
Citation: Yang, W.; Li, Z.; Zheng, C.;

Zhang, Z.; Zhang, L.; Tang, Q.

Multi-Objective Optimization for a

Partial Disassembly Line Balancing

Problem Considering Profit and

Carbon Emission. Mathematics 2024,

12, 1218. https://doi.org/10.3390/

math12081218

Academic Editor: Ioannis G. Tsoulos

Received: 7 March 2024

Revised: 15 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Objective Optimization for a Partial Disassembly Line
Balancing Problem Considering Profit and Carbon Emission
Wanlin Yang 1,2, Zixiang Li 1,2,* , Chenyu Zheng 1,2, Zikai Zhang 1,3, Liping Zhang 1,3 and Qiuhua Tang 1,3

1 Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education,
Wuhan University of Science and Technology, Wuhan 430081, China; yangwanlin1129@163.com (W.Y.);
z173570209@163.com (C.Z.); zhangzikai@wust.edu.cn (Z.Z.); zhangliping@wust.edu.cn (L.Z.);
tangqiuhua@wust.edu.cn (Q.T.)

2 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,
Wuhan University of Science and Technology, Wuhan 430081, China

3 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
* Correspondence: lizixiang@wust.edu.cn

Abstract: Disassembly lines are widely utilized to disassemble end-of-life products. Most of the
research focuses on the complete disassembly of obsolete products. However, there is a lack of
studies on profit and on carbon emission saved. Hence, this study considers the multi-objective
partial disassembly line balancing problem with AND/OR precedence relations to optimize profit,
saved carbon emission and line balance simultaneously. Firstly, a multi-objective mixed-integer
programming model is formulated, which could optimally solve the small number of instances
with a single objective. Meanwhile, an improved multi-objective artificial bee colony algorithm
is developed to generate a set of high-quality Pareto solutions. This algorithm utilizes two-layer
encoding of the task permutation vector and the number of selected parts, and develops two-phase
decoding to handle the precedence relation constraint and cycle time constraint. In addition, the
modified employed bee phase utilizes the neighborhood operation, and the onlooker phase utilizes
the crossover operator to achieve a diverse population. The modified scout phase selects a solution
from the Pareto front to replace the abandoned individual to obtain a new high-quality solution. To
test the performance of the proposed algorithm, the algorithm is compared with the multi-objective
simulated annealing algorithm, the original multi-objective artificial bee colony algorithm and the
well-known fast non-dominated genetic algorithm. The comparative study demonstrates that the
proposed improvements enhance the performance of the method presented, and the proposed
methodology outperforms all the compared algorithms.

Keywords: disassembly line balancing; partial disassembly line; carbon emission; integer
programming; artificial bee colony algorithm; multi-objective optimization

MSC: 90C11; 90C27; 90C29

1. Introduction

In recent years, many products have become obsolete due to their shorter lifecycle
and rapid technological development [1,2]. These obsolete products might contain many
hazardous substances, recyclable parts and recyclable raw materials. If not handled prop-
erly, these obsolete products will harm the environment and cause a waste of resources.
However, today’s society faces increasingly severe environmental pollution and resource
shortages. Therefore, implementing recycling and remanufacturing of obsolete products
to save resources and effectively reduce environmental hazards is an important measure
towards establishing an ecological civilization and green development. As the important
part in the recycling and remanufacturing process, disassembly systematically separates
and selects high-value parts and components from waste products. To disassemble obsolete

Mathematics 2024, 12, 1218. https://doi.org/10.3390/math12081218 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081218
https://doi.org/10.3390/math12081218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8570-8862
https://doi.org/10.3390/math12081218
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081218?type=check_update&version=2

Mathematics 2024, 12, 1218 2 of 19

products effectively, disassembly lines have been widely utilized. Nevertheless, disassem-
bly lines might not be effective due to improper assignment of tasks to stations. Hence,
the disassembly line balancing problem (DLBP) has drawn increasing attention from the
business and academic communities.

In the complete disassembly of obsolete products, the number of stations, parts de-
mand, disassembly cost, idle time equilibrium index, hazard degree and smoothing rate
are taken as the main objectives [3–10]. These studies ignore the carbon emission generated
in the operation, whereas excess carbon emission is an important factor contributing to
the global temperature rise. Reducing carbon emission is crucial in achieving the Paris
Agreement’s goal of limiting global temperature increase to 2 ◦C or less, and ideally to
1.5 ◦C [11]. Therefore, taking carbon emission into consideration in the disassembly line is
of practical significance.

In the process of disassembly, a product can be selectively disassembled. Namely,
only the harmful and valuable parts need to be disassembled, and this type of disassembly
line is referred to as a partial disassembly line [12]. Compared with the complete disas-
sembly line, the partial disassembly line has major applications in industry. For instance,
Wang, et al. [13] considered the uncertainty factors such as corrosion and deformation of
scrap parts. A multi-objective disassembly line equilibrium model was then established to
consider the partial destruction mode on a U-shape line. Liang, et al. [14] constructed a
mixed-integer nonlinear programming model and developed a genetic algorithm and a
tabu search algorithm to address the multi-parallel partial DLBP. Therefore, it is of practical
significance to take partial disassembly lines into account in industrial practice.

For the above reasons, this study investigates the partial disassembly line balancing
problem, taking into account profit and carbon emission, using an improved multi-objective
artificial bee colony algorithm (IMOABC) to maximize the profit and saved carbon emission.
Compared with existing studies, this paper differs from the literature in problem setting and
optimization methodology. For instance, this paper differs from Li and Janardhanan [15] in
both problem setting and methodology. This study considers the multi-objective partial
DLBP with three objectives, whereas Li and Janardhanan [15] consider the U-shaped partial
DLBP with only one objective. In addition, this study develops a Pareto algorithm which
could obtain a set of Pareto solutions, whereas Li and Janardhanan [15] develop a one-
objective algorithm. Meanwhile, compared with the multi-objective artificial bee colony
algorithms in published papers, the proposed IMOABC also has some distinguishing
features. For instance, compared with the multi-objective artificial bee colony algorithm
in Saif, et al. [16], the proposed method advances two main modifications: (1) a new
encoding and decoding scheme has been developed for this new problem, and (2) a new
modified scout phase selects a solution from the Pareto front to replace the abandoned
individual so as to obtain a new high-quality solution. In summary, this paper makes the
following contributions: (1) A multi-objective partial disassembly line balancing model
is established for optimizing profit, saved carbon emission and line balance. (2) In this
paper, both AND and OR predecessors are considered, and the model can address the
DLBP with only AND predecessors as well as the DLBP with AND predecessors and OR
predecessors. (3) This paper develops a two-layer encoding of the task permutation vector
and the number of selected parts, and an IMOABC is utilized and improved to achieve
Pareto solutions. This algorithm proposes the following improvements: (1) in the employed
bee phase, the neighborhood operation is utilized to obtain a new population to expand
the search space of the algorithm; and (2) the algorithm records all the non-dominated
solutions in the Pareto front and then replaces the obsolete individuals with the solutions
in the Pareto front in order to improve the quality of the scout bees. Here, the Pareto front
stores all the Pareto solutions in the search process.

The rest of the paper is organized as follows. Section 2 provides the literature review.
Section 3 describes the problem under consideration and its mathematical formulation.
Section 4 describes the developed algorithm along with the detailed encoding and decoding

Mathematics 2024, 12, 1218 3 of 19

process. Section 5 gives the computational results and a comparative study. Finally,
Section 6 concludes this study, and provides future research directions.

2. Literature Review

The literature review consists of two parts: studies on a partial DLBP and studies on a
DLBP considering carbon emission.

In practice, partial disassembly is usually carried out to obtain valuable components
in order to achieve the goal of maximizing profit. Altekin, et al. [17] first defined and
solved the profit-oriented partial DLBP, where different types of precedence relations in
disassembly are considered and the mixed-integer programming formulation is developed.
Ren, Yu, Zhang, Tian, Meng and Zhou [12] formulated a model for the profit-oriented
partial DLBP to maximize profit. Bentaha, et al. [18] investigated a profit-oriented partial
DLBP for hazardous parts and uncertain task processing time. Wang, et al. [19] developed a
model for a stochastic partial DLBP that takes into consideration uncertainty, environmental
protection and economic benefits. The model evaluates the number of stations, workload
smoothness, energy consumption and disassembly profit. Wang, et al. [20] proposed a
model for balancing a partially destructive disassembly line. This model aims to optimize
the number of stations, the smoothness index, energy consumption and disassembly profit.
Zhu, et al. [21] developed a multi-objective mathematical model for the partially parallel
DLBP. Their study considered four optimization objectives: minimizing cycle time, mini-
mizing the number of stations, minimizing the idleness index and minimizing disassembly
resources. Li and Janardhanan [15] recently improved a new discrete cuckoo search algo-
rithm to solve the profit-oriented U-shaped partial DLBP. Zhang, et al. [22] formulated
a mixed-integer linear programming model to optimize three objectives: weighted line
length, additional profit and hazard evaluation. Two constraint programming models were
developed with different methodologies to achieve efficient solutions. Wang, Xi, Guo, Liu,
Qin and Han [10] considered the requirement of multi-skilled workers and established a
mathematical model to maximize the recovery profit.

The above papers neglect the carbon emission generated during the disassembly
process, but on many occasions carbon emission cannot be neglected and it should be
treated seriously to reduce environmental hazards. Igarashi, et al. [23] stated that higher
CO2 savings and lower part selection costs should be pursued during product disassembly.
They proposed a multi-objective optimization model to reduce disassembly costs and
increase CO2 savings through environmental and economic part selection. Zhang, et al. [24]
stated that if we do not consider carbon emission generated by factories during product
disassembly, a lot of wasted resources will be generated. Therefore, a new multi-objective
optimization model was proposed for the disassembly line, with the shortest disassem-
bly time and the lowest carbon emission. Yang, et al. [25] concluded that there are more
studies on disassembly line balance optimization in terms of both economic efficiency
and disassembly time. However, less attention was paid to low carbon emission. There-
fore, they proposed a multi-objective Drosophila optimization algorithm for optimizing
the disassembly sequence of obsolete agricultural machinery with respect to low carbon.
Cui, et al. [26] designed a linear mathematical programming model with profit maximiza-
tion as the optimization objective. In addition, carbon savings act as a constraint to achieve
environmental protection. Therefore, considering carbon emission in the disassembly line
is of practical significance.

From the above literature review, it can be seen that there is a lack of research consider-
ing profit and carbon emission at the same time. Meanwhile, studies on the multi-objective
artificial bee colony algorithm in DLBP are limited. Hence, this study contributes two
aspects of research on DLBP: (1) a relatively new problem formulated with a multi-objective
model; and (2) an improved multi-objective artificial bee colony algorithm.

Mathematics 2024, 12, 1218 4 of 19

3. Problem Description and Formulation

This section first provides the problem description and later formulates the problem
being studied.

3.1. Problem Description

In the disassembly line, end-of-life products are disassembled into components on
stations. Each station of the disassembly line has one employee or industrial robot to
complete the disassembly tasks and collect the recycled components. Meanwhile, each
station is equipped with a storage device to store the output (parts of the end-of-life
products) of the disassembly line. Disassembly lines are the best option for disassembling
complex products with many parts where employees can complete the tasks with simple
training. Disassembly lines have higher efficiency, and, hence, they are increasingly applied
in industry due to the growing number of end-of-life electromechanical products.

To improve the performance of the disassembly line, the DLBP is studied to determine
the best assignment of tasks. The DLBP differs from the assembly line balancing problem
(ALBP) in precedence relations, where the precedence relations in DLBP are much more
complex. ALBP has only AND precedence relations, whereas DLBP has AND precedence
relations, OR precedence relations and complex AND/OR precedence relations [27]. The
predecessors in AND precedence relations are called AND predecessors, and the predeces-
sors in OR precedence relations are called OR predecessors. A part could be disassembled
only when (1) all of its AND predecessors have been disassembled, and (2) at least one of
its OR predecessors is completed.

In the disassembly line, the parts of the obsolete product are divided into stations
where they can reasonably be disassembled at each station under the cycle time constraint
and precedence relation constraint. Figure 1 illustrates the precedence diagram for one
instance with 10 real tasks/parts and one dummy task/part (A1). The dummy part
A1 is utilized to transfer the complex AND/OR precedence relations into the simple
AND precedence relations and OR precedence relations. Hence, real parts take time to
disassemble, whereas dummy parts do not consume time. The disassembly times for part
1 to part 10 are 14, 10, 12, 18, 23, 16, 20, 36, 14 and 10, respectively. In this figure, the
numbers within the cycle denote the parts/tasks, and the arrow between tasks denotes the
precedence relations. If the parts are linked by an arc, there are OR precedence relations;
otherwise, there are AND precedence relations. For instance, part 2 and part 3 are the OR
predecessors of the dummy part A1, and part A1 can be operated when either part 2 or
part 3 is removed. Part 7 is the AND predecessor of part 5 and part 6, and part 5 and part 6
can be operated only when part 7 has been removed.

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 21

3. Problem Description and Formulation

This section first provides the problem description and later formulates the problem

being studied.

3.1. Problem Description

In the disassembly line, end-of-life products are disassembled into components on

stations. Each station of the disassembly line has one employee or industrial robot to com-

plete the disassembly tasks and collect the recycled components. Meanwhile, each station

is equipped with a storage device to store the output (parts of the end-of-life products) of

the disassembly line. Disassembly lines are the best option for disassembling complex

products with many parts where employees can complete the tasks with simple training.

Disassembly lines have higher efficiency, and, hence, they are increasingly applied in in-

dustry due to the growing number of end-of-life electromechanical products.

To improve the performance of the disassembly line, the DLBP is studied to deter-

mine the best assignment of tasks. The DLBP differs from the assembly line balancing

problem (ALBP) in precedence relations, where the precedence relations in DLBP are

much more complex. ALBP has only AND precedence relations, whereas DLBP has AND

precedence relations, OR precedence relations and complex AND/OR precedence rela-

tions [27]. The predecessors in AND precedence relations are called AND predecessors,

and the predecessors in OR precedence relations are called OR predecessors. A part could

be disassembled only when (1) all of its AND predecessors have been disassembled, and

(2) at least one of its OR predecessors is completed.

In the disassembly line, the parts of the obsolete product are divided into stations

where they can reasonably be disassembled at each station under the cycle time constraint

and precedence relation constraint. Figure 1 illustrates the precedence diagram for one

instance with 10 real tasks/parts and one dummy task/part (A1). The dummy part A1 is

utilized to transfer the complex AND/OR precedence relations into the simple AND prec-

edence relations and OR precedence relations. Hence, real parts take time to disassemble,

whereas dummy parts do not consume time. The disassembly times for part 1 to part 10

are 14, 10, 12, 18, 23, 16, 20, 36, 14 and 10, respectively. In this figure, the numbers within

the cycle denote the parts/tasks, and the arrow between tasks denotes the precedence re-

lations. If the parts are linked by an arc, there are OR precedence relations; otherwise,

there are AND precedence relations. For instance, part 2 and part 3 are the OR predeces-

sors of the dummy part A1, and part A1 can be operated when either part 2 or part 3 is

removed. Part 7 is the AND predecessor of part 5 and part 6, and part 5 and part 6 can be

operated only when part 7 has been removed.

Figure 1. Precedence diagram of one instance.

Figure 2 illustrates optimal task assignment on the disassembly line to minimize the

number of stations with a cycle time of 36 units. In the DLBP, there are two constraints

that need to be considered: precedence relation constraint and cycle time constraint. The

precedence relation constraint requires that (1) all AND predecessors of a task must be

completed before this task, and (2) at least one OR predecessor must be completed before

this task. For instance, part 8 is a predecessor of part 7, and, hence, part 8 must be removed

3

2

10

8

9

1

A1

4

6

5

7

Figure 1. Precedence diagram of one instance.

Figure 2 illustrates optimal task assignment on the disassembly line to minimize the
number of stations with a cycle time of 36 units. In the DLBP, there are two constraints
that need to be considered: precedence relation constraint and cycle time constraint. The
precedence relation constraint requires that (1) all AND predecessors of a task must be
completed before this task, and (2) at least one OR predecessor must be completed before
this task. For instance, part 8 is a predecessor of part 7, and, hence, part 8 must be removed
before part 7. The cycle time constraint requires that the sum of operation time of tasks on

Mathematics 2024, 12, 1218 5 of 19

each station is less than or equal to the cycle time. For instance, the sum of operation time
of tasks on station 1 is 10 + 14 + 10 = 34, which is less than the given cycle time.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 21

before part 7. The cycle time constraint requires that the sum of operation time of tasks on

each station is less than or equal to the cycle time. For instance, the sum of operation time

of tasks on station 1 is 10 + 14 + 10 = 34, which is less than the given cycle time.

Figure 2. Task assignments on the disassembly line.

The input to an assembly line is the components, and the output is the final complete

product. In contrast, the input to a disassembly line is an end-of-life product, and the out-

put is the removed components. As the components of an end-of-life product might have

different recycling values, it is necessary to select the valuable components to maximize

profit. Hence, in many cases, the industry only disassembles the valuable components for

remanufacturing or reuse [15]. At the same time, as the world pays more a�ention to the

environment, it is also important to study the potential for reduced greenhouse gas emis-

sion by reusing parts or components of obsolete products. Nevertheless, the disassembly

process also causes unavoidable greenhouse gas emission, and, hence, selecting parts that

are beneficial for reducing greenhouse gas emission is necessary. Therefore, this study

considers the partial DLBP to optimize profit, saved carbon emission and line balance.

3.2. Model Formulation

Before model formulation, there are several basic assumptions, as follows: (1) only

one type of product is disassembled in this line; (2) each task could be completed within

the cycle time; (3) the total operation time of tasks on one station should be equal to or less

than the cycle time; (4) setup time is ignored; (5) the cost of disposing of the discarded

parts is negligible. The symbols and decision variables of the model are introduced in

Table 1 for clarification.

Table 1. Symbols and decision variables of the model.

Index:

i, j Part/task index; i, j = 1, 2, …, N, where N is the number of the parts/tasks;

m, n Station index; m, n = 1, 2, …, M, where M is the number of allowed opened stations;

�� Recycling value of part i;

�� Cost of performing part i;

�� Operation time of part i;

ANDP(i) Set of AND predecessors of task i;

ORP(i) Set of OR predecessors of task i;

ORPT Set of tasks which have OR predecessors;

C Cost of running a station per unit time;

F Fixed start-up cost of each station;

���� Saved greenhouse gas for disassembling part i and recycling part i;

����� Saved greenhouse gas for recycling part i;

����� Generated greenhouse gas for disassembling part i;

CT Cycle time;

Decision variables

�� 1, if task i is performed; 0, otherwise;

��� 1, if task i is allocated to the mth station; 0, otherwise;

�� 1, if the mth station is open; 0, otherwise;

��� Total time of station m;

92 10 8 7 1 6 4 5 3

Station1 Station2 Station3 Station4 Station5

Figure 2. Task assignments on the disassembly line.

The input to an assembly line is the components, and the output is the final complete
product. In contrast, the input to a disassembly line is an end-of-life product, and the output
is the removed components. As the components of an end-of-life product might have
different recycling values, it is necessary to select the valuable components to maximize
profit. Hence, in many cases, the industry only disassembles the valuable components for
remanufacturing or reuse [15]. At the same time, as the world pays more attention to the
environment, it is also important to study the potential for reduced greenhouse gas emission
by reusing parts or components of obsolete products. Nevertheless, the disassembly
process also causes unavoidable greenhouse gas emission, and, hence, selecting parts that
are beneficial for reducing greenhouse gas emission is necessary. Therefore, this study
considers the partial DLBP to optimize profit, saved carbon emission and line balance.

3.2. Model Formulation

Before model formulation, there are several basic assumptions, as follows: (1) only
one type of product is disassembled in this line; (2) each task could be completed within
the cycle time; (3) the total operation time of tasks on one station should be equal to or less
than the cycle time; (4) setup time is ignored; (5) the cost of disposing of the discarded parts
is negligible. The symbols and decision variables of the model are introduced in Table 1
for clarification.

Table 1. Symbols and decision variables of the model.

Index:

i, j Part/task index; i, j = 1, 2, . . ., N, where N is the number of the parts/tasks;
m, n Station index; m, n = 1, 2, . . ., M, where M is the number of allowed opened stations;
Ri Recycling value of part i;
ci Cost of performing part i;
ti Operation time of part i;
ANDP(i) Set of AND predecessors of task i;
ORP(i) Set of OR predecessors of task i;
ORPT Set of tasks which have OR predecessors;
C Cost of running a station per unit time;
F Fixed start-up cost of each station;
CHGi Saved greenhouse gas for disassembling part i and recycling part i;
CHGsi Saved greenhouse gas for recycling part i;
CHGpi Generated greenhouse gas for disassembling part i;
CT Cycle time;

Decision variables

xi 1, if task i is performed; 0, otherwise;
yim 1, if task i is allocated to the mth station; 0, otherwise;
zm 1, if the mth station is open; 0, otherwise;
STm Total time of station m;

On the basis of the above symbols and decision variables, the multi-objective model
is constructed with expressions (1)–(10) for the partial DLBP under consideration. The
objective in expression (1) maximizes the total profit, which is the total recovered value of

Mathematics 2024, 12, 1218 6 of 19

the removed part (the first term)—the total cost of removing parts (the second term)—the
operating cost of the stations used (the third term)—start-up cost of the stations utilized (the
fourth term). The objective in expression (2) maximizes the amount of saved carbon emis-
sion, and the objective in expression (3) optimizes the line balance of the disassembly line.

Constraint (4) requires that the total time of a station cannot be larger than the cycle
time. If at least one task is assigned to a station, this station must be opened. Constraint (5)
indicates that if one part is removed, this part must be removed on a station. Constraint (6)
deals with the AND precedence relation constraint, indicating that a task could be assigned
to the mth station only when all of its AND predecessors have been assigned to one station
within station 1 to station m. Constraint (7) deals with the OR precedence relation constraint,
indicating that a task can be assigned to the mth station only when at least one of its OR
predecessors has been assigned to one station within station 1 to station m. Constraint (8)
calculates the saved carbon emission for disassembling part i and recycling part i, which is
the saved greenhouse gas for recycling part i (the first term)—generated greenhouse gas
for disassembling part i (the second term). Constraint (9) calculates the completion time of
each station. Constraint (10) restricts the values of decision variables.

MaxF1 =
N

∑
i=1

Ri·Xi −
N

∑
i=1

M

∑
m=1

ci·yim − C·
M

∑
m=1

zm·CT − F·
M

∑
m=1

zm (1)

MaxF2 =
N

∑
i=1

CHGi (2)

MinF3 =
M

∑
m=1

zm·(CT − STm)
2 (3)

N

∑
i=1

ti·yim ≤ zm·CT, ∀m ≤ M (4)

xi =
M

∑
m=1

yim, ∀i (5)

yim ≤
m

∑
n=1

yjn ∀m, i, and j ∈ ANDP(i) (6)

yim ≤ ∑
j∈ORP(i)

m

∑
n=1

yjn ∀m, i ∈ ORPT (7)

CHGi = CHGsi − CHGpi (8)

N

∑
i=1

tiyim = STm∀m (9)

xi, yim, zm ∈ {0, 1}∀i, m (10)

For the above-formulated model, objective (1) and objective (2) are linear objectives,
objective (3) is a nonlinear objective, and all the constraints are linear constraints. Hence,
the CPLEX solver could be utilized to optimize objective (1) or objective (2) only, and
the mixed-integer nonlinear programming (MINLP) solver could be utilized to optimize
objective (3).

4. Multi-Objective Artificial Bee Colony Algorithm

An artificial bee colony algorithm (ABC) is a swarm intelligence algorithm that sim-
ulates the honey-harvesting behavior of bees. The algorithm has been widely used in
scheduling to find near-optimal solutions and has demonstrated excellent performance [28].
In the original multi-objective artificial bee colony algorithm (MOABC), the global search

Mathematics 2024, 12, 1218 7 of 19

ability is achieved by replacing individuals that fall into the local optimum with randomly
generated individuals. However, the randomly generated individuals are usually of poor
quality and are commonly dominated by incumbent individuals, leading to the poor per-
formance of the algorithm. Therefore, this paper proposes an IMOABC to improve the
algorithm’s global and local search ability. The IMOABC adopts two improvements: (1) In
the employed bee phase, a neighborhood operation is used to obtain new employed bees
to expand the search space of the algorithm. (2) All non-dominated solutions in the Pareto
frontier are recorded by this algorithm and replace the obsolete individuals to improve the
quality of scout bees.

4.1. Artificial Bee Colony Algorithm

In solving one optimization problem using an artificial bee colony algorithm, each
solution is a nectar source, and the solution’s performance represents the amount of nectar.
In a bee colony, there are three types of bees: employed bees, onlooker bees and scout
bees. Employed bees explore the nectar source and pass the information about the nectar
source to the onlooker bees; onlooker bees choose to explore the source based on the
information passed by the employed bees. When the employed bees and the onlooker bees
cannot continuously improve the population, one of the employed bees transforms into
a scout bee, which randomly searches for nectar sources to ensure the variability of the
population [6,29].

Algorithm 1 illustrates the main procedure of the ABC, where Pop_size is the popu-
lation size. Specifically, with the algorithm’s parameters and instance data as input, this
algorithm starts with initializing the swam randomly. Afterwards, the algorithm sequen-
tially executes the employed bee phase, the onlooker bee phase, and the scout bee phase to
evolve until the algorithm termination conditions are met. In the employed bee phase, a
neighborhood operation is used to generate a new neighborhood solution for each individ-
ual, and the current solution is replaced when the neighborhood solution performs better.
In the onlooker bee phase, a solution is selected based on roulette wheel selection. Then,
the neighborhood operation is used to generate a new neighborhood solution, and the
current solution is replaced when the neighborhood solution performs better. In the scout
bee phase, when a solution has not been improved in limited consecutive iterations, a new
solution is randomly generated and replaces the current solution. Hence, ABC generates
new neighborhood solutions for exploitation through neighborhood operation in the em-
ployed bee phase and the onlooker bee phase and emphasizes the exploration by replacing
the current solution with a randomly generated new solution in the scout bee phase.

Algorithm 1: Procedure of artificial bee colony algorithm

Input: Algorithm parameters and instance data

Step 1
% Initializing the swam
Generate a population with a Pop_size number of individuals randomly;

Step 2

% Employed bee phase
For p:=1 to Pop_size do
Generate a new neighborhood solution of individual p with neighborhood operation;
Replace current solution when the neighborhood solution performs better;
Endfor

Step 3:

% Onlooker bee phase
For p:=1 to Pop_size do
Select one solution based on roulette wheel selection;
Generate a new neighborhood solution with neighborhood operation;
Replace the current solution when the neighborhood solution performs better;
Endfor

Step 4:
% Scout bee phase
Select one individual that has not been improved in limited consecutive iterations;
If exists, replace this individual with a new solution generated randomly;

Step 5: Iteratively execute Step 2, Step 3 and Step 4 until the termination condition is reached
Output: Best solution

Mathematics 2024, 12, 1218 8 of 19

4.2. Encoding and Decoding

This paper adopts a two-layer encoding of the task permutation vector and number
of selected parts (length). The number of selected parts is a number within [1, N], and it
determines the number of selected parts. The task permutation vector is the permutation
of a set of tasks, and the task in the front position is assigned first. Length determines the
number of selected parts, and the decoding process terminates immediately if the number
of allocated tasks (or selected parts) reaches the length.

Based on the two-layer encoding of the task permutation vector and number of selected
parts (length), a two-phase decoding procedure is developed in this paper to solve the
multi-objective disassembly line balancing problem. The decoding process is divided
into two phases. In Phase I, the task permutation vector is transformed into a feasible
task permutation. The assignable tasks are first added to the set of assignable tasks, and
later one task is selected based on the task permutation vector and added to the feasible
task permutation. This process is repeated until the complete feasible task permutation is
generated. In Phase II, the tasks to be disassembled are first selected based on the number
of selected parts. If the number of selected parts is 3, only the first 3 tasks of the feasible
task permutation are selected in this phase. Then, the tasks to be disassembled are assigned
stations under the cycle time constraint. In other words, Phase I deals with the precedence
relation constraint, and Phase II deals with the cycle time constraint. The main decoding
process is illustrated as follows.

Phase I: Converting the task permutation vector into the feasible task permutation

Step 1: Add the assignable task to the set of assignable tasks (a task is assigned if all AND
predecessors and at least one OR predecessor of the task have been assigned);
Step 2: Select the task that is in the front position of the task permutation vector from the set of
assignable tasks and place it in the sequence of feasible tasks;
Step 3: Repeat steps 1–2 until the complete feasible task permutation is generated;

Phase II: Select the tasks to be disassembled based on the number of selected parts and obtain
detailed task assignments based on cycle time constraint

Step 4: Determine the selected parts based on the number of selected parts (length);
Step 5: Open a new station;
Step 6: Select the first unassigned part in the selected parts;
Step 7: If the part could be completed within the cycle time, assign the part to the current station
and execute Step 8; otherwise, execute Step 5.
Step 8: If all the selected parts have been removed, terminate the decoding process; otherwise,
perform Step 6.

For the instance illustrated in Figure 1, where the task permutation vector in the
encoding is [2, 5, 7, 8, 9, 10, 3, 1, 6, 4] and the number of removed parts in the encod-
ing is 3, Figure 3 illustrates the process of the two-phase decoding process. Since the
task permutation vector may not satisfy the precedence relation constraint, Phase I first
transforms the task permutation vector into the feasible task permutation. Specifically,
following the process of Phase I, the procedure of achieving the first three tasks in the
feasible task permutation is as follows. For the first task, the set of assignable tasks contains
tasks {2, 3}, and task 2 is assigned to the feasible task permutation because of its former
position in the task permutation vector. For the second task, the set of assignable tasks
contains tasks {1, 3, 8, 9, 10}, and task 8 is assigned to the feasible task permutation because
of its former position in the task permutation vector. For the third task, the set of assignable
tasks contains tasks {1, 3, 4, 7, 9, 10}, and task 7 is assigned to the feasible task permutation
because of its former position in the task permutation vector. The above steps are repeated
until a feasible task permutation [2, 8, 7, 5, 9, 10, 3, 1, 6, 4] is formed. In Phase II, since the
number of selected parts is 3, the first 3 tasks in the feasible task permutation are selected
for execution, which are 2, 8 and 7. Subsequently, these selected tasks are assigned to the

Mathematics 2024, 12, 1218 9 of 19

3 stations sequentially while satisfying the cycle time constraint to achieve the final task
assignment scheme.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 21

Phase II: Select the tasks to be disassembled based on the number of selected parts and

obtain detailed task assignments based on cycle time constraint

Step 4: Determine the selected parts based on the number of selected parts (length);

Step 5: Open a new station;

Step 6: Select the first unassigned part in the selected parts;

Step 7: If the part could be completed within the cycle time, assign the part to the current

station and execute Step 8; otherwise, execute Step 5.

Step 8: If all the selected parts have been removed, terminate the decoding process;

otherwise, perform Step 6.

For the instance illustrated in Figure 1, where the task permutation vector in the en-

coding is [2, 5, 7, 8, 9, 10, 3, 1, 6, 4] and the number of removed parts in the encoding is 3,

Figure 3 illustrates the process of the two-phase decoding process. Since the task permu-

tation vector may not satisfy the precedence relation constraint, Phase I first transforms

the task permutation vector into the feasible task permutation. Specifically, following the

process of Phase I, the procedure of achieving the first three tasks in the feasible task per-

mutation is as follows. For the first task, the set of assignable tasks contains tasks {2, 3},

and task 2 is assigned to the feasible task permutation because of its former position in the

task permutation vector. For the second task, the set of assignable tasks contains tasks {1,

3, 8, 9, 10}, and task 8 is assigned to the feasible task permutation because of its former

position in the task permutation vector. For the third task, the set of assignable tasks con-

tains tasks {1, 3, 4, 7, 9, 10}, and task 7 is assigned to the feasible task permutation because

of its former position in the task permutation vector. The above steps are repeated until a

feasible task permutation [2, 8, 7, 5, 9, 10, 3, 1, 6, 4] is formed. In Phase II, since the number

of selected parts is 3, the first 3 tasks in the feasible task permutation are selected for exe-

cution, which are 2, 8 and 7. Subsequently, these selected tasks are assigned to the 3 sta-

tions sequentially while satisfying the cycle time constraint to achieve the final task as-

signment scheme.

Figure 3. Two-phase decoding method.

It should be noted that the task permutation vector in the encoding does not take

account of the precedence relation constraint. Phase I transforms the task permutation

vector into feasible task permutations; that is, Phase I deals with the precedence relation

constraint, and any task permutation vector can be formed into a feasible task permutation

through Phase I. Namely, the two-phase decoding can generate a feasible task allocation

scheme based on the two-layer encoding of the task permutation vector and the number

of selected parts (length). Therefore, there is no need to consider the precedence relation

constraint or worry about avoiding the generation of infeasible solutions during the pro-

posed algorithm’s evolution.

Phase II

Phase I
Task permutation vector 2 5 7 8 9 10 3 1 6 4

2 8 7 5 9 10 3 1 6 4

2 8 7

Station 1 Station 2 Station3

2 8 7

Feasible task permutation

Selected parts

Detailed task assignment

Number of selected parts 3

Figure 3. Two-phase decoding method.

It should be noted that the task permutation vector in the encoding does not take
account of the precedence relation constraint. Phase I transforms the task permutation
vector into feasible task permutations; that is, Phase I deals with the precedence relation
constraint, and any task permutation vector can be formed into a feasible task permutation
through Phase I. Namely, the two-phase decoding can generate a feasible task allocation
scheme based on the two-layer encoding of the task permutation vector and the number of
selected parts (length). Therefore, there is no need to consider the precedence relation con-
straint or worry about avoiding the generation of infeasible solutions during the proposed
algorithm’s evolution.

4.3. Main Procedure of the Proposed Methodology

Random generation is adopted to obtain the differentiated initial population. Sub-
sequently, the IMOABC executes the employed bee phase, the onlooker bee phase and
the scout bee phase sequentially until the algorithm termination condition is satisfied. An
update of the Pareto front is attempted in the population initialization, employed bee phase
and onlooker bee phase. That is, a comparison is made between any of the newly generated
individuals and the solutions in the Pareto front. Supposing that the population is empty
or the new solution is not dominated by any solution in the Pareto set, the new solution is
added to the Pareto front, and the solutions in the Pareto front that are dominated by the
new solution are deleted. The execution process of the employed bee phase, onlooker bee
phase and scout bee phase is described in detail below.

In the employed bee phase, the neighborhood operation is employed to perform a
local search, and a greedy mechanism is also used as an acceptance criterion to determine
whether or not to accept this neighborhood solution. Since the problem is multi-objective,
the algorithm utilizes rank and crowding distance to evaluate the individuals. Here, the
ranks and crowding distances of individuals are achieved based on the fast non-dominated
sorting approach by Deb, et al. [30]. In this case, individuals with lower ranks or with
larger crowding distances and the same rank perform better.

In the onlooker bee phase, the onlooker bees will adopt one specific selection strategy
to choose nectar sources based on the information provided by the employed bees. The
traditional artificial bee colony algorithm usually utilizes the roulette wheel method. In
contrast, in the IMOABC, a binary tournament strategy is used to select an individual.
Namely, an individual with a lower rank or the larger crowding distance with the same
rank is selected. At the same time, the best and non-repeating Pop_size solutions are
selected from the existing solutions and neighborhood solutions to form a new population,
thus retaining the better ones to accelerate the evolution of the population. Specifically,
the algorithm calculates the rank and crowding distance of all individuals based on a fast

Mathematics 2024, 12, 1218 10 of 19

non-dominated sorting approach, and then the Pop_size individuals with lower ranks or
with larger crowding distances and the same rank are selected to form a new population.

In the scout bee phase, the MOABC uses randomly generated solutions to replace the
individuals that do not improve in successive limit iterations. However, the probability of
randomly generating high-quality new solutions in such an ample solution space is low. In
this paper, a Pareto frontier is adopted to store the Pareto frontier solutions found during
the search process, and when a solution does not improve in successive limit iterations, a
randomly selected solution from the Pareto frontier is used to replace the current solution.

The specific algorithmic flow of the IMOABC is as follows (Algorithm 2).

Algorithm 2: Main procedure of the IMOABC

Step 1:

% Initialization of the population
Generate a population with a Pop_size number of individuals randomly based on the
objective functions and constraints in the mathematical model;
Update the Pareto front;

Step 2:

% Employed bee phase
Generate neighborhood solutions for Pop_size individuals based on neighborhood
operation;
Calculate rank and crowding distances, and select individuals with low rank or large
crowding distances with the same rank;
Update the Pareto front;

Step 3:

% Onlooker phase
For any individual,
Select an individual based on a binary tournament;
Select another individual randomly and crossover with the current individual to form
a new individual;
Endfor
Combine the original population with the new population and select the best Pop_size
individuals to form the new population;
Update the Pareto front;

Step 4:
% Scout phase
When a solution does not improve in limited consecutive iterations, randomly select a
solution from the Pareto front to replace the current solution;

Step 5:
Iteratively execute Step 2, Step 3 and Step 4 until the termination condition is reached,
and output the final Pareto frontier solutions.

4.4. Proposed Neighborhood Structures and Crossover Operations

In order to obtain a new diverse population, the IMOABC adopts neighborhood
operation in the employed bee phase and crossover operation in the onlooker bee phase.
The neighborhood operation in the employed bee phase only changes one single individual,
while the crossover operation in the onlooker bee phase combines two individuals to form a
new one. This paper utilizes the crossover operation to combine two individuals to further
expand the search space.

The algorithm adopts the swap and partially mapped crossover operator for the task
permutation vector.

Specifically, the swap operation randomly selects two different positions on the op-
eration sort vector and then exchanges the values of these two positions. The partially
mapped crossover operator combines two parents to generate two offspring. As the par-
tially mapped crossover operator has been widely utilized, a detailed description is omitted
here, and readers can refer to Goldberg and Lingle Jr [31] for a detailed description. Fig-
ure 4 illustrates the swap operation and the partial match crossover operation for the task
permutation vector.

Mathematics 2024, 12, 1218 11 of 19

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 21

Select another individual randomly and crossover with the current individual

to form a new individual;

Endfor

Combine the original population with the new population and select the best

Pop_size individuals to form the new population;

Update the Pareto front;

Step 4:

% Scout phase

When a solution does not improve in limited consecutive iterations, randomly

select a solution from the Pareto front to replace the current solution;

Step 5:
Iteratively execute Step 2, Step 3 and Step 4 until the termination condition is

reached, and output the final Pareto frontier solutions.

4.4. Proposed Neighborhood Structures and Crossover Operations

In order to obtain a new diverse population, the IMOABC adopts neighborhood op-

eration in the employed bee phase and crossover operation in the onlooker bee phase. The

neighborhood operation in the employed bee phase only changes one single individual,

while the crossover operation in the onlooker bee phase combines two individuals to form

a new one. This paper utilizes the crossover operation to combine two individuals to fur-

ther expand the search space.

The algorithm adopts the swap and partially mapped crossover operator for the task

permutation vector.

Specifically, the swap operation randomly selects two different positions on the op-

eration sort vector and then exchanges the values of these two positions. The partially

mapped crossover operator combines two parents to generate two offspring. As the par-

tially mapped crossover operator has been widely utilized, a detailed description is omit-

ted here, and readers can refer to Goldberg and Lingle Jr [31] for a detailed description.

Figure 4 illustrates the swap operation and the partial match crossover operation for the

task permutation vector.

Figure 4. Neighborhood structure and crossover operation for the task permutation vector.

For the number of selected parts, the algorithm adopts a random mutation operation

and simulated binary crossover operator. Specifically, the random mutation operation

randomly generates a positive integer between 1 and N (the number of parts or opera-

tions) and replaces the current number of selected parts with this positive integer. The

simulated binary crossover operator combines two parents to generate two offspring. For

a detailed description, refer to Deb and Agrawal [32].

4 21 5 8 7 6 9 103

2 3 54 96 8 7 1 10

6 3 1 2 5 8 7 4 9 10

1 4 3 5 6 8 27 9 10

Parent1

Parent2

Offspring

Offspring2

6 3 21 5 8 7 4 9 10

6 4 1 2 5 8 7 3 9 10

Swap

Partial
matching
crossover
operation

Swap
operation

Task permuation
vector

Offspring1

Parent

Figure 4. Neighborhood structure and crossover operation for the task permutation vector.

For the number of selected parts, the algorithm adopts a random mutation operation
and simulated binary crossover operator. Specifically, the random mutation operation
randomly generates a positive integer between 1 and N (the number of parts or operations)
and replaces the current number of selected parts with this positive integer. The simulated
binary crossover operator combines two parents to generate two offspring. For a detailed
description, refer to Deb and Agrawal [32].

5. Experimental Results and Analysis

This section tests the performance of the proposed method. Firstly, Section 5.1 de-
scribes the solved instances, the compared algorithms and the evaluation indicators, and
provides the selected parameter combination of each implemented algorithm through
parameter calibration. Subsequently, Section 5.2 evaluates the performance of the proposed
method by comparing it with other multi-objective algorithms. Finally, Section 5.3 provides
a real case study.

5.1. Experimental Design

In order to validate the performance of the proposed IMOABC, based on the cases in
the literature [15], this paper generates a total number of 21 instances. Since each instance
contains a different cycle time, there are a total number of 87 cases. Table 2 illustrates the
number of tasks, cycle time, and the number of cases for each instance. Specifically, for
the problem under consideration, a different cycle time corresponds to different cases. For
example, instance P11 has 2 cases, P11-10 and P11-94, where the number after the dash
denotes the cycle time. POR10 means that there is an OR predecessor in this instance. It
should be noted that the precedence relation, task operation time, and cost-related data for
each case are taken directly from the references and that the carbon emission-related data
in this paper are generated randomly. Due to space limitations, this paper cannot show all
the data, and the related test cases are available upon request.

To test the performance of the proposed algorithm, it is compared with three other algo-
rithms: the MOABC [16], the multi-objective simulated annealing algorithm (MOSA) [33],
and the fast non-dominated genetic algorithm (NSGA-II) [30]. The termination condition
for all algorithms is the number of solution evaluations, and the algorithms terminate after
conducting the decoding scheme 100,000 times. To better evaluate the performance of the
algorithms, each algorithm is solved 10 times independently for all cases, and the results
are converted to the hyper-volume ratio (HVR), one-dimensional Epsilon metric (I1

ε), and
inverse generation distance (IGD) to compare the algorithms’ performance [34].

Mathematics 2024, 12, 1218 12 of 19

Table 2. Tested instances.

Instances Number of Tasks Cycle Time Number of Cases

POR10 10 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55 20

P25 25 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37 20

P7 7 7 1
P8 8 20 1
P9 9 7 1

P11 11 10, 94 2
P21 21 15 1
P25 25 16 1
P28 28 216 1
P29 29 30 1
P32 32 2357 1
P35 35 41 1
P45 45 62 1
P53 53 2806 1
P70 70 168, 170, 173, 179, 182 5
P75 75 46, 47, 49, 50, 52 5

P83 83 3985, 5048, 5833, 6842,
7571, 8412, 8898, 10,816 8

P89 89 15, 150 2
P94 94 201, 301 2

P111 111 5755, 7520, 8847, 10,027,
10,743, 11,378, 11,570, 17,067 8

P148 148 85, 89, 91, 95 4

The HVR is calculated with HVR =
volume

(
Usize(S)

i=1 xi

)
volume

(
Usize(P)

j=1 xj

) , where volume
(

Usize(S)
i=1 xi

)
is the

volume of one Pareto front (S) by one algorithm and volume
(

Usize(P)
j=1 xj

)
is the volume of the true

Pareto front (P). The I1
ε metric is obtained using I1

ε = Iε(S, P) = maxx2minx1maxj
(
fj
(
x1)− fj

(
x2)),

and it calculates the minimum distance between one Pareto front (S) and the true Pareto front (P).
For these two indicators, a larger value of HVR indicates a better performance of the Pareto front,
and a smaller value of I1

ε indicates a better performance of the Pareto front. When the HVR value
approaches 1.0, the Pareto front S is close to the true Pareto front P. The true or near-true Pareto
front is needed to calculate the HVR and I1

ε. This study utilizes the Pareto front achieved by
running all the implemented algorithms 10 times as the near-true Pareto front. Meanwhile, the
set of maximum values of the objectives in the near-true Pareto front is regarded as the reference
point. For detailed descriptions of the two indicators, please refer to the cited papers [35,36]. The

IGD is calculated with IGD(S, P) = ∑x∈P minyϵSdis(x,y)
|P| , where the Euclidean distance between a

point x in P and a point y in S is denoted by dis(x, y). In general, a smaller value of IGD denotes
a better the performance of the algorithm.

Since the parameters of the algorithm have a significant impact on the algorithm’s
performance, it is necessary to set the parameters of the algorithm to the appropriate values
before testing the algorithm. Therefore, this paper uses a full factorial design of experiments
to calibrate the parameters, following [6,35]. Ten different instances are solved 10 times
by combining all parameter values. After the experiments are completed, a multi-factor
analysis of variance (ANOVA) [37] is performed, in which the parameters are used as
control variables, and the mean value of 1-HVR in one run is used as the response variable.
For better analysis, this paper replaces the HVR with 1-HVR when calibrating parameters,
and the parameter with the smaller 1-HVR value is preferred. Table 3 demonstrates
the tested values of parameters and selected parameter values in the tested algorithms.
All algorithms were programmed with Python 3.8 programming language and run on a
computer configured with an Intel(R) Core (TM) i5-8265U CPU @1.60 GHz.

Mathematics 2024, 12, 1218 13 of 19

Table 3. Algorithm parameters and values.

The Name of the Algorithm Algorithm Parameters Parameter Values Selected Parameter Values

IMOABC
Population size 60, 80, 100, 120 100
Iteration number before replacing
solutions 100, 200 200

MOABC
Population size 60, 80, 100, 120 100
Iteration number before replacing
solutions 100, 200 200

MOSA
Initial temperature 0.5, 1.0 1.0
Cooling rate 0.95, 0.98 0.95
Iteration number before a temperature
change 5, 10 5

NSGA-II
Population size 60, 80, 100, 120 100
Crossover probability 0.6, 0.8, 1.0 1.0
Mutation probability 0.6, 0.8, 1.0 1.0

5.2. Comparative Study

To validate the performance of the proposed algorithm, Tables 4–6 show the results
obtained by the IMOABC and the other three algorithms for the HVR, I1

ε, and IGD metrics.
Column 1 of each table represents the instances and columns 2 to 5 represent the values of
metrics obtained by the different algorithms solving each instance with several cases. In
this table, each metric value is the average result of solving one instance 10 times.

Table 4. Comparison of HVR results for algorithms.

Problem
HVR

NSGA-II IMOABC MOSA MOABC

P10 0.950 1.000 0.680 0.948
P25 0.818 0.834 0.569 0.795
P7 1.000 1.000 0.506 1.000
P8 1.000 1.000 0.828 1.000
P9 1.000 1.000 1.000 1.000
P11 1.000 1.000 0.431 1.000
P21 1.000 1.000 0.713 0.992
P25 0.000 0.000 0.000 0.739
P28 0.924 0.925 0.607 0.616
P29 0.985 0.993 0.823 0.973
P32 1.000 0.996 0.873 0.875
P35 0.908 0.939 0.665 0.867
P45 0.440 0.568 0.443 0.150
P53 1.000 1.000 1.000 1.000
P70 0.789 0.793 0.609 0.701
P75 0.817 0.833 0.798 0.784
P83 0.964 0.966 0.913 0.958
P89 0.743 0.766 0.721 0.686
P94 0.926 0.932 0.911 0.890

P111 0.862 0.865 0.857 0.866
P48 0.865 0.879 0.810 0.854
Avg 0.857 0.871 0.703 0.843

Best in bold.

Table 4 also provides the average HVR values of the four algorithms in the last row. In
decreasing order of the average HVR value, algorithms are ranked as IMOABC, NSGA-II,
MOABC and MOSA. Namely, the IMOABC outperforms NSGA-II, MOABC and MOSA as
the larger value of HVR indicates superior performance. However, there is a significant
difference in the values of I1

ε and IGD, and the average values cannot provide meaningful
information and are, therefore, not calculated. Nevertheless, the IMOABC outperforms
the other algorithms in most instances in terms of the two indicators. For instance, in

Mathematics 2024, 12, 1218 14 of 19

terms of I1
ε, the IMOABC outperforms NSGA-II, MOABC and MOSA in 18 instances and

the IMOABC is outperformed by NSGA-II, MOABC and MOSA in only 3 instances. In
terms of IGD, the IMOABC outperforms NSGA-II, MOABC and MOSA in 15 instances
and is outperformed by NSGA-II, MOABC and MOSA in only 6 instances. In short, the
computational results demonstrate that the IMOABC outperforms NSGA-II, MOABC and
MOSA in terms of the three evaluation metrics.

Table 5. Comparison of I1
ε results for algorithms.

Problem
I1
ε

NSGA-II IMOABC MOSA MOABC

P10 0.216 0.378 31.366 3.351
P25 0.779 0.620 20.450 3.404
P7 0.000 0.000 6.350 0.000
P8 0.000 0.000 11.300 0.000
P9 0.000 0.000 0.000 0.000
P11 0.000 0.000 11.540 0.000
P21 0.000 0.000 20.200 1.600
P25 0.000 0.000 9.800 2.900
P28 4.310 4.300 31.590 12.950
P29 8.300 6.530 27.890 10.550
P32 82.080 82.080 1339.565 464.645
P35 35.500 32.380 128.300 47.670
P45 11.540 11.560 28.100 16.280
P53 1.080 1.080 777.570 32.740
P70 317.078 292.463 410.531 363.448
P75 135.658 136.29 135.042 114.728
P83 4334.826 3908.571 6767.489 5137.114
P89 26.560 21.105 87.615 42.355
P94 159.838 137.033 181.767 168.090

P111 14,156.024 12,849.111 14,197.295 13,595.020
P148 471.565 469.195 497.128 487.740

Table 6. Comparison of IGD results for algorithms.

Problem
IGD

NSGA-II IMOABC MOSA MOABC

P10 0.010 0.080 20.955 0.756
P25 1.143 1.131 18.769 2.752
P7 0.000 0.000 6.530 0.000
P8 0.000 0.000 8.095 0.000
P9 0.000 0.000 0.000 0.000
P11 0.000 0.000 7.522 0.000
P21 0.100 0.300 27.915 4.032
P25 0.000 0.000 31.608 1.297
P28 9.076 5.507 31.531 14.984
P29 4.712 3.977 17.115 7.706
P32 392.914 631.466 27,831.97 698.093
P35 18.593 19.555 63.520 25.234
P45 17.795 15.327 36.860 21.175
P53 1.000 1.000 825.845 49.335
P70 154.882 154.021 216.173 208.005
P75 53.235 60.993 63.558 49.686
P83 10,415.780 7809.136 22,097.650 11,297.190
P89 13.847 13.326 65.475 21.178
P94 117.243 115.881 130.240 132.335

P111 222,699.600 180,080.400 195,807.900 210,688.700
P148 217.848 217.719 191.943 208.449

Mathematics 2024, 12, 1218 15 of 19

In order to further compare the performance of the algorithms statistically, this section
describes a Friedman test performed on the algorithms. In the Friedman test, the algorithm
type is selected as the control variable, and the average 1-HVR, I1

ε and IGD values in one
run are selected as the response variables. Figure 5 demonstrates the average ranking and
95% confidence intervals of the algorithm’s metric values. Table 7 shows the Friedman table
evaluating these four algorithms using a pairwise multiple comparison test. As shown
in Figure 5, the IMOABC performs the best in terms of 1-HVR. The results show that
there is a statistically significant difference between IMOABC vs. MOSA and IMOABC vs.
MOABC, and there is no statistically significant difference between NSGA-II vs. IMOABC.
For I1

ε, IMOABC and NSGA-II perform similarly, but IMOABC is slightly better. The
results also show that there is a statistically significant difference between IMOABC vs.
MOSA and IMOABC vs. MOABC, and that there is no statistically significant difference
between NSGA-II vs. IMOABC. Regarding IGD, IMOABC and NSGA-II perform similarly,
but IMOABC is slightly better. Furthermore, the results show that there is a statistically
significant difference between IMOABC vs. MOSA and IMOABC vs. MOABC, and that
there is no statistically significant difference between NSGA-II vs. IMOABC. In summary,
the computational study demonstrates that the proposed IMOABC statistically outperforms
MOSA and MOABC, and produces a competitive performance in comparison with NSGA-
II. As a consequence, it can be concluded that the proposed method is effective for the
multi-objective partial DLBP under consideration.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 21

test. As shown in Figure 5, the IMOABC performs the best in terms of 1-HVR. The results

show that there is a statistically significant difference between IMOABC vs. MOSA and

IMOABC vs. MOABC, and there is no statistically significant difference between NSGA-

II vs. IMOABC. For I�
�, IMOABC and NSGA-II perform similarly, but IMOABC is slightly

be�er. The results also show that there is a statistically significant difference between

IMOABC vs. MOSA and IMOABC vs. MOABC, and that there is no statistically significant

difference between NSGA-II vs. IMOABC. Regarding IGD, IMOABC and NSGA-II per-

form similarly, but IMOABC is slightly be�er. Furthermore, the results show that there is

a statistically significant difference between IMOABC vs. MOSA and IMOABC vs. MO-

ABC, and that there is no statistically significant difference between NSGA-II vs. IMO-

ABC. In summary, the computational study demonstrates that the proposed IMOABC

statistically outperforms MOSA and MOABC, and produces a competitive performance

in comparison with NSGA-II. As a consequence, it can be concluded that the proposed

method is effective for the multi-objective partial DLBP under consideration.

Table 7. Friedman table of four algorithms.

Multiple

Comparisons Test

1-HVR ��
� IGD

Rank Sum

Diff

Significan

t

Rank Sum

Diff

Significan

t

Rank Sum

Diff

Significan

t

NSGA-II vs. IMOABC 25.00 No 13.00 No 3.000 No

NSGA-II vs. MOSA −91.00 Yes −107.0 Yes −114.5 Yes

NSGA-II vs. MOABC −24.00 No −48.00 Yes −56.50 Yes

IMOABC vs. MOSA −116.0 Yes −120.0 Yes −117.5 Yes

IMOABC vs. MOABC −49.00 Yes −61.00 Yes −59.50 Yes

MOSA vs. MOABC 67.00 Yes 59.00 Yes 58.00 Yes

(a) (b) (c)

Figure 5. Mean rankings and 95% confidence intervals for algorithmic indicator values. (a) Ranks of

algorithms in terms 1-HVR; (b) Ranks of algorithms in terms I�
�; (c) Ranks of algorithms in terms

IGD.

5.3. A Real Case Study

This section optimizes a disassembly line of used drum washing machines for an

electronic disassembly company in the northeast region of China. This drum washer dis-

assembly line contains 28 tasks with a cycle time of 30, where the cost of running a station

per unit of time is 0.05 and the fixed start-up cost of each station is 1. The operation time

of the tasks, the recycling value of parts, the costs of performing tasks, as well as the value

of saved carbon emission by part and the value of carbon emission generated by the dis-

assembled parts are shown in Table 8. Meanwhile, Figure 6 demonstrates the precedence

relations between the tasks in this disassembly line.

Figure 5. Mean rankings and 95% confidence intervals for algorithmic indicator values. (a) Ranks of
algorithms in terms 1-HVR; (b) Ranks of algorithms in terms I1

ε; (c) Ranks of algorithms in terms IGD.

Table 7. Friedman table of four algorithms.

Multiple Comparisons
Test

1-HVR I1
ε IGD

Rank Sum Diff Significant Rank Sum Diff Significant Rank Sum Diff Significant

NSGA-II vs. IMOABC 25.00 No 13.00 No 3.000 No
NSGA-II vs. MOSA −91.00 Yes −107.0 Yes −114.5 Yes

NSGA-II vs. MOABC −24.00 No −48.00 Yes −56.50 Yes
IMOABC vs. MOSA −116.0 Yes −120.0 Yes −117.5 Yes

IMOABC vs. MOABC −49.00 Yes −61.00 Yes −59.50 Yes
MOSA vs. MOABC 67.00 Yes 59.00 Yes 58.00 Yes

5.3. A Real Case Study

This section optimizes a disassembly line of used drum washing machines for an
electronic disassembly company in the northeast region of China. This drum washer
disassembly line contains 28 tasks with a cycle time of 30, where the cost of running a
station per unit of time is 0.05 and the fixed start-up cost of each station is 1. The operation
time of the tasks, the recycling value of parts, the costs of performing tasks, as well as
the value of saved carbon emission by part and the value of carbon emission generated
by the disassembled parts are shown in Table 8. Meanwhile, Figure 6 demonstrates the
precedence relations between the tasks in this disassembly line.

Mathematics 2024, 12, 1218 16 of 19

Table 8. Information for the drum washing machine.

Part Number Part Name t R C CHGs CHGp

1 Countertop assembly 7 9 5.1 3.3 0.8
2 Bottom decorative panel 19 8 2.8 13.2 0.9
3 Housing front plate assembly 15 4 3.0 17.1 0.5
4 Back cover 5 16 9.6 13.5 0.2
5 Shell assembly 12 14 5.6 6.3 0.7
6 Distribution box assembly 10 10 4.6 1.3 0.0
7 Main control board 8 15 6.4 39.0 0.5
8 Main control board control assembly 16 9 3.5 13.8 0.5
9 Electromagnetic door locks 2 10 7.9 8.4 0.3

10 Pressure switch 6 18 3.3 8.2 1.0
11 Power supply 21 6 5.8 8.2 0.5
12 Seal assembly 10 16 2.3 7.5 0.1
13 Inner cylinder 9 4 8.2 8.8 0.4
14 Outer cylinder assembly 4 17 3.7 1.4 0.1
15 Pulley 14 13 6.6 7.3 0.6
16 Belt 7 5 8.2 6.2 0.1
17 Electrical machinery 14 8 8.8 3.2 0.4
18 Front weight 17 7 6.6 24.3 0.7
19 Counterweight 10 2 7.7 33.3 0.2
20 Suspension spring shock absorption 16 9 2.8 7.1 0.7
21 Water inlet solenoid valve 1 10 9.6 5.6 0.7
22 Inlet pipe assembly 9 18 8.2 8.0 0.5
23 Water storage tank 25 3 6.7 4.2 0.8
24 Reservoir—outer tube 14 14 6.1 16.8 0.5
25 Outer cylinder—drainage pump pipe 14 12 4.0 5.2 0.4
26 Collector valve pressure switch tube 2 8 6.6 37.7 0.3
27 Drainage pump 10 5 8.4 35.6 0.7
28 Drainage pipe assemblies 7 13 4.2 7.2 0.4

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 21

Table 8. Information for the drum washing machine.

Part Number Part Name t R C ���� ����

1 Countertop assembly 7 9 5.1 3.3 0.8

2 Bottom decorative panel 19 8 2.8 13.2 0.9

3 Housing front plate assembly 15 4 3.0 17.1 0.5

4 Back cover 5 16 9.6 13.5 0.2

5 Shell assembly 12 14 5.6 6.3 0.7

6 Distribution box assembly 10 10 4.6 1.3 0.0

7 Main control board 8 15 6.4 39.0 0.5

8 Main control board control assembly 16 9 3.5 13.8 0.5

9 Electromagnetic door locks 2 10 7.9 8.4 0.3

10 Pressure switch 6 18 3.3 8.2 1.0

11 Power supply 21 6 5.8 8.2 0.5

12 Seal assembly 10 16 2.3 7.5 0.1

13 Inner cylinder 9 4 8.2 8.8 0.4

14 Outer cylinder assembly 4 17 3.7 1.4 0.1

15 Pulley 14 13 6.6 7.3 0.6

16 Belt 7 5 8.2 6.2 0.1

17 Electrical machinery 14 8 8.8 3.2 0.4

18 Front weight 17 7 6.6 24.3 0.7

19 Counterweight 10 2 7.7 33.3 0.2

20 Suspension spring shock absorption 16 9 2.8 7.1 0.7

21 Water inlet solenoid valve 1 10 9.6 5.6 0.7

22 Inlet pipe assembly 9 18 8.2 8.0 0.5

23 Water storage tank 25 3 6.7 4.2 0.8

24 Reservoir—outer tube 14 14 6.1 16.8 0.5

25 Outer cylinder—drainage pump pipe 14 12 4.0 5.2 0.4

26 Collector valve pressure switch tube 2 8 6.6 37.7 0.3

27 Drainage pump 10 5 8.4 35.6 0.7

28 Drainage pipe assemblies 7 13 4.2 7.2 0.4

Figure 6. Disassembly precedence relations of the parts.

Based on on-site research, the disassembly line mainly adopts manual scheduling to

make decisions on the allocation of tasks, resulting in the irrational allocation of disman-

tling tasks. Meanwhile, the decision-making for the disassembly line did not consider the

profit of the disassembly line or the carbon emission saved. In order to reduce the

Figure 6. Disassembly precedence relations of the parts.

Based on on-site research, the disassembly line mainly adopts manual scheduling to
make decisions on the allocation of tasks, resulting in the irrational allocation of dismantling
tasks. Meanwhile, the decision-making for the disassembly line did not consider the profit
of the disassembly line or the carbon emission saved. In order to reduce the disassembly
cost and improve the efficiency of this disassembly line, this section solves the DLBP of the
drum washing machine and optimizes the disassembly line using the proposed method.
Meanwhile, the performance of the proposed method is verified by comparing it with
NSGA-II. Specifically, the algorithm generates the task permutation vector and number of
selected parts based on the two-layer encoding method proposed in this paper. Afterwards,

Mathematics 2024, 12, 1218 17 of 19

based on the decoding procedure, the objective values are calculated utilizing expressions
(1), (2) and (3). Here, expression (1) maximizes the value of the profit, expression (2)
maximizes the value of saved carbon emission and expression (3) minimizes the value
of the line balance. In order to facilitate the observation of the spatial distribution, F3 is
changed to −F3 and all the objectives now prefer the larger values.

Figure 7 shows the multi-perspective spatial distribution of the Pareto front on the
objective function in a single run of the two algorithms. From the figure, it can be seen that
the Pareto solutions achieved by the IMOABC dominate the Pareto solutions by NSGA-II.
Meanwhile, it is also observed that the IMOABC obtains more Pareto solutions and that
the Pareto solutions obtained by the IMOABC have the better distribution. Hence, it could
be concluded that the proposed IMOABC outperforms NSGA-II in this real case.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 21

disassembly cost and improve the efficiency of this disassembly line, this section solves

the DLBP of the drum washing machine and optimizes the disassembly line using the

proposed method. Meanwhile, the performance of the proposed method is verified by

comparing it with NSGA-II. Specifically, the algorithm generates the task permutation

vector and number of selected parts based on the two-layer encoding method proposed

in this paper. Afterwards, based on the decoding procedure, the objective values are cal-

culated utilizing expressions (1), (2) and (3). Here, expression (1) maximizes the value of

the profit, expression (2) maximizes the value of saved carbon emission and expression

(3) minimizes the value of the line balance. In order to facilitate the observation of the

spatial distribution, F� is changed to −F� and all the objectives now prefer the larger val-

ues.

Figure 7 shows the multi-perspective spatial distribution of the Pareto front on the

objective function in a single run of the two algorithms. From the figure, it can be seen that

the Pareto solutions achieved by the IMOABC dominate the Pareto solutions by NSGA-II.

Meanwhile, it is also observed that the IMOABC obtains more Pareto solutions and that

the Pareto solutions obtained by the IMOABC have the be�er distribution. Hence, it could

be concluded that the proposed IMOABC outperforms NSGA-II in this real case.

Figure 7. Multi-perspective spatial distribution of the results on the objective function in a single

run.

6. Conclusions and Future Research

Disassembly is an essential process when recycling end-of-life products. As there are

limited studies on profit and saved carbon emission in disassembly lines, this study con-

siders the multi-objective partial disassembly line balancing problem with AND/OR prec-

edence relations to optimize profit, saved carbon emission and line balance simultane-

ously. Firstly, a single multi-objective mixed-integer programming model is formulated.

This model can solve small-size instances to optimize total profit or saved carbon emission

solely with the CPLEX solver. It could also solve the small-size instance to optimize the

line balance with the mixed-integer nonlinear programming (MINLP) solver. Meanwhile,

Figure 7. Multi-perspective spatial distribution of the results on the objective function in a single run.

6. Conclusions and Future Research

Disassembly is an essential process when recycling end-of-life products. As there
are limited studies on profit and saved carbon emission in disassembly lines, this study
considers the multi-objective partial disassembly line balancing problem with AND/OR
precedence relations to optimize profit, saved carbon emission and line balance simultane-
ously. Firstly, a single multi-objective mixed-integer programming model is formulated.
This model can solve small-size instances to optimize total profit or saved carbon emission
solely with the CPLEX solver. It could also solve the small-size instance to optimize the
line balance with the mixed-integer nonlinear programming (MINLP) solver. Meanwhile,
the IMOABC is developed to solve the identified multi-objective problem effectively by
achieving a set of high-quality Pareto solutions. In this algorithm, two-layer encoding
of the task permutation vector and the number of selected parts is developed, where the
task permutation vector determines the priority of the disassembled parts. Two-phase
decoding based on the two-layer encoding is developed, where the first layer deals with
the precedence relation constraint to achieve feasible task permutation and the second layer
determines the disassembled parts and deals with the cycle time constraint to achieve one
feasible solution. Meanwhile, in the proposed method, a modified employed bee phase
utilizes neighborhood operation and the onlooker phase utilizes a crossover operator to

Mathematics 2024, 12, 1218 18 of 19

achieve a diverse population. The modified scout phase replaces the abandoned solution
with a solution selected from the Pareto front to bring a new high-quality solution into
the population. All these improvements favor the proposed method achieving a proper
balance between exploration and exploitation, and, hence, a single algorithm with a strong
global search capacity and local search capability is realized.

In order to validate the performance of the proposed algorithm, it is compared with
MOSA, MOABC and NSGA-II. The comparative study demonstrates that the improve-
ments enhance the performance of the proposed multi-objective algorithm due to its
outperforming the MOABC. Meanwhile, the proposed algorithm outperforms the com-
pared algorithms, and, as a consequence, the proposed algorithm could effectively solve
the problem under consideration. Additionally, the proposed algorithm solves a real case
(disassembly line of a used drum washing machine) and it is compared with NSGA-II. The
case study demonstrates that the proposed multi-objective algorithm can obtain a set of
high-quality Pareto solutions for the decision-makers to select, and the proposed algorithm
demonstrates superior performance in comparison with NSGA-II.

The findings of this study help the enterprise to achieve higher profits and sustainable
development, and this proposed algorithm could be embedded into a decision system for
the disassembly line manager to determine the disassembled parts. Future studies might
apply the developed algorithm to other related disassembly line balancing problems. For
instance, different layouts of disassembly lines could be considered, such as U-shaped
disassembly lines and two-sided disassembly lines. Other realistic optimization objectives
could be included, such as human factors.

Author Contributions: Conceptualization, L.Z.; Methodology, W.Y., Z.L. and C.Z.; Software, W.Y.;
Validation, W.Y. and Z.L.; Formal analysis, Z.Z.; Investigation, L.Z.; Resources, Q.T.; Data curation,
Z.Z. and Q.T.; Writing—original draft, W.Y.; Writing—review & editing, W.Y. and Z.L.; Visualization,
C.Z.; Project administration, C.Z.; Funding acquisition, Z.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This project is partially supported by the National Natural Science Foundation of China
under grants 62173260 and 62303358.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.; Kucukkoc, I.; Zhang, Z. Iterated local search method and mathematical model for sequence-dependent U-shaped

disassembly line balancing problem. Comput. Ind. Eng. 2019, 137, 106056. [CrossRef]
2. Wang, K.; Li, X.; Gao, L. Modeling and optimization of multi-objective partial disassembly line balancing problem considering

hazard and profit. J. Clean. Prod. 2019, 211, 115–133. [CrossRef]
3. Koc, A.; Sabuncuoglu, I.; Erel, E. Two exact formulations for disassembly line balancing problems with task precedence diagram

construction using an AND/OR graph. IIE Trans. 2009, 41, 866–881. [CrossRef]
4. McGovern, S.M.; Gupta, S.M. Ant colony optimization for disassembly sequencing with multiple objectives. Int. J. Adv. Manuf.

Technol. 2005, 30, 481–496. [CrossRef]
5. Kalayci, C.B.; Sabry Shaaban, D.; Abdul Salam Darwish, D.; Polat, O.; Gupta, S.M. A variable neighbourhood search algorithm

for disassembly lines. J. Manuf. Technol. Manag. 2015, 26, 182–194. [CrossRef]
6. Kalayci, C.B.; Gupta, S.M. Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem.

Expert Syst. Appl. 2013, 40, 7231–7241. [CrossRef]
7. McGovern, S.M.; Gupta, S.M. A balancing method and genetic algorithm for disassembly line balancing. Eur. J. Oper. Res. 2007,

179, 692–708. [CrossRef]
8. Tuo, Y.; Zhang, Z.; Wu, T.; Zeng, Y.; Zhang, Y.; Junqi, L. Multimanned disassembly line balancing optimization considering

walking workers and task evaluation indicators. J. Manuf. Syst. 2024, 72, 263–286. [CrossRef]
9. Tuncel, E.; Zeid, A.; Kamarthi, S. Solving large scale disassembly line balancing problem with uncertainty using reinforcement

learning. J. Intell. Manuf. 2012, 25, 647–659. [CrossRef]
10. Wang, J.; Xi, G.; Guo, X.; Liu, S.; Qin, S.; Han, H. Reinforcement learning for Hybrid Disassembly Line Balancing Problems.

Neurocomputing 2024, 569, 127145. [CrossRef]

https://doi.org/10.1016/j.cie.2019.106056
https://doi.org/10.1016/j.jclepro.2018.11.114
https://doi.org/10.1080/07408170802510390
https://doi.org/10.1007/s00170-005-0037-6
https://doi.org/10.1108/JMTM-11-2013-0168
https://doi.org/10.1016/j.eswa.2013.06.067
https://doi.org/10.1016/j.ejor.2005.03.055
https://doi.org/10.1016/j.jmsy.2023.11.011
https://doi.org/10.1007/s10845-012-0711-0
https://doi.org/10.1016/j.neucom.2023.127145

Mathematics 2024, 12, 1218 19 of 19

11. Wu, F.; Huang, N.; Zhang, F.; Niu, L.; Zhang, Y. Analysis of the carbon emission reduction potential of China’s key industries
under the IPCC 2 ◦C and 1.5 ◦C limits. Technol. Forecast. Soc. Chang. 2020, 159, 120198. [CrossRef]

12. Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial
disassembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [CrossRef]

13. Wang, K.; Gao, L.; Li, X. A multi-objective algorithm for U-shaped disassembly line balancing with partial destructive mode.
Neural Comput. Appl. 2020, 32, 12715–12736. [CrossRef]

14. Liang, W.; Zhang, Z.; Yin, T.; Zhang, Y.; Wu, T. Modelling and optimisation of energy consumption and profit-oriented multi-
parallel partial disassembly line balancing problem. Int. J. Prod. Econ. 2023, 262, 108928. [CrossRef]

15. Li, Z.; Janardhanan, M.N. Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem. Expert
Syst. Appl. 2021, 183, 115431. [CrossRef]

16. Saif, U.; Guan, Z.; Liu, W.; Wang, B.; Zhang, C. Multi-objective artificial bee colony algorithm for simultaneous sequencing and
balancing of mixed model assembly line. Int. J. Adv. Manuf. Technol. 2014, 75, 1809–1827. [CrossRef]

17. Altekin, F.T.; Kandiller, L.; Ozdemirel, N.E. Profit-oriented disassembly-line balancing. Int. J. Prod. Res. 2008, 46, 2675–2693.
[CrossRef]

18. Bentaha, M.L.; Dolgui, A.; Battaïa, O.; Riggs, R.J.; Hu, J. Profit-oriented partial disassembly line design: Dealing with hazardous
parts and task processing times uncertainty. Int. J. Prod. Res. 2018, 56, 7220–7242. [CrossRef]

19. Wang, K.; Li, X.; Gao, L.; Garg, A. Partial disassembly line balancing for energy consumption and profit under uncertainty. Robot.
Comput. Integr. Manuf. 2019, 59, 235–251. [CrossRef]

20. Wang, K.; Li, X.; Gao, L.; Li, P. Energy consumption and profit-oriented disassembly line balancing for waste electrical and
electronic equipment. J. Clean. Prod. 2020, 265, 121829. [CrossRef]

21. Zhu, L.; Zhang, Z.; Guan, C. Multi-objective partial parallel disassembly line balancing problem using hybrid group neighbour-
hood search algorithm. J. Manuf. Syst. 2020, 56, 252–269. [CrossRef]

22. Zhang, Y.; Zhang, Z.; Zeng, Y.; Wu, T. Constraint programming for multi-line parallel partial disassembly line balancing problem
with optional common stations. Appl. Math. Model. 2023, 122, 435–455. [CrossRef]

23. Igarashi, K.; Yamada, T.; Gupta, S.M.; Inoue, M.; Itsubo, N. Disassembly system modeling and design with parts selection for cost,
recycling and CO2 saving rates using multi criteria optimization. J. Manuf. Syst. 2016, 38, 151–164. [CrossRef]

24. Zhang, L.; Zhao, X.; Ke, Q.; Dong, W.; Zhong, Y. Disassembly Line Balancing Optimization Method for High Efficiency and Low
Carbon Emission. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 8, 233–247. [CrossRef]

25. Yang, Y.; Yuan, G.; Zhuang, Q.; Tian, G. Multi-objective low-carbon disassembly line balancing for agricultural machinery using
MDFOA and fuzzy AHP. J. Clean. Prod. 2019, 233, 1465–1474. [CrossRef]

26. Cui, X.; Guo, X.; Zhou, M.; Wang, J.; Qin, S.; Qi, L. Discrete Whale Optimization Algorithm for Disassembly Line Balancing with
Carbon Emission Constraint. IEEE Robot. Autom. Lett. 2023, 8, 3055–3061. [CrossRef]

27. Güngör, A.; Gupta, S.M. Disassembly line in product recovery. Int. J. Prod. Res. 2002, 40, 2569–2589. [CrossRef]
28. Çil, Z.A.; Li, Z.; Mete, S.; Özceylan, E. Mathematical model and bee algorithms for mixed-model assembly line balancing problem

with physical human–robot collaboration. Appl. Soft Comput. 2020, 93, 106394. [CrossRef]
29. Kalayci, C.B.; Hancilar, A.; Gungor, A.; Gupta, S.M. Multi-objective fuzzy disassembly line balancing using a hybrid discrete

artificial bee colony algorithm. J. Manuf. Syst. 2015, 37, 672–682. [CrossRef]
30. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
31. Goldberg, D.E.; Lingle, R., Jr. Alleles, loci, and the traveling salesman problem. In Proceedings of the 1st International Conference

on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 154–159.
32. Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148.
33. Liang, J.; Guo, S.; Du, B.; Li, Y.; Guo, J.; Yang, Z.; Pang, S. Minimizing energy consumption in multi-objective two-sided

disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm.
J. Clean. Prod. 2021, 284, 125418. [CrossRef]

34. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

35. Nilakantan, J.M.; Li, Z.; Tang, Q.; Nielsen, P. Multi-objective co-operative co-evolutionary algorithm for minimizing carbon
footprint and maximizing line efficiency in robotic assembly line systems. J. Clean. Prod. 2017, 156, 124–136. [CrossRef]

36. Ciavotta, M.; Minella, G.; Ruiz, R. Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and
a comprehensive study. Eur. J. Oper. Res. 2013, 227, 301–313. [CrossRef]

37. Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; J. Wiley: Hoboken, NJ, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.techfore.2020.120198
https://doi.org/10.1080/00207543.2017.1341066
https://doi.org/10.1007/s00521-020-04721-0
https://doi.org/10.1016/j.ijpe.2023.108928
https://doi.org/10.1016/j.eswa.2021.115431
https://doi.org/10.1007/s00170-014-6153-4
https://doi.org/10.1080/00207540601137207
https://doi.org/10.1080/00207543.2017.1418987
https://doi.org/10.1016/j.rcim.2019.04.014
https://doi.org/10.1016/j.jclepro.2020.121829
https://doi.org/10.1016/j.jmsy.2020.06.013
https://doi.org/10.1016/j.apm.2023.06.009
https://doi.org/10.1016/j.jmsy.2015.11.002
https://doi.org/10.1007/s40684-019-00140-2
https://doi.org/10.1016/j.jclepro.2019.06.035
https://doi.org/10.1109/LRA.2023.3241752
https://doi.org/10.1080/00207540210135622
https://doi.org/10.1016/j.asoc.2020.106394
https://doi.org/10.1016/j.jmsy.2014.11.015
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.jclepro.2020.125418
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1016/j.jclepro.2017.04.032
https://doi.org/10.1016/j.ejor.2012.12.031

	Introduction
	Literature Review
	Problem Description and Formulation
	Problem Description
	Model Formulation

	Multi-Objective Artificial Bee Colony Algorithm
	Artificial Bee Colony Algorithm
	Encoding and Decoding
	Main Procedure of the Proposed Methodology
	Proposed Neighborhood Structures and Crossover Operations

	Experimental Results and Analysis
	Experimental Design
	Comparative Study
	A Real Case Study

	Conclusions and Future Research
	References

