ
∂a |

2ds < C < ∞. In addition, in the light of Equations (36) and (32), taking ∆ < 1
4µ̄ , it

follows that

p
2
E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p−2

2 I1ξ
(p)
Λi

s
ds

=
p
2
E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p−2

2 (ψ0 + µ̄)|P̄x1,i
∆ |2ξ

(p)
Λi

s
ds

≤p(ψ0 + µ̄)E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p−2

2 |Px1,i
∆ (s)− P̄x1,i

∆ |21{Λi
⌊s/∆⌋∆ ̸=Λi

s}ξ
(p)
Λi

s
ds

+ p(ψ0 + µ̄)E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p−2

2 |Px1,i
∆ (s)|21{Λi

⌊s/∆⌋∆ ̸=Λi
s}ξ

(p)
Λi

s
ds

≤3p(ψ0 + µ̄)E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p
2 1{Λi

⌊s/∆⌋∆ ̸=Λi
s}ξ

(p)
Λi

s
ds

+ 3p(ψ0 + µ̄)E
∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)
p−2

2 |
∂Px1,i

∆ (s)
∂a

|21{Λi
⌊s/∆⌋∆ ̸=Λi

s}ξ
(p)
Λi

s
ds

≤Ceρt + 3p2
p
2 (ψ0 + µ̄)ξ̂0E

∫ t

0
eρs|P̄x1,i

∆ |p1{Λi
⌊s/∆⌋∆ ̸=Λi

s}ds

+ 3p2
p
2 (ψ0 + µ̄)E

∫ t

0
eρs|Px1,i

∆ (s)− P̄x1,i
∆ |p1{Λi

⌊s/∆⌋∆ ̸=Λi
s}ξ

(p)
Λi

s
ds

≤Ceρt + 3p4p(ψ0 + µ̄)(q0ξ̂0ξ̆0 + µ̄
p
2 )∆

p
2

∫ t

0
eρsE((1 + |Px1,i

∆ (s)|2)
p
2 ξ

(p)
Λi

s
)ds,

(37)
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where in the above inequality, we mainly use the fundamental inequality ((c + d)θ ≤
cθ + dθ) for any c, d > 0 and θ ∈ (0, 1). Therefore, according to Equations (34) and (37),
we have

eρtE((1 + |Px1,i
∆ (t)|2)p/2ξ

(p)
Λi

t
)

≤C(1 + |x1|p + eρt) +E
∫ t

0
eρs(ρ − ηp)(1 + |Px1,i

∆ (s)|2)p/2ξ
(p)
Λi

s
ds

+E
∫ t

0
eρs

{
p
2
(1 + |Px1,i

∆ (s)|2)−1
(

I1 + (9µ̄ + A2 β̄2)|Px1,i
∆ (s)|2

)
ξ
(p)
Λi

s

}
(1 + |Px1,i

∆ (s)|2)p/2ds

≤C(1 + |x1|p + eρt)− (ηp − α∆
p
2 − ρ − p

2
(9µ̄ + A2 β̄2))E

∫ t

0
eρs(1 + |Px1,i

∆ (s)|2)p/2ξ
(p)
Λi

s
ds,

(38)

where α := 3p4p(ψ0 + µ̄)(q0ξ̂0ξ̆0 + µ̄
p
2 ), taking ρ = ηp − J∗∆

p
4 − p(9µ̄ + A2 β̄2) > 0. Ac-

cording to Gronwall inequality and taking the upper bound on the left-hand side of
Equation (38), we obtain

sup
t∈[0,T]

E(1 + |Px1,i
∆ (s)|p) ≤ C(1 + |x1|p)e−(J∗∆

p
4 −α∆

p
2 − p

2 (9µ̄+A2 β̄2))T ≤ C(1 + |x1|p). (39)

On the other hand, by repeating the same procedure, taking ∆ < 1
2(k̂+ĥ)

, we have

|C̄x3,i
e,∆ | ≤ 2|Cx3,i

e,∆ (t)|+ 2ū∆, (40)

and

|C̄x2,i
0,∆ | ≤ |Cx2,i

0,∆ (t)|+ M̂|C̄x2,i
0,∆ |∆ + (k̂ + ĥ)|C̄x3,i

e,∆ |∆

≤ 2|Cx2,i
0,∆ (t)|+ 2|Cx3,i

e,∆ (t)|+ 2ū∆.
(41)

Therefore, combining Equation (24) and Equation (40), the following result can be obtained:

|Cx3,i
e,∆ (t)|2 ≤ 2|x3|2 + 2

∫ t

0
[(g∗)2|C̄x3,i

e,∆ (s)|2 + 2ū2]ds

≤ 2|x3|2 + 32(g∗)2
∫ t

0
(|Cx3,i

e (s)|2 + ū2∆2)ds + 4
∫ t

0
ū2ds,

(42)

Applying Hölder inequality and taking the sup of Equation (42), it follows that

sup
s∈[0,t]

|Cx3,i
e,∆ (t)|p ≤ C(1 + |x3|2)

p
2 + 4

5p
4 ct(g∗)pE

∫ t

0
( sup

s∈[0,t]
|Cx3,i

e (s)|p)ds, (43)

where ct is a positive constant related to time t. Then, according to Gronwall inequality,
Equation (43) becomes

sup
t∈[0,T]

|Cx3,i
e,∆ (t)|p ≤ C. (44)

Using a similar method, applying the results of Equations (39) and (40), it then fol-
lows that

|Cx2,i
0,∆ (t)|2 ≤ 3|x2|2 + 3(g∗)2

∫ t

0
|C̄x3,i

e,∆ (s)|2ds + 3M̂2
∫ t

0
|C̄x2,i

0,∆ (s)|2ds

≤ 3|x2|2 + h∗
∫ t

0
(|Cx3,i

e,∆ (s)|2 + ū2∆2)ds + 36M̂2
∫ t

0
|Cx2,i

0,∆ (s)|2ds,
(45)
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due to Equation (27), Hölder inequality, and the following equation:

(h∗
∫ t

0
(|Cx3,i

e,∆ (s)|2 + ū2∆2)ds)
p
2 ≤ (h∗)

p
2 ct

∫ t

0
|Cx3,i

e,∆ (s)|pds + (h∗(ūT))
p
2 ,

where h∗ := 24(g∗)2 + 36M̂2 is a positive constant, and according to Gronwall inequality, one
can obtain

sup
t∈[0,T]

|Cx2,i
0,∆ (t)|p ≤ C. (46)

Finally, the results of Equations (39), (44), and (46) show that Lemma 2 holds.

To investigate the uniqueness of the numerical invariant measure, we provide the
asymptotically attractive property of the numerical solutions of the implicit EM scheme.

Lemma 3. Under the conditions of Theorem 1, we assume that E[| ∂φ
∂a |

2] < C and µ̄ > 3g∗
4 and that

there exists a sufficiently small ∆∗ such that for any ∆ ∈ (0, ∆∗), the numerical solutions of the implicit
EM scheme satisfy

E(|Px1,i
∆ (t)− Px̄1,j

∆ (t)|p + |Cx2,i
0,∆ (t)− Cx̄2,j

0,∆ (t)|p + |Cx3,i
e,∆ (t)− Cx̄3,j

e,∆ (t)|p)

≤ C(1 + |x1|p + |x̄1|p + |x2|p + |x̄2|p + |x3|p + |x̄3|p)e−σ̃t,
(47)

for any p ∈ (0, p0), p0 is given in (12), ((x1, x2, x2), i), ((x̄1, x̄2, x̄3), j) ∈ H× S, g∗ is introduced
in Lemma 2, and σ̃ is a positive constant.

Proof. Equation (29) and Lemma 2 imply that

|P̄x1,i
∆ − P̄x̄1,i

∆ | ≤|Px1,i
∆ (t)− Px̄1,i

∆ (t)|+ |
∂(Px1,i

∆ (t)− Px̄1,i
∆ (t))

∂a
|∆

+ µ̄|P̄x1,i
∆ − P̄x̄1,i

∆ |∆ + (ψ0|P̄x1,i
∆ − P̄x̄1,i

∆ |)
√

Wt,∆

≤2|Px1,i
∆ (t)− Px̄1,i

∆ (t)|+ 2|
∂(Px1,i

∆ (t)− Px̄1,i
∆ (t))

∂a
|∆,

(48)

such that
|P̄x1,i

∆ − P̄x̄1,i
∆ |2 ≤ 8|Px1,i

∆ (t)− Px̄1,i
∆ (t)|2 + 8ψ∗∆2, (49)

and

|Px1,i
∆ (s)− Px̄1,i

∆ (s)− (P̄x1,i
∆ − P̄x̄1,i

∆ )|2 ≤ 24u∗|Px1,i
∆ (t)− Px̄1,i

∆ (t)|2 + 11ψ∗∆2, (50)

where u∗ := µ̄2∆2 + ψ0∆
1
2 and ψ∗ := | ∂(P

x1,i
∆ (t)−P

x̄1,i
∆ (t))

∂a |2. For any ε > 0 and ρ > 0,
according to the Itô formula and Equation (19), it follows from Assumptions 1–3 that
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E(eρt(ε + |Px1,i
∆ (t)− Px̄1,i

∆ (t)|2)
p
2 ξ

(p)
Λi

t
)

≤(ε + |x1 − x̄1|2)p/2ξ
(p)
i − (ηp − ρ)E

∫ t

0
eρsξ

(p)
Λi

s
(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)p/2ds

+
p
2
E
∫ t

0
eρs(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p−2
2 ξ

(p)
Λi

s
ds
{

A2 β̄2|Px1,i
∆ (s)− Px̄1,i

∆ (s)|2

+ 2⟨Px1,i
∆ (s)− Px̄1,i

∆ (s), µ̄(P̄x1,i
∆ − P̄x̄1,i

∆ )⟩+ V1

}
ds

≤C(ε
p
2 + |x1 − x̄1|p)− (ηp − ρ)E

∫ t

0
eρsξ

(p)
Λi

s
(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)p/2ds

+
p
2
E
∫ t

0
eρs(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p−2
2 ξ

(p)
Λi

s

{
A2 β̄2|Px1,i

∆ (s)− Px̄1,i
∆ (s)|2

+ 9µ̄|Px1,i
∆ (s)− Px̄1,i

∆ (s)|2 + 8µ̄2|
∂(Px1,i

∆ (s)− Px̄1,i
∆ (s))

∂a
|2∆2 + V1

}
ds,

(51)

where V1 := ∥g(⌊s/∆⌋∆, P̄x1,i
∆ , Λi

⌊s/∆⌋∆)− g(⌊s/∆⌋∆, P̄x̄1,i
∆ , Λi

⌊s/∆⌋∆)∥
2. It is clear from

Assumption 1 that

p
2
E
∫ t

0
eρs(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p−2
2 ξ

(p)
Λi

s
V1ds

≤ p
2

ψ0E
∫ t

0
eρs(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p−2
2 |P̄x1,i

∆ − P̄x̄1,i
∆ |21Λi

⌊s/∆⌋∆ ̸=Λi
s
ξ
(p)
Λi

s
ds

≤Ceρt + 4pψ0E
∫ t

0
eρs(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p−2
2 |Px1,i

∆ (s)− Px̄1,i
∆ (s)|21Λi

⌊s/∆⌋∆ ̸=Λi
s
ξ
(p)
Λi

s
ds

≤J1 + 4p(2
p
2 )ψ0E

∫ t

0
eρs|Px1,i

∆ (s)− Px̄1,i
∆ (s)− (P̄x1,i

∆ − P̄x̄1,i
∆ )|p1Λi

⌊s/∆⌋∆ ̸=Λi
s
ξ
(p)
Λi

s
ds

+ 4p(2
p
2 )ψ0 ξ̂0E

∫ t

0
eρs|P̄x1,i

∆ − P̄x̄1,i
∆ |p1Λi

⌊s/∆⌋∆ ̸=Λi
s
ds

≤J1 + 4p(2
p
2 )(24u∗)

p
2 ψ0

∫ t

0
eρsE((ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p
2 ξ

(p)
Λi

s
)ds

+ 4p(2
p
2 )8

p
2 q0∆ψ0 ξ̂0 ξ̆0

∫ t

0
eρsE((ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p
2 ξ

(p)
Λi

s
)ds

≤J1 + 41+p pψ0[3
p
2 (µ̄2 + ψ0) + q0 ξ̂0 ξ̆0]∆

p
4

∫ t

0
eρsE((ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p
2 ξ

(p)
Λi

s
)ds,

(52)

where J1 := C(eρt + ε
p
2 ). Setting I2 := 41+p pψ0[3

p
2 (µ̄2 + ψ0) + q0ξ̂0ξ̆0] and substituting

Equation (52) into Equation (51), one has

E(eρt(ε + |Px1,i
∆ (t)− Px̄1,i

∆ (t)|2)
p
2 ξ

(p)
Λi

t
)

≤C(ε
p
2 + eρt + |x1 − x̄1|p)− (ηp − ρ − I2∆

p
4 )

∫ t

0
eρsE(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)p/2ξ

(p)
Λi

s
ds

+
p
2

∫ t

0
eρsE(ε + |Px1,i

∆ (s)− Px̄1,i
∆ (s)|2)

p
2 (A2 β̄2 + 9µ̄)ξ

(p)
Λi

s
ds,

(53)

Then, taking ε ↓ 0 and ρ = ηp − J∗∆
p
4 − p(9µ̄ + A2 β̄2) > 0, according to Gronwall

inequality, there exists a ϱ = J∗ − I2 > 0 such that

E(|Px1,i
∆ (t)− Px̄1,i

∆ (t)|p) ≤ C(1 + |x1|p + |x̄1|p)e−ϱt. (54)

From Equation (24), we can obtain the following estimate:

|C̄x3,i
e,∆ − C̄x̄3,i

e,∆ |2 ≤ 4|Cx3,i
e,∆ (t)− Cx̄3,i

e,∆ (t)|2, (55)
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and

|C̄x2,i
0,∆ − C̄x̄2,i

0,∆ |2 + |C̄x3,i
e,∆ − C̄x̄3,i

e,∆ |2 ≤ 42(|Cx2,i
0,∆ (t)− Cx̄2,i

0,∆ (t)|2 + |Cx3,i
e,∆ (t)− Cx̄3,i

e,∆ (t)|2), (56)

Furthermore, by virtue of Young’s inequality,

eρtE((ε + |Cx3,i
e,∆ (t)− Cx̄3,i

e,∆ (t)|2)p/2ξ
(p)
Λi

t
)

≤(ε + |x3 − x̄3|2)
p
2 ξ

(p)
i +E

∫ t

0
eρs(ε + |Cx3,i

e,∆ (s)− Cx̄3,i
e,∆ (s)|2)

p
2

{
ρξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
ds

+E
∫ t

0
eρs

{
pg∗(ε + |Cx3,i

e,∆ (s)− Cx̄3,i
e,∆ (s)|2)

p−2
2 ⟨Cx3,i

e,∆ (s)− Cx̄3,i
e,∆ (s), C̄x3,i

e,∆ − C̄x̄3,i
e,∆ ⟩

}
ξ
(p)
Λi

s
ds

≤(ε + |x3 − x̄3|2)
p
2 ξ

(p)
i − (ηp − ρ − 3pg∗)E

∫ t

0
eρs(ε + |Cx3,i

e,∆ (s)− Cx̄3,i
e,∆ (s)|2)

p
2 ξ

(p)
Λi

s
ds,

(57)

and

eρtE((ε + |Cx2,i
0,∆ (t)− Cx̄2,i

0,∆ (t)|
2)p/2ξ

(p)
Λi

t
)

≤(ε + |x2 − x̄2|2)
p
2 ξ

(p)
i +E

∫ t

0
eρs(ε + |Cx2,i

0,∆ (s)− Cx̄2,i
0,∆ (s)|

2)
p
2

{
ρξ

(p)
Λi

s
+ (Qξ(p))(Λi

s)

}
ds

+E
∫ t

0
eρs

{
pg∗(ε + |Cx2,i

0,∆ (s)− Cx̄2,i
0,∆ (s)|

2)
p−2

2 ⟨Cx2,i
0,∆ (s)− Cx̄2,i

0,∆ (s), C̄x3,i
e,∆ − C̄x̄3,i

e,∆ ⟩
}

ξ
(p)
Λi

s
ds

+E
∫ t

0
eρs

{
pg∗(ε + |Cx2,i

0,∆ (s)− Cx̄2,i
0,∆ (s)|

2)
p−2

2 ⟨Cx2,i
0,∆ (s)− Cx̄2,i

0,∆ (s), C̄x2,i
0,∆ − C̄x̄2,i

0,∆ ⟩
}

ξ
(p)
Λi

s
ds.

(58)

Using Equations (57) and (58), it is not difficult to obtain

eρtE((ε + |Cx2,i
0,∆ (t)− Cx̄2,i

0,∆ (t)|
2 + |Cx3,i

e,∆ (t)− Cx̄3,i
e,∆ (t)|2)p/2ξ

(p)
Λi

t
)

≤ I3 − (ηp − ρ − 12pg∗)E
∫ t

0
eρs(ε + |Cx2,i

0,∆ (s)− Cx̄2,i
0,∆ (s)|

2 + |Cx3,i
e,∆ (s)− Cx̄3,i

e,∆ (s)|2)
p
2 ξ

(p)
Λi

s
ds,

(59)

where I3 := C(|x3|p + |x̄3|p + |x2|p + |x̄2|p). Using the similar method of Equation (54),
taking ρ = ηp − J∗∆

p
4 − p(9µ̄ + A2 β̄2) > 0 and ε ↓ 0 and using Gronwall inequality, there

exists constants k∗ > 0 such that

E(|Cx3,i
e,∆ (t)− Cx̄3,i

e,∆ (t)|p + |Cx2,i
0,∆ (t)− Cx̄2,i

0,∆ (t)|p)

≤ C(|x3|p + |x̄3|p + |x2|p + |x̄2|p)e−k∗t.
(60)

Setting σ := ϱ ∧ k∗, we define τ̃ = inf{n ≥ 0; Λi
n∆ = Λj

n∆}. In addition, because S is a
finite set and Q is irreducible, there exists θ such that

P(τ̃ > n) ≤ e−θn∆, n > 0. (61)

For 0 < p < p0, we choose q > 1 such that 0 < pq < p0. In order to facilitate our
discussion, we let P̃x1,i

t := Px1,i
∆ (t), C̃x2,i

0,t := Cx2,i
0,∆ (t), and C̃x3,i

e,t := Cx3,i
e,∆ (t) and use Equations (47)

and (61) and Hölder inequality such that

E(|P̃x1,i
t − P̃x̄1,j

t |p)

≤(E|P̃x1,i
t − P̃x̄1,j

t |pq1{τ̃>n/2})
1
q (P(τ̃ > n/2))1− 1

q +E(1{τ̃≤n/2}E(|P̃
x1,i
t − P̃x̄1,j

t |p|Fτ̃))

≤(E|P̃x1,i
t − P̃x̄1,j

t |pq1{τ̃>n/2})
1
q (P(τ̃ > n/2))1/p +E(1{τ̃≤n/2}E|P̃

P̃x1,i
τ̃ ,Λi

τ

t−τ̃ − P̃P̃x̄1,j
τ̃ ,Λj

τ̃
t−τ̃ |p)

≤Ce−
q−1
2q θn∆

(E|P̃x1,i
t − P̃x̄1,j

t |pq)
1
q + Ce−

σ
2 n∆E|P̃x1,i

τ̃∧ n
2
− P̃x̄1,j

τ̃∧ n
2
|p,

(62)

Similar to the arguments presented above, note that

E(|C̃x2,i
0,t − C̃x̄2,j

0,t |p) ≤ Ce−
q−1
2q θn∆

(E|C̃x2,i
0,t − C̃x̄2,j

0,t |pq)
1
q + Ce−

σ
2 n∆E|C̃x2,i

0,τ̃∧ n
2
− C̃x̄2,j

0,τ̃∧ n
2
|p, (63)
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and

E(|C̃x3,i
e,t − C̃x̄3,j

e,t |p) ≤ Ce−
q−1
2q θn∆

(E|C̃x3,i
e,t − C̃x̄3,j

e,t |pq)
1
q + Ce−

σ
2 n∆E|C̃x3,i

e,τ̃∧ n
2
− C̃x̄3,j

e,τ̃∧ n
2
|p. (64)

And as a result,

P̃x1,i
τ̃∧ n

2
=

n
2

∑
m=0

P̃x1,i
m 1{τ̃∧ n

2 =m}(ω), (65)

Then taking the expectations of both sides of Equation (65), the equation becomes

E(|P̃x1,i
τ̃∧ n

2
− P̃x̄1,j

τ̃∧ n
2
|p) ≤

n
2

∑
m=0

E(|P̃x1,i
m |p1{τ̃∧ n

2 =m}(ω)) +

n
2

∑
m=0

E(|P̃x̄1,j
m |p1{τ̃∧ n

2 =m}(ω))

≤
n
2

∑
m=0

[E(|P̃x1,i
m |p) +E(|P̃x̄1,j

m |p)].

(66)

One can obtain

E(|C̃x2,i
0,τ̃∧ n

2
− C̃x̄1,j

0,τ̃∧ n
2
|p) ≤

n
2

∑
m=0

[E(|C̃x2,i
0,m |p) +E(|C̃x̄2,j

0,m |p)], (67)

and

E(|C̃x3,i
e,τ̃∧ n

2
− C̃x̄3,j

e,τ̃∧ n
2
|p) ≤

n
2

∑
m=0

[E(|C̃x3,i
e,m |p) +E(|C̃x̄3,j

e,m |p)]. (68)

Combing Equations (66)–(68) and Equation (28), a straightforward computation shows that

E(|P̃x1,i
τ̃∧ n

2
− P̃x̄1,j

τ̃∧ n
2
|p) +E(|C̃x2,i

0,τ̃∧ n
2
− C̃x̄1,j

0,τ̃∧ n
2
|p) +E(|C̃x3,i

e,τ̃∧ n
2
− C̃x̄3,j

e,τ̃∧ n
2
|p)

≤ C(1 + |x1|p + |x2|p + |x3|p + |x̄1|p + |x̄2|p + |x̄3|p)(n + 2),
(69)

Setting σ̃ := (q−1)θ
2q ∧ ρ

2 , from Equations (62)–(64), the following result is derived:

E(|P̃x1,i
t − P̃x̄1,j

t |p + |C̃x2,i
0,t − C̃x̄2,j

0,t |p + |C̃x3,i
e,t − C̃x̄3,j

e,t |p)

≤ C(1 + |s1|p + |s2|p + |s3|p + |s̄1|p + |s̄2|p + |s̄3|p)e−σ̃n∆.
(70)

Finally, the proof of Lemma 3 is completed.

Theorem 2. Under the conditions of Theorem 1, there exists a sufficiently small ∆∗ such that for
any ∆ ∈ (0, ∆∗), the solutions of the implicit EM method (24) converge to a unique invariant
measure (π∆ ∈ P(H × S)) with some exponential rate (γ̃ > 0) in the Wasserstein distance.

Proof. In fact, for any initial data ((x1, x2, x3)), according Equation (2) and Chebyshev
inequality, we derive that {∆(x1,x2,x3)

P∆
n∆} is tight. Therefore, there exists an exact subse-

quence that converges weakly to an invariant measure denoted by π∆ ∈ P(H3 × S). By
virtue of Equation (61), we have the following result:

P(Λi
n∆ ̸= Λj

n∆) = P(τ∆ > n) ≤ e−θn∆. (71)

For any n > 0 , it is not difficult to obtain

Wp(∆(x,i)P∆
n∆, ∆(x̄,j)P∆

n∆)

≤ E(|P̄x1,i
n∆ − P̄x̄1,j

n∆ |p + |C̄x2,i
0,n∆ − C̄x̄2,j

0,n∆|
p + |C̄x3,i

e,n∆ − C̄x̄3,j
e,n∆|

p) + P(Λi
nδ ̸= Λj

nδ)

≤ C(1 + |x1|p + |x2|p + |x3|p + |x̄1|p + |x̄2|p + |x̄3|p)e−γ̃n∆,

(72)
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where γ̃ := σ̃ ∧ θ. Given ∀n, m > 0, it follows from Lemma 2 that

Wp(∆(x,i)P∆
n∆, ∆(x,i)P∆

(n+m)∆)

= Wp(∆(x,i)P∆
n∆, ∆(x,i)P∆

n∆P
∆
m∆)

≤
∫
H×S

Wp(δ((x1,x2,x2),i)P
∆
n∆, δ((x̄1,x̄2,x̄3),j)P

∆
n∆)P

∆
m∆((x1, x2, x2), i; d(x̄1, x̄2, x̄3), j)

≤ ∑
j∈S

∫
H

C(1 + |x1|p + |x2|p + |x3|p + |x̄1|p + |x̄2|p + |x̄3|p)e−γ̄n∆ H1

≤ Ce−γ̃n∆,

(73)

where H1 = P∆
m∆((x1, x2, x2), i; d(x̄1, x̄2, x̄3), j); then, taking m → ∞,

Wp(∆((x1,x2,x3),i)P
∆
n∆, π∆) → 0, n → ∞; (74)

in other words, π∆ is the unique invariant measure of {∆(x1,x2,x3)
P∆

n∆}. ∀π∆, ν∆ ∈ P(H× S)
are invariant measures of ((P̄x1,i

n∆ , C̄x2,i
0,n∆, C̄x3,i

e,n∆), Λi
n∆) and ((P̄x̄1,i

n∆ , C̄x̄2,i
0,n∆, C̄x̄3,i

e,n∆), Λi
n∆), respec-

tively. Furthermore, we have

Wp(π
∆, ν∆) = Wp(π

∆P∆
n∆, ν∆P∆

n∆)

≤
N

∑
i,j=1

∫
H×S

∫
H×S

π∆(d(x × {i})ν∆(dx̄ × {j})Wp(∆(x,i)P∆
n∆, ∆(x̄,j)P∆

n∆).
(75)

Therefore, the uniqueness for the numerical invariant measure is proven.

Remark 4. There are many variables in Theorems 1 and 2, so the algorithm is complicated, and the
calculation is large. Therefore, the calculation of a simplified algorithm needs further discussion.

Theorem 3. Under Assumptions 1–3, ∀∆ ∈ (0, 1),

Wp(π, π∆) ≤ C∆
p
2 , p ∈ (0, p0),

where p0 = 1 ∧ min
i∈S,ρi>0

{−2qii/ρi}.

Proof. For p ∈ (0, p0),

Wp(∆((x1,x2,x3),i)Pn∆, π) ≤
∫
H×S

π(d(x̄1, x̄2, x̄3)×{j})Wp(∆((x1,x2,x3),i)P
∆
n∆, ∆((x̄1,x̄2,x̄3),j)P

∆
n∆),

and

Wp(∆((s1,s2,s2),i)P
∆
n∆, π∆) ≤

∫
H×S

π(d(x̄1, x̄2, x̄3)× {j})Wp(∆((x1,x2,x2),i)P
∆
n∆, ∆((x̄1,x̄2,x̄3),j)P

∆
n∆).

Then, based on Assumptions 1–3 and Lemma 2, for any ∆ ∈ (0, ∆∗), is n > 0 suffi-
ciently large such that

Wp(∆((x1,x2,x3),i)Pn∆, π) + Wp(∆((x1,x2,x3),i)P
∆
n∆, π∆) ≤ C∆

p
2 , (76)

where ∆∗ was introduced in Lemma 3. For any given n > 0, applying a method similar
to [23], one obtains

lim
∆→0

Wp(∆((x1,x2,x3),i)Pn∆, ∆((x1,x2,x3),i)P
∆
n∆) = 0.

That is to say that there exists a positive constant (ν) such that

Wp(∆((x1,x2,x3),i)Pn∆, ∆((x1,x2,x3),i)P
∆
n∆) ≤ Ceν∆n∆

p
2 .
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Combining Theorem 1 and Equation (73) yields

Wp(∆((x1,x2,x3),i)Pn∆, π) + Wp(∆((x1,x2,x3),i)P
∆
n∆, π∆) ≤ Ce−γ∗n∆, (77)

where γ∗ = min{σ∗, γ̃}. C̄ denotes the integer part of −p ln ∆/[2(ν+ γ∗)∆], which satisfies

C̄ → 0 as ∆ → 0. In addition, eνC̄∆∆
p
2 ≤ ∆

pσ∗
2(ν+γ∗) ≤ ∆

p
2 and e−σ∗C̄∆ ≤ eγ∗∆∗

∆
p
2 . Therefore,

Wp(π, π∆) ≤ C∆
p
2 holds.

Remark 5. The improvement of Markovian switching conditions can be influenced by many
factors, which can generally be divided into the quality of the data, the frequency of the observations,
and the computational factors. (1) Quality of data: The accuracy and cleanliness of the data can
significantly impact the performance of the model. (2) Frequency of observations: The choice of time
scale (e.g., daily vs. monthly data) can affect the detection of switches. (3) Estimation techniques:
The method used to estimate the model parameters (e.g., maximum likelihood estimation, Bayesian
methods) can influence the accuracy and efficiency of the model.

4. Numerical Example

Consider two state transitions, that is, the state space (S = {1, 2}) and the generator(
3 −3

−4 4

)
. It is easy to see that its unique stationary distribution (π = (π1, π2)) is given

by π1 = 1/2, π1 = 1/2. W(t) and Λt are assumed to be independent. We fix some parameter
values based on the existing literature and experimental data [2,11,15].

In state “1”, we take the following values: β(a, t, C0(t), 1) = µ(a, t, C0(t), 1) = (1 −
C0(t)) 1

1−a , g(s, P(s), 1) = 0.25P(s); k(1) = 0.35, l(1) = 0.05, m(1) = 0.3, h(1) = 0.3,
u(t) = cos(t).

In state “2”, we take the following values: β(a, t, C0(t), 2) = (1−C0(t)) 1
1−a , µ(a, t, C0(t), 2) =

1
1−a exp(1−C0(t)), g(s, P(s), 2) = 0.05 sin(P(s)); k(2) = 0.25, l(2) = 0.09, m(2) = 0.4, h(2) = 0.5,
u(t) = cos(t). We consider the following model:

∂P(a, t)
∂t

+
∂P(a, t)

∂a
= −µ(a, t, C0(t), Λt)P(a, t) + g(t, P(a, t), Λt)

dWt

dt
,

dC0(t)
dt

= k(Λt)Ce(t)− (l(Λt) + m(Λt))C0(t),

dCe(t)
dt

= −h(Λt)Ce(t) + cos t,

P(0, t) = ϕ(t) =
∫ A

0
(1 − C0(t))

1
1 − a

P(a, t)da,

P(a, 0) = exp(− 1
1 − a

),

C0(0) = 0.3, Ce(0) = 0.4,

(78)

where A = 1, T = 1, t ∈ (0, 1), and a ∈ (0, 1). Since the second and third equations of
system (78) are ordinary differential equations, it is not difficult to obtain exact solutions by
using the constant variation formulas. Therefore, we only need to consider the numerical
simulation of the EM method for the following equation:

∂P(a, t)
∂t

+
∂P(a, t)

∂a
= −µ(a, t, C0(t), Λt)P(a, t) + g(t, P(a, t), Λt)

dWt

dt
. (79)

As we know, the exact solution of stochastic partial differential Equation (79) is difficult
to be exactly expressed. Here, we let exp(− 1−(1+C0(t))t

1−a )(1 + ∆W) be the “explicit solution”
of Equation (79) (the simulation; see the Figure 1a) by using the characteristic line law.
Figure 1b describes the EM numerical solution of Equation (79) under Markov switching.
Figure 2 shows that the EM numerical solution converges to an exact solution when the
step size gradually becomes smaller, i.e., ∆t → 0.
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Figure 1. (a) “Explicit solution“ (exp(− 1−(1+C0(t))t
1−a )) of Equation (79); (b) numerical solution for EM

method of stochastic differential Equation (78).
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Figure 2. Sample paths produced by the square of the difference between (a) “explicit solution" P(a, t)
and (b) numerical solution Q(a, t) under ∆t = 0.005 and ∆t = 0.0005, respectively (78).

In addition, it is not difficult to verify that system (78) has a unique invariant prob-
ability measure. However, for system (78), its true solution is almost impossible to find.
Therefore, let the EM method generate the empirical distribution as the true invariant
probability distribution. Inspired by [33], the statistic of the Kolmogorov–Smirnov test
can be used to estimate the difference between two distributions. First, we choose 200 in-
dependent paths of (78) to simulate with ∆t = 0.005 from t = 0 to t = 1. We can easily
obtain 10 paths after averaging at time t = 1. The yellow line in Figure 3a describes the
empirical distribution, which is constructed by 10 points at t = 1. The blue line in Figure 3a
represents the numerical invariant probability distribution generated by the EM method.
The red line in Figure 3a shows that the error between the numerical invariant measure
(i.e., numerical probability distribution) and the true invariant measure (i.e., true invariant
probability distribution) gradually decreases with increasing time (t). Next, based on Fig-
ure 3, i.e., Wp(π, π∆) ≤ C∆

p
2 , the log(error) plot of the differences between the numerical

and true invariant probability distributions with step sizes is shown in Figure 3b. Obviously,
it is not difficult to conclude that as the step size becomes smaller, the Wasserstein distance
also decreases, tending toward 0.
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Figure 3. (a) The difference between the empirical and true distributions along the time line for
system (78); (b) log–log plot of errors against step size.

5. Concluding Remarks

In this work, a class of stochastic age-dependent population–toxicant equations with
Markovian switching was considered. Applying Gronwall inequality, a criterion for the
existence and uniqueness of the invariant measure for the model was proposed. Moreover,
we also proved the existence and uniqueness of the numerical invariance measure for
system (3) when ∆ is sufficiently small, and we proved that the numerical invariance
measure converges at a rate of ∆

p
2 to the invariance measure of the corresponding exact

number. We outlined some possible research directions and problems for our future work.
In this study, based on the classical population model [17,24], a stochastic age-dependent
population model with Markov switching in a polluted environment was developed. The
analysis was mathematical and methodological. In order to ensure the model moves closer
to the biological background, a more realistic and simplified control equation is needed.
The applications of the stochastic age-dependent population model with Markov switching
will be the main research direction in our future work.
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