
Citation: Pu, T.; Zeng, L.; Chen, C.

Deep Reinforcement Learning for

Network Dismantling: A K-Core

Based Approach. Mathematics 2024, 12,

1215. https://doi.org/10.3390/

math12081215

Academic Editor: Janez Žerovnik

Received: 9 March 2024

Revised: 2 April 2024

Accepted: 9 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Deep Reinforcement Learning for Network Dismantling:
A K-Core Based Approach
Tianle Pu 1, Li Zeng 1,2 and Chao Chen 1,*

1 College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
putl22@nudt.edu.cn (T.P.); zlli@nudt.edu.cn (L.Z.)

2 School of International Business and Management, Sichuan International Studies University,
Chongqing 400031, China

* Correspondence: chenc1997@nudt.edu.cn

Abstract: Network dismantling is one of the most challenging problems in complex systems. This
problem encompasses a broad array of practical applications. Previous works mainly focus on the
metrics such as the number of nodes in the Giant Connected Component (GCC), average pairwise
connectivity, etc. This paper introduces a novel metric, the accumulated 2-core size, for assessing
network dismantling. Due to the NP-hard computational complexity of this problem, we propose
SmartCore, an end-to-end model for minimizing the accumulated 2-core size by leveraging reinforce-
ment learning and graph neural networks. Extensive experiments across synthetic and real-world
datasets demonstrate SmartCore’s superiority over existing methods in terms of both accuracy and
speed, suggesting that SmartCore should be a better choice for the network dismantling problem
in practice.

Keywords: complex networks; network dismantling; graph neural network; reinforcement learning

MSC: 90C27; 05C85

1. Introduction

Network dismantling [1] represents a pivotal challenge within the realm of complex
network science, drawing sustained attention from a diverse spectrum of researchers over
time. This challenge revolves around identifying the minimal subset of nodes whose
removal would significantly impair or entirely incapacitate the operational functionality
of the network. This problem encompasses a broad array of practical applications. For
instance, within power systems, a localized incident such as overload or failure may trigger
a cascading series of failures, potentially leading to systemic collapse [2]. However, strategic
removal of critical nodes can mitigate this risk and prevent such catastrophic outcomes. In
the realms of national security [3] and public health [4], networks such as those associated
with terrorist organizations and disease transmission pathways present significant threats.

Network robustness stands as a fundamental metric frequently serving as a yardstick
for measuring the degree of network dismantling. A lot of robustness metrics have been
proposed in prior studies, spanning from basic graph connectivity metrics (such as node
and edge connectivity [5]) to more sophisticated measures of connectivity enhancement
(such as super connectivity [6] and conditional connectivity [7]). A comprehensive survey
of robustness metrics can be found in [8]. Among these metrics, the concept of K-core [9]
emerges as particularly significant and deserving of further investigation. Essentially, in a
graph, a K-core embodies a structural attribute wherein a subgraph qualifies as a K-core if
each node within that subgraph is connected to a minimum of k other nodes. The K-core
configuration plays a pivotal role within networks and is intimately intertwined with
graph robustness.

Mathematics 2024, 12, 1215. https://doi.org/10.3390/math12081215 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081215
https://doi.org/10.3390/math12081215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4219-788X
https://doi.org/10.3390/math12081215
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081215?type=check_update&version=1

Mathematics 2024, 12, 1215 2 of 12

Similarly, the concept of K-core can be applied to the network dismantling problem.
Intuitively, if all K-core nodes are removed from a network, it degenerates into a tree
structure, which is considerably easier to dismantle [10]. By identifying and removing
nodes from the K-core, one can assess the network’s robustness. A network that rapidly
disintegrates upon the removal of K-core nodes is considered fragile. The K-core property
has sparked the development of several well-known algorithms aimed at addressing the
network dismantling challenge. Among these, the CoreHD [11] algorithm stands out as
a straightforward yet potent approach. It works by systematically eliminating one of the
vertices with the highest degree from the remaining K-core.

Typically, when K = 2, it is referred to as the 2-core. In network dismantling, the 2-core
plays a unique role. When the nodes within the 2-core are not empty, it ensures the presence
of cyclic structures within the graph; conversely, when the 2-core is empty, the graph
degenerates into a tree. Additionally, we have observed changes in the number of nodes
in the Giant Connected Component (GCC) and 2-core structure during the dismantling
process using four commonly used network dismantling algorithms, as depicted in Figure 1.
It is apparent that the GCC and 2-core metrics show a strong correlation throughout the
network dismantling process.

Mathematics 2024, 12, x FOR PEER REVIEW 2 of 13

core configuration plays a pivotal role within networks and is intimately intertwined with
graph robustness.

Similarly, the concept of K-core can be applied to the network dismantling problem.
Intuitively, if all K-core nodes are removed from a network, it degenerates into a tree
structure, which is considerably easier to dismantle [10]. By identifying and removing
nodes from the K-core, one can assess the network’s robustness. A network that rapidly
disintegrates upon the removal of K-core nodes is considered fragile. The K-core property
has sparked the development of several well-known algorithms aimed at addressing the
network dismantling challenge. Among these, the CoreHD [11] algorithm stands out as a
straightforward yet potent approach. It works by systematically eliminating one of the
vertices with the highest degree from the remaining K-core.

Typically, when K = 2, it is referred to as the 2-core. In network dismantling, the 2-
core plays a unique role. When the nodes within the 2-core are not empty, it ensures the
presence of cyclic structures within the graph; conversely, when the 2-core is empty, the
graph degenerates into a tree. Additionally, we have observed changes in the number of
nodes in the Giant Connected Component (GCC) and 2-core structure during the disman-
tling process using four commonly used network dismantling algorithms, as depicted in
Figure 1. It is apparent that the GCC and 2-core metrics show a strong correlation through-
out the network dismantling process.

Figure 1. Case study of the relationship between GCC size and 2-core size during network disman-
tling. We generate 100 graphs using the Barabási–Albert model and calculate the average GCC size
and 2-core size.

Motivated by this observation and drawing an analogy to the definition of the Accu-
mulated Normalized Connectivity (ANC) curve, we propose utilizing the area under the
curve of the changing number of nodes in the 2-core structure as a measure of the degree
of network dismantling. Minimizing the area under the curve while using the fewest
nodes is an NP-hard problem and bears resemblance to the minimum feedback vertex set
(or decycling) problem [12], which is a classic NP-complete problem aimed at making the
network acyclic at minimal cost.

However, existing research has primarily focused on handcraft-designed algorithms
like CoreHD or BPD [13] for addressing the K-core problem. Instead, we formulate this
problem as a Markov Decision Process (MDP) and introduce a novel algorithm named
SmartCore, which leverages graph neural networks and reinforcement learning to find
heuristic strategies that minimize the accumulated 2-core size during the dismantling

Figure 1. Case study of the relationship between GCC size and 2-core size during network disman-
tling. We generate 100 graphs using the Barabási–Albert model and calculate the average GCC size
and 2-core size.

Motivated by this observation and drawing an analogy to the definition of the Accu-
mulated Normalized Connectivity (ANC) curve, we propose utilizing the area under the
curve of the changing number of nodes in the 2-core structure as a measure of the degree of
network dismantling. Minimizing the area under the curve while using the fewest nodes
is an NP-hard problem and bears resemblance to the minimum feedback vertex set (or
decycling) problem [12], which is a classic NP-complete problem aimed at making the
network acyclic at minimal cost.

However, existing research has primarily focused on handcraft-designed algorithms
like CoreHD or BPD [13] for addressing the K-core problem. Instead, we formulate this
problem as a Markov Decision Process (MDP) and introduce a novel algorithm named
SmartCore, which leverages graph neural networks and reinforcement learning to find
heuristic strategies that minimize the accumulated 2-core size during the dismantling
process. The state corresponds to the network at each moment during dismantling, and the
action represents the remaining nodes in the network.

Mathematics 2024, 12, 1215 3 of 12

Extensive experiments have been conducted across both synthetic graphs and real-
world datasets, with the latter comprising tens of thousands of nodes and edges. The
results demonstrate that the proposed SmartCore model generally outperforms existing
methods and also exhibits a considerable speed advantage.

In summary, our contributions can be summarized as follows:

1. We introduce the evaluation metric of accumulated 2-core size during the network
dismantling process. We transform the problem into a learning problem and propose
an end-to-end SmartCore model. This model allows training an agent across simple
synthetic graphs, which can then be directly applied to real-world datasets.

2. We conduct comprehensive experiments to validate our SmartCore model. Our
results show that the SmartCore model outperforms state-of-the-art baseline methods
in terms of both accuracy and speed.

The remainder of the paper is organized as follows. Section 2 introduces related works
of this paper and Section 3 describes the corresponding preliminaries. Sections 4 and 5
demonstrate our SmartCore model and the experimental setup, respectively. Section 6
provides a summary of our work and outlines future research directions.

2. Related Works

In the realm of complex network analysis, understanding and optimizing network
robustness and resilience through network dismantling has become an imperative research
area. In the exploration of complex network dismantling, various metrics play a crucial
role in understanding the robustness and vulnerability of networks, such as the number of
components [14], pairwise connectivity [15], the largest connected component size [16], etc.

Meanwhile, approaches to network dismantling can be categorized into planning-
based, metaheuristic, and machine learning methods. Planning-based strategies, as demon-
strated [17], utilize mathematical programming to detect critical node structures whose
deletion maximally deteriorates the graph’s connectivity, offering a comprehensive frame-
work that extends beyond the removal of individual nodes. Metaheuristic methods can
also effectively deal with the network dismantling problem. For instance, Y. Deng et al. [18]
proposed an optimal attack strategy named Optimal Attack Strategy (OAS) based on tabu
search, which is a global search approach to identify the most destructive node removal com-
binations. Manuel Lozano et al. used the Artificial Bee Colony (ABC) algorithm [19], which
leveraged the knowledge of network dismantling problem in the neighborhood exploration
by considering the partial destruction and heuristic reconstruction of selected solutions.

Machine learning approaches, notably through deep reinforcement learning and
learning-based algorithms, introduce novel paradigms for identifying key players in net-
work dismantling. These methods, exemplified by FINDER [20,21] and CoreGQN [22],
leverage synthetic networks and self-play to train models that significantly outperform ex-
isting strategies, offering rapid, scalable solutions to NP-hard problems in network science.

Core structure in complex networks, as an important metric, is also widely researched.
Recent advancements include the development of sophisticated attack strategies, such
as the Cycle-Tree Guided Attack (CTGA) [23] and the Hierarchical Cycle-Tree Packing
Model [24], which utilize spin glass models and efficient message passing algorithms.
These methods aim to induce the complete collapse of the k-core by identifying the minimal
set of vertices for removal, transforming the dynamics of k-core pruning into a problem of
finding optimal static structural patterns.

3. Preliminaries
3.1. K-Core

First, let G = (V, E) be a graph. The k-core of G, denoted as Gk, is defined as the
maximal subgraph G′ = (V′, E′) of G, so that every vertex in V′ has a degree of at least k
within G′.

Mathematics 2024, 12, 1215 4 of 12

3.2. Accumulated 2-Core Size

Motivated by the definition of accumulated normalized connectivity (ANC) [25], we
can define the learning objective as sequentially removing nodes from the network to
minimize the accumulated size of the 2-core after each removal, which we call accumulated
2-core size. Given a graph G = (V, E), let C0 represent the size (number of nodes) of the
2-ore of G before any nodes are removed. For each iteration i where nodes are removed
from the graph, let fi denote the size of the 2-core of the remaining graph. The 2-core size
fi for each iteration i is defined as:

fi =
Ci
C0

(1)

The accumulated 2-core size F after n iterations is the sum of fi across all iterations:

F =
n

∑
i=1

fi (2)

The objective in our learning task is to minimize the accumulated 2-core size. By doing
so, we ensure that as nodes are removed, the remaining graph’s 2-core size is significantly
reduced relative to the original 2-core size.

3.3. Graph Neural Network

A Graph Neural Network (GNN) [26] is a type of neural network designed to operate
directly on graphs or data that can be represented in graph form. It aims to learn and
generalize functions over graph-structured data. The basic idea is to iteratively update
node representations by aggregating and propagating information from neighboring nodes.

Mathematically, let G = (V, E) be a graph, where each node v ∈ V is associated with
a feature vector xv. The goal of a GNN is to learn a function, f , that maps the input graph
G and its node features {xv}v∈V to output predictions or node representations.

The message passing mechanism in GNNs can be described using the following
equations:

m(t)
v = AGGREGATE(t)

({
h(t−1)

u : u ∈ N (v)
})

(3)

h(t)
v = COMBINE(t)

(
h(t−1)

v , m(t)
v

)
(4)

3.4. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning where an agent learns
to make sequential decisions by interacting with an environment to maximize cumulative
rewards. Q-learning, a fundamental RL algorithm, plays a crucial role in RL by estimating
the value of taking a specific action in a given state, enabling the agent to make optimal
decisions based on learned Q-values.

Q-learning is an iterative, model-free RL method used to estimate the Q-values of
state-action pairs within an MDP, denoted as {S ,A, T ,R, γ}. Here, S represents the state
space, A represents the action space, T : S ×A× S → [0, 1] is the transition function,
R : S → R is the reward function, and γ ∈ [0, 1] is the discount factor. The Q-value
function, which is an action value function learned by Q-learning methods, maps state-
action pairs (s, a) ∈ (S ,A) to the expected discounted sum of rewards when following

a policy π : S → A, Qπ(s, a) = E
[

∞
∑

t=0
γtrt+1 | s0 = s, a0 = a, π

]
. Compared to traditional

Q-learning algorithms, DQN [27] trains a deep neural network Qθ to approximate the value
function. Hence, the policy πθ can be determined by: πθ(s) = argmaxa′Qθ(s, a′), where θ
is the set of parameters learned by DQN.

4. SmartCore Model

In this section, we present our proposed framework, SmartCore, which is tailored
for efficiently minimizing the accumulated 2-core size. Formally, SmartCore treats the

Mathematics 2024, 12, 1215 5 of 12

process of network dismantling as a Markov Decision Process: the state s ∈ S represents the
remaining 2-core sizes in the current graph, the action a ∈ A represents removing a node
from the remaining 2-core, and the reward r ∈ R is the relative 2-core size fi after action
a is executed. The termination condition is when the 2-core is empty. We delve into the
architecture of SmartCore, elucidate the training process, and discuss its time complexity.

4.1. Architecture of SmartCore

The schematic representation of the SmartCore framework can be visualized in Figure 1.
Our proposed SmartCore algorithm adopts a quintessential encoder–decoder architecture.

During the encoding phase, we harnessed the power of GraphSAGE [28] as the feature
extraction model for both the entire graph and the selected action nodes. The primary
objective here is to transform these intricate graph structures and node details into a compre-
hensive, dense vector representation. To augment the model’s representational capability,
we introduced a virtual node concept, which captures overarching graph characteristics
more effectively. Since the parameters of GraphSAGE are independent of specific graph
scales, the technique of employing virtual nodes to represent the entire network state can
be extended to dynamic graphs, enhancing the flexibility of our model.

During the decoding phase, we employed deep Q learning to the representation of
the state and action. The Q function maps state–action pairs to scalar values indicative of
potential long-term gains which is parameterized with MLPs coupled with ReLU activation,
and makes use of the embeddings to achieve this. This technique ingeniously maps the
action node vectors, in conjunction with their respective graph vectors, to a scalar Q
value. This Q value serves a pivotal role as it provides a quantifiable metric, guiding the
subsequent action selection process. The agent, equipped with this strategy, then embarks
on an iterative journey where it greedily selects the node boasting the highest Q value at
each step. This meticulous node removal continues iteratively until the network is devoid
of any cycles, ensuring an acyclic structure. Through this intricate blend of GraphSAGE
for feature extraction and the deep Q-learning for decision making, SmartCore provides a
robust solution to tackle complex network challenges (Figure 2).

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 13

Figure 2. SmartCore Framework Overview. The SmartCore framework encompasses a typical en-
coder–decoder structure. Within this setup, the encoder leverages GraphSAGE to transform the raw
input of the graph into a compact embedding. Subsequently, the Double DQN decoder processes
the graph embedding in tandem with the action node’s embedding to produce a Q value. This
value serves as a guiding metric for the node selection strategy in subsequent steps.

4.2. Training Algorithms
The computation of the Q-score is contingent on a set of six parameters, denoted as

6
1{ }i iθ =Θ = . We employed Double Q-Learning [29] to train the model. Specifically, Double

Q-Learning refines the parameters by undertaking gradient descents on samples (or mini
batches) of experience (, , ,)s a r s′ , aiming to curtail the loss, which is defined as follows:

()()2
(, , ,)~ ()Loss , argmax (,) (,)s a r s U D ar Q s Q s a Q s aγ′ ′

 ′ ′ ′= + −
 (5)

Here, the samples (, , ,)s a r s′ were selected uniformly at random from the pool of

stored samples ()U D , where 1 2 1{ , ,..., }, (, , ,)t t t t t tD d d d d s a r s += = , and Q represents the
target network, with parameters that become updated from the Q network parameters
every C steps, while remaining constant between individual updates.

During the training phase, the Barabási–Albert (BA) model generates synthetic
graphs for both training and validation purposes. An episode represents the entire node
removal process on a graph until the terminal state is reached. The terminal state, in this
context, is when the 2-core node count becomes zero. A trajectory created within an epi-
sode refers to a state–action sequence 0 0 0 1 1 2 terminal(, , , , , ,...,)s a r s r s s .

Training adopts the -greedy policy, where linearly tapers from 1.0 to 0.01 over
10,000 episodes to strike a balance between exploration and exploitation. In the inference
phase, the node with the highest Q-score is systematically removed until the terminal state
is reached.

The model underwent training for a total of 50,000 episodes. A replay memory, with
a capacity of 20,000, retained the most recent transitions. Every 300 episodes, we evaluated
the agent across 100 synthetic graphs of the same size as the training graphs, averaging
the performances. After each episode, random mini batches of transitions were drawn
from the replay memory buffer to perform stochastic gradient descent updates that mini-
mize the loss function. The entire training procedure is elaborated in detail in Algorithm
1.

Algorithm 1: Training Procedure of SmartCore

1: Initialize experience replay memory D with size M

2: Initialize state–action pair value function Q with random weights ω

3: Initialize target Q function with weights Θ = Θ

4: For episode = 1 to N Do

5: Generate a graph G from the BA model

Figure 2. SmartCore Framework Overview. The SmartCore framework encompasses a typical
encoder–decoder structure. Within this setup, the encoder leverages GraphSAGE to transform the
raw input of the graph into a compact embedding. Subsequently, the Double DQN decoder processes
the graph embedding in tandem with the action node’s embedding to produce a Q value. This value
serves as a guiding metric for the node selection strategy in subsequent steps.

4.2. Training Algorithms

The computation of the Q-score is contingent on a set of six parameters, denoted as
Θ = {θi}6

i=1. We employed Double Q-Learning [29] to train the model. Specifically, Double
Q-Learning refines the parameters by undertaking gradient descents on samples (or mini
batches) of experience (s, a, r, s′), aiming to curtail the loss, which is defined as follows:

Loss = E(s,a,r,s′)∼U(D)

[(
r + γQ

(
s′, argmaxa′Q(s′, a′)

)
− Q(s, a)

)2
]

(5)

Here, the samples (s, a, r, s′) were selected uniformly at random from the pool of stored
samples U(D), where D = {d1, d2, . . . , dt}, dt = (st, at, rt, st+1), and Q̂ represents the target

Mathematics 2024, 12, 1215 6 of 12

network, with parameters that become updated from the Q network parameters every C
steps, while remaining constant between individual updates.

During the training phase, the Barabási–Albert (BA) model generates synthetic graphs
for both training and validation purposes. An episode represents the entire node removal
process on a graph until the terminal state is reached. The terminal state, in this context, is
when the 2-core node count becomes zero. A trajectory created within an episode refers to
a state–action sequence (s0, a0, r0, s1, r1, s2, . . . , sterminal).

Training adopts the ϵ-greedy policy, where ϵ linearly tapers from 1.0 to 0.01 over
10,000 episodes to strike a balance between exploration and exploitation. In the inference
phase, the node with the highest Q-score is systematically removed until the terminal state
is reached.

The model underwent training for a total of 50,000 episodes. A replay memory, with a
capacity of 20,000, retained the most recent transitions. Every 300 episodes, we evaluated
the agent across 100 synthetic graphs of the same size as the training graphs, averaging the
performances. After each episode, random mini batches of transitions were drawn from
the replay memory buffer to perform stochastic gradient descent updates that minimize
the loss function. The entire training procedure is elaborated in detail in Algorithm 1.

Algorithm 1: Training Procedure of SmartCore

1: Initialize experience replay memory D with size M
2: Initialize state–action pair value function Q with random weights ω

3: Initialize target Q function with weights Θ̂ = Θ
4: For episode = 1 to N Do
5: Generate a graph G from the BA model
6: Obtain the 2-core G′ from G
7: Initialize the state to an empty sequence s1 = ()
8: For t = 1 to T Do
9: With probability ϵ, select a random action at on G′

10: Otherwise select at = argmaxaQ(st, a; Θ)
11: Execute action at (remove node at from G′) and observe reward rt
12: Add at to partial solution st+1 = st ∪ at
13: If t > n Then
14: Store transition (st, at, rt, st+1) in D
15: Sample random mini–batch of transitions (sj, aj, rj, sj+1) from D

16: Set yj =

{
rj If eposide terminates at step j+1

rj + γQ
(
s′, argmaxa′ Q(s′, a′; Θ); Θ̂

)
Otherwise

17: Perform a stochastic gradient descent over (3) with respect to the parameters Θ
18: Every C steps reset Θ̂ = Θ
19: End If
20: Update the 2-core size from G
21: End For
22: End For

4.3. Computational Complexity Analysis

The overall time complexity of the SmartCore model is denoted as O(T|E|t) . Here,
T denotes the depth of the GraphSAGE layers, |E| represents the number of edges in the
graph, and t denotes the total number of nodes removed while the 2-core is empty. By
using sparse matrix representations for the graph, our SmartCore model can easily scale to
large-scale graphs in real-world applications.

5. Experiments
5.1. Baselines

To validate the efficacy of the proposed SmartCore algorithm, we employed the cur-
rently prevalent algorithms HDA [30], HBA [31], HCA [32], and HPRA [33] as benchmark
methods across simulated graphs. Using the BA network (with m = 4), we generated

Mathematics 2024, 12, 1215 7 of 12

100 simulated graphs for node ranges of 30–50, 50–100, 100–200, 200–300, 300–400, and 400–
500 to evaluate the performance of the algorithm across simulated networks. Specifically,
HDA refers to an approach where the node with the highest degree is removed from the
network in each iteration. The network was then updated, and the node degrees were
recalculated, continuing this process until no cycles remained in the network. Similarly,
HBA removed the node with the highest betweenness centrality in each iteration, HPRA
removed the node with the highest PageRank, and HCA removed the node with the highest
closeness centrality. After each node removal, the respective metric was recalculated based
on the updated network, and the process continued until the network was acyclic.

For testing across real networks, we selected he HDA [30], CI [34], MinSum [35],
CoreHD [11], BPD [13], and GND [36] as our benchmark methods. CI represents an in-
dex based on collective influence. MinSum and BPD are decycling algorithms based on
belief propagation, while GND is an algorithm rooted in spectral partitioning. Specifically,
CoreHD operates by removing the node with the highest 2-core degree during each iter-
ation. After each removal, the 2-core was updated, node degrees within the 2-core were
recalculated, and the process was repeated until the 2-core was empty.

5.2. Datasets

Four real-world datasets were selected from SNAP Datasets [37] to evaluate the
performance of our SmartCore model, as shown in Table 1:

Table 1. Detailed description of four real-world datasets.

Data/Index Node Number Edge Number Diameter

HI–II–14 4165 13,087 11

Digg 29,652 84,781 12

Enron 33,696 180,811 11

Epinion 75,879 508,837 14

HI–II–14: This dataset encompasses the Human Interactome data in Space II, compiled
in 2014.

Digg: This network mirrors interactions on the social news platform, Digg.
Enron: This dataset captures the email communication patterns within the Enron

corporation, spanning approximately half a million emails.
Epinion: Originating from the online social network, Epinions, this trust network

outlines user interactions.

5.3. Training Details

All our experimental tasks were executed on a platform equipped from Huawei Cloud
with a 32 GB Nvidia GeForce Tesla A100 GPU. For training and validation, we utilized
Barabási–Albert (BA) graphs generated by the networkx package (v2.8.8) and set the pa-
rameter m as 4, which means the number of edges linking a new node to existing ones;
the size of the nodes was between 30 and 50. Given that real-world graphs usually adhere
to power–law distribution, they can be effectively simulated through the BA graphs. The
performance of SmartCore across real graphs also validates the rationality of the training
data generation strategy we employed. In total, 10,000 synthetic graphs were created for
training purposes, while another 100 were earmarked for validation. To test the perfor-
mance of SmartCore across different scales of synthetic graphs, we generated 100 graphs for
each scale of 30–50, 50–100, 100–200, 200–300, 300–400, and 400–500, following the setting
described above. The hyper parameters of SmartCore are shown in Table 2. We developed
our model using Pytorch Version 1.9 and adopted the Adam optimization method for
training. An early stopping mechanism, based on the validation of the set performance,
ensured efficient training. As can be observed in Figure 3, the model exhibits impressive
convergence for the given problem.

Mathematics 2024, 12, 1215 8 of 12

Table 2. Hyper parameter Settings for SmartCore.

Name Value Description

Learning rate 1 × 10−4 The learning rate used by Adam optimizer

Embedding dimension 64 Dimensions of node embedding vector

Layer iterations 5 Number of GraphSAGE layers

Q-learning steps 3 Number of Q-learning steps

Batch size 64 Number of mini-batch training samples
Mathematics 2024, 12, x FOR PEER REVIEW 9 of 13

Figure 3. SmartCore’s performance Cureve. As gauged by validation results, SmartCore demon-
strates a rapid convergence during its training process. We trained our agent on synthetic BA graphs
across various scales, specifically with node sizes ranging from 15 to 20, 20 to 30, and 30 to 50, and
validated on corresponding scales. In each iteration, 64 synthetic graphs were sampled for training.
After every 300 iterations, we evaluated the model across 100 randomly chosen graphs. The metric
of interest was the accumulated 2-core size. Across all training scales, SmartCore consistently
demonstrated swift convergence across the validation datasets.

5.4. Results
Figure 4 presents the testing results of SmartCore compared with benchmark algo-

rithms HDA, HBA, HCA, and HPRA across 100 synthetic graphs of varying sizes. From
the figure, it is evident that SmartCore outperforms the other methods. Additionally, Ta-
ble 3 displays the runtime of SmartCore and the other benchmark algorithms on this da-
taset, highlighting that SmartCore boasts a faster execution speed.

Figure 4. Accumulated 2-core sizes of different methods across six synthetic graphs.

Table 3. The running time of different methods across six synthetic datasets.

Figure 3. SmartCore’s performance Cureve. As gauged by validation results, SmartCore demonstrates
a rapid convergence during its training process. We trained our agent on synthetic BA graphs across
various scales, specifically with node sizes ranging from 15 to 20, 20 to 30, and 30 to 50, and validated
on corresponding scales. In each iteration, 64 synthetic graphs were sampled for training. After every
300 iterations, we evaluated the model across 100 randomly chosen graphs. The metric of interest
was the accumulated 2-core size. Across all training scales, SmartCore consistently demonstrated
swift convergence across the validation datasets.

5.4. Results

Figure 4 presents the testing results of SmartCore compared with benchmark algo-
rithms HDA, HBA, HCA, and HPRA across 100 synthetic graphs of varying sizes. From the
figure, it is evident that SmartCore outperforms the other methods. Additionally, Table 3
displays the runtime of SmartCore and the other benchmark algorithms on this dataset,
highlighting that SmartCore boasts a faster execution speed.

Table 3. The running time of different methods across six synthetic datasets.

Method/Data Size 30–50 50–100 100–200 200–300 300–400 400–500

HDA 59.80 ± 3.36 59.36 ± 3.00 57.62 ± 1.99 56.97 ± 1.49 56.57 ± 1.36 56.50 ± 1.10

HBA 79.67 ± 9.69 84.37 ± 7.71 88.97 ± 5.55 91.18 ± 4.30 93.08 ± 3.74 92.97 ± 3.45

HCA 62.12 ± 4.26 61.34 ± 2.93 59.65 ± 2.01 58.99 ± 1.66 58.76 ± 1.42 58.53 ± 1.36

HPRA 60.12 ± 3.24 59.35 ± 3.06 58.04 ± 1.96 57.22 ± 1.53 56.85 ± 1.33 56.89 ± 1.19

SmartCore 65.21 ± 3.88 62.26 ± 3.06 59.45 ± 1.82 57.81 ± 1.46 57.30 ± 1.30 57.31 ± 1.16

Mathematics 2024, 12, 1215 9 of 12

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 13

Figure 3. SmartCore’s performance Cureve. As gauged by validation results, SmartCore demon-
strates a rapid convergence during its training process. We trained our agent on synthetic BA graphs
across various scales, specifically with node sizes ranging from 15 to 20, 20 to 30, and 30 to 50, and
validated on corresponding scales. In each iteration, 64 synthetic graphs were sampled for training.
After every 300 iterations, we evaluated the model across 100 randomly chosen graphs. The metric
of interest was the accumulated 2-core size. Across all training scales, SmartCore consistently
demonstrated swift convergence across the validation datasets.

5.4. Results
Figure 4 presents the testing results of SmartCore compared with benchmark algo-

rithms HDA, HBA, HCA, and HPRA across 100 synthetic graphs of varying sizes. From
the figure, it is evident that SmartCore outperforms the other methods. Additionally, Ta-
ble 3 displays the runtime of SmartCore and the other benchmark algorithms on this da-
taset, highlighting that SmartCore boasts a faster execution speed.

Figure 4. Accumulated 2-core sizes of different methods across six synthetic graphs.

Table 3. The running time of different methods across six synthetic datasets.

Figure 4. Accumulated 2-core sizes of different methods across six synthetic graphs.

Tables 4 and 5 provide insights into the performance of various algorithms, including
the proposed SmartCore, when applied to six real-world datasets.

From Table 4, which displays the accumulated 2-core size for each method across
different datasets, we observe that SmartCore consistently achieves lower values, implying
a more efficient dismantling of the network’s core structure. In particular, for datasets like
Digg and Enron, SmartCore’s performance is significantly superior, reducing the 2-core
size by a considerable margin when compared to other methods.

Table 4. The accumulated 2-core sizes of different methods across six real-world datasets.

Method/Dataset HI–II–14 Digg Enron Epinions

HDA 0.0482 0.3017 0.3250 0.0507

CI 0.0581 0.2547 0.3263 0.0840

MinSum 0.0615 0.2207 0.3344 0.1028

CoreHD 0.0454 0.2241 0.3278 0.0464

BPD 0.0541 0.2207 0.3259 0.0641

GND 0.0730 0.2392 0.3361 0.0905

SmartCore 0.0459 0.0660 0.0924 0.0504

Table 5. The running time of different methods across six real-world datasets.

Method/Dataset HI–II–14 Digg Enron Epinions

HDA 0.78 117.23 139.30 311.70

CI 1.96 113.96 135.42 835.78

MinSum 2.03 113.32 134.82 876.25

CoreHD 2.03 112.73 136.72 893.14

BPD 2.02 114.24 136.08 895.85

GND 2.02 115.22 136.67 864.12

SmartCore 1.15 60.34 73.30 335.88

Mathematics 2024, 12, 1215 10 of 12

Table 5, on the other hand, focuses on the running time of these algorithms. Here, we
see that SmartCore not only offers competitive performance in terms of effectiveness but
also in terms of efficiency. For instance, in the Digg dataset, SmartCore completes its task
in just 60.34 units of time, which is almost half the time taken by many other algorithms.
This trend is similarly observed in the Enron dataset, showcasing the algorithm’s capability
to deliver results faster.

Figure 5 presents a comparison of the accumulated 2-core size curves across real-
world networks. The figure’s horizontal axis quantifies the fraction of nodes that have
been removed, while the vertical axis represents the remaining 2-core size. From the
curves depicted in the figure, it is evident that the SmartCore algorithm consistently
maintains a smaller area under its curve across all four real-world datasets. In essence, the
results in Figure 5 underscore the outstanding performance of the SmartCore algorithm in
comparison to other methods.

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 13

Figure 5. Comparative results of the accumulated 2-core size curves across real-world networks (a–
d). The horizontal axis is the fraction of the removed nodes, and the vertical axis is the remaining 2-
core size.

6. Conclusions
In this study, we introduced SmartCore, an innovative algorithm that combines

graph representation learning with reinforcement learning to tackle the network disman-
tling problem by minimizing the accumulated 2-core size. Through a sophisticated en-
coder–decoder architecture, SmartCore efficiently maps graph structures to dense vectors
using GraphSAGE, and subsequently employs Double DQN to guide the node selection
strategy.

Our extensive experiments, both on synthetic and real-world datasets, have demon-
strated the superiority of SmartCore in comparison to prevailing state-of-the-art methods.
Not only does SmartCore consistently achieve a smaller accumulated 2-core size, but it
also showcases impressive computational efficiency, as evidenced by its faster running
times on several datasets. The use of a virtual node to capture graph-level features notably
enhanced the algorithm’s representation capabilities. Meanwhile, the transition from a
traditional Q-learning approach to Double DQN in the decoder phase further optimized
the decision-making process, leading to more effective node removals.

Looking ahead, the success of SmartCore sets a promising precedent for leveraging
the power of graph neural networks and advanced reinforcement learning techniques in
network dismantling and other related optimization tasks. In future research, we plan to
explore how SmartCore’s approach can be adapted to address diverse graph-based chal-
lenges. This includes investigating its application in dynamic network scenarios and ex-
ploring additional graph-level features to enhance performance.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, resources,
data curation, writing, T.P.; original draft preparation and writing, review, and editing, T.P., L.Z.
and C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

Figure 5. Comparative results of the accumulated 2-core size curves across real-world networks (a–d).
The horizontal axis is the fraction of the removed nodes, and the vertical axis is the remaining
2-core size.

6. Conclusions

In this study, we introduced SmartCore, an innovative algorithm that combines graph
representation learning with reinforcement learning to tackle the network dismantling
problem by minimizing the accumulated 2-core size. Through a sophisticated encoder–
decoder architecture, SmartCore efficiently maps graph structures to dense vectors using
GraphSAGE, and subsequently employs Double DQN to guide the node selection strategy.

Our extensive experiments, both on synthetic and real-world datasets, have demon-
strated the superiority of SmartCore in comparison to prevailing state-of-the-art methods.
Not only does SmartCore consistently achieve a smaller accumulated 2-core size, but it
also showcases impressive computational efficiency, as evidenced by its faster running
times on several datasets. The use of a virtual node to capture graph-level features notably
enhanced the algorithm’s representation capabilities. Meanwhile, the transition from a
traditional Q-learning approach to Double DQN in the decoder phase further optimized
the decision-making process, leading to more effective node removals.

Looking ahead, the success of SmartCore sets a promising precedent for leveraging
the power of graph neural networks and advanced reinforcement learning techniques in
network dismantling and other related optimization tasks. In future research, we plan
to explore how SmartCore’s approach can be adapted to address diverse graph-based

Mathematics 2024, 12, 1215 11 of 12

challenges. This includes investigating its application in dynamic network scenarios and
exploring additional graph-level features to enhance performance.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, resources,
data curation, writing, T.P.; original draft preparation and writing, review, and editing, T.P., L.Z. and
C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [CrossRef]
2. Yang, Y.; Nishikawa, T.; Motter, A.E. Small vulnerable sets determine large network cascades in power grids. Science 2017,

358, eaan3184. [CrossRef]
3. Fan, C.; Xiao, K.; Xiu, B.; Lv, G. A fuzzy clustering algorithm to detect criminals without prior information. In Proceedings of the

2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), IEEE, Beijing,
China, 17–20 August 2014.

4. Pastor-Satorras, R.; Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001, 86, 3200. [CrossRef] [PubMed]
5. Frank, H.; Frisch, I. Analysis and design of survivable networks. IEEE Trans. Commun. Technol. 1970, 18, 501–519. [CrossRef]
6. Bauer, D.; Boesch, F.; Suffel, C.; Tindell, R. Connectivity extremal problems and the design of reliable probabilistic networks.

Theory Appl. Graphs 1981, 89–98.
7. Harary, F. Conditional connectivity. Networks 1983, 13, 347–357. [CrossRef]
8. Wu, J.; Barahona, M.; Tan, Y.J.; Deng, H.Z. Spectral measure of structural robustness in complex networks. IEEE Trans. Syst. Man

Cybern. Part A Syst. Hum. 2011, 41, 1244–1252. [CrossRef]
9. Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F. K-core organization of complex networks. Phys. Rev. Lett. 2006, 96, 040601.

[CrossRef]
10. Cohen, R.; Havlin, S. Complex Networks: Structure, Robustness and Function; Cambridge University Press: Cambridge, UK, 2010.
11. Zdeborová, L.; Zhang, P.; Zhou, H.J. Fast and simple decycling and dismantling of networks. Sci. Rep. 2016, 6, 37954. [CrossRef]
12. Fomin, F.V.; Gaspers, S.; Pyatkin, A.V.; Razgon, I. On the Minimum Feedback Vertex Set Problem: Exact and Enumeration

Algorithms. Algorithmica 2008, 52, 293–307. [CrossRef]
13. Mugisha, S.; Zhou, H. Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 2016, 94, 012305.

[CrossRef]
14. Addis, B.; Di Summa, M.; Grosso, A. Identifying critical nodes in undirected graphs: Complexity results and polynomial

algorithms for the case of bounded treewidth. Discret. Appl. Math. 2013, 161, 2349–2360. [CrossRef]
15. Arulselvan, A.; Commander, C.W.; Elefteriadou, L.; Pardalos, P.M. Detecting critical nodes in sparse graphs. Comput. Oper. Res.

2009, 36, 2193–2200. [CrossRef]
16. Li, H.; Shang, Q.; Deng, Y. A generalized gravity model for influential spreaders identification in complex networks. Chaos

Solitons Fractals 2021, 143, 110456. [CrossRef]
17. Walteros, J.L.; Veremyev, A.; Pardalos, P.M.; Pasiliao, E.L. Detecting critical node structures on graphs: A mathematical program-

ming approach. Networks 2019, 73, 48–88. [CrossRef]
18. Deng, Y.; Wu, J.; Tan, Y.J. Optimal attack strategy of complex networks based on tabu search. Phys. A Stat. Mech. Its Appl. 2016,

442, 74–81. [CrossRef]
19. Lozano, M.; Garcia-Martinez, C.; Rodriguez, F.J.; Trujillo, H.M. Optimizing network attacks by artificial bee colony. Inf. Sci. 2017,

377, 30–50. [CrossRef]
20. Fan, C.; Zeng, L.; Sun, Y.; Liu, Y.Y. Finding key players in complex networks through deep reinforcement learning. Nat. Mach.

Intell. 2020, 2, 317–324. [CrossRef]
21. Zeng, L.; Fan, C.; Chen, C. Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep

Reinforcement Learning Strategy with Structured Reward Shaping. Mathematics 2023, 11, 3690. [CrossRef]
22. Fan, C.; Zeng, L.; Feng, Y.; Cheng, G.; Huang, J.; Liu, Z. A novel learning-based approach for efficient dismantling of networks.

Int. J. Mach. Learn. Cybern. 2020, 11, 2101–2111. [CrossRef]
23. Zhou, H.-J. Cycle-tree guided attack of random K-core: Spin glass model and efficient message-passing algorithm. Sci. China

Phys. Mech. Astron. 2022, 65, 230511. [CrossRef]
24. Zhou, J.; Zhou, H.J. Hierarchical Cycle-Tree Packing Model for Optimal K-Core Attack. J. Stat. Phys. 2023, 190, 200. [CrossRef]

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1126/science.aan3184
https://doi.org/10.1103/PhysRevLett.86.3200
https://www.ncbi.nlm.nih.gov/pubmed/11290142
https://doi.org/10.1109/TCOM.1970.1090419
https://doi.org/10.1002/net.3230130303
https://doi.org/10.1109/TSMCA.2011.2116117
https://doi.org/10.1103/PhysRevLett.96.040601
https://doi.org/10.1038/srep37954
https://doi.org/10.1007/s00453-007-9152-0
https://doi.org/10.1103/PhysRevE.94.012305
https://doi.org/10.1016/j.dam.2013.03.021
https://doi.org/10.1016/j.cor.2008.08.016
https://doi.org/10.1016/j.chaos.2020.110456
https://doi.org/10.1002/net.21834
https://doi.org/10.1016/j.physa.2015.08.043
https://doi.org/10.1016/j.ins.2016.10.014
https://doi.org/10.1038/s42256-020-0177-2
https://doi.org/10.3390/math11173690
https://doi.org/10.1007/s13042-020-01104-8
https://doi.org/10.1007/s11433-021-1845-6
https://doi.org/10.1007/s10955-023-03210-7

Mathematics 2024, 12, 1215 12 of 12

25. Schneider, C.M.; Moreira, A.A.; Andrade, J.S., Jr.; Havlin, S.; Herrmann, H.J. Mitigation of malicious attacks on networks. Proc.
Natl. Acad. Sci. USA 2011, 108, 3838–3841. [CrossRef] [PubMed]

26. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

28. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

29. Hasselt, H. Double Q-learning. In Advances in Neural Information Processing Systems; Neural Information Processing Systems
Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2010; Volume 23.

30. Hooshmand, F.; Mirarabrazi, F.; MirHassani, S.A. Efficient Benders Decomposition for Distance–Based Critical Node Detection
Problem. Omega 2020, 93, 102037. [CrossRef]

31. Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E. A Model of Internet Topology Using K –Shell Decomposition. Proc. Natl.
Acad. Sci. USA 2007, 104, 11150–11154. [CrossRef] [PubMed]

32. Bavelas, A. Communication Patterns in Task-Oriented Groups. J. Acoust. Soc. Am. 1950, 22, 725–730. [CrossRef]
33. Wandelt, S.; Sun, X.; Feng, D.; Zanin, M.; Havlin, S. A Comparative Analysis of Approaches to Network–Dismantling. Sci. Rep.

2018, 8, 13513. [CrossRef]
34. Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature 2015, 524, 65–68.

[CrossRef]
35. Braunstein, A.; Dall’Asta, L.; Semerjian, G.; Zdeborová, L. Network Dismantling. Proc. Natl. Acad. Sci. USA 2016, 113, 12368–12373.

[CrossRef] [PubMed]
36. Ren, X.; Gleinig, N.; Helbing, D.; Antulov–Fantulin, N. Generalized network dismantling. Proc. Natl. Acad. Sci. USA 2018, 116,

6554–6559. [CrossRef] [PubMed]
37. Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network Dataset Collection; SNAP: Santa Monica, CA, USA, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1073/pnas.1009440108
https://www.ncbi.nlm.nih.gov/pubmed/21368159
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1016/j.omega.2019.02.006
https://doi.org/10.1073/pnas.0701175104
https://www.ncbi.nlm.nih.gov/pubmed/17586683
https://doi.org/10.1121/1.1906679
https://doi.org/10.1038/s41598-018-31902-8
https://doi.org/10.1038/nature14604
https://doi.org/10.1073/pnas.1605083113
https://www.ncbi.nlm.nih.gov/pubmed/27791075
https://doi.org/10.1073/pnas.1806108116
https://www.ncbi.nlm.nih.gov/pubmed/30877241

	Introduction
	Related Works
	Preliminaries
	K-Core
	Accumulated 2-Core Size
	Graph Neural Network
	Reinforcement Learning

	SmartCore Model
	Architecture of SmartCore
	Training Algorithms
	Computational Complexity Analysis

	Experiments
	Baselines
	Datasets
	Training Details
	Results

	Conclusions
	References

