
Citation: Andrés, E.; Cuéllar, M.P.;

Navarro, G. Brain-Inspired Agents for

Quantum Reinforcement Learning.

Mathematics 2024, 12, 1230. https://

doi.org/10.3390/math12081230

Academic Editor: Fuyuan Xiao

Received: 4 March 2024

Revised: 1 April 2024

Accepted: 17 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Brain-Inspired Agents for Quantum Reinforcement Learning
Eva Andrés , Manuel Pegalajar Cuéllar * and Gabriel Navarro

Department of Computer Science and Artificial Intelligence, ETSI Informática y de Telecomunicación,
Universidad de Granada, C/. Pdta Daniel Saucedo Aranda sn, 18014 Granada, Spain;
evaandres@correo.ugr.es (E.A.); gnavarro@ugr.es (G.N.)
* Correspondence: manupc@decsai.ugr.es

Abstract: In recent years, advancements in brain science and neuroscience have significantly in-
fluenced the field of computer science, particularly in the domain of reinforcement learning (RL).
Drawing insights from neurobiology and neuropsychology, researchers have leveraged these findings
to develop novel mechanisms for understanding intelligent decision-making processes in the brain.
Concurrently, the emergence of quantum computing has opened new frontiers in artificial intelligence,
leading to the development of quantum machine learning (QML). This study introduces a novel
model that integrates quantum spiking neural networks (QSNN) and quantum long short-term
memory (QLSTM) architectures, inspired by the complex workings of the human brain. Specifically
designed for reinforcement learning tasks in energy-efficient environments, our approach progresses
through two distinct stages mirroring sensory and memory systems. In the initial stage, analogous
to the brain’s hypothalamus, low-level information is extracted to emulate sensory data processing
patterns. Subsequently, resembling the hippocampus, this information is processed at a higher level,
capturing and memorizing correlated patterns. We conducted a comparative analysis of our model
against existing quantum models, including quantum neural networks (QNNs), QLSTM, QSNN
and their classical counterparts, elucidating its unique contributions. Through empirical results, we
demonstrated the effectiveness of utilizing quantum models inspired by the brain, which outperform
the classical approaches and other quantum models in optimizing energy use case. Specifically, in
terms of average, best and worst total reward, test reward, robustness, and learning curve.

Keywords: quantum reinforcement learning; quantum neural networks; quantum spiking neural
network; quantum long short-term memory; brain-inspired models

MSC: 68T07; 81P68; 68T42; 68Q12

1. Introduction

Recent progress in artificial intelligence (AI) has spurred the emergence of brain-
inspired AI, an interdisciplinary field blending principles from neuroscience, psychology,
and computer science to enhance the development of more robust systems [1]. This in-
terdisciplinary fusion has driven innovation, particularly in reinforcement learning (RL),
where insights from neurobiology and neuropsychology have revolutionized algorithm
development, leading to a surge in research activity [2].

Several works in brain-inspired reinforcement learning (RL) have been presented,
inspired by diverse cognitive mechanisms. There is a consensus that the prefrontal cortex
(PFC) and basal ganglia (BG) are key structures involved in RL. Previous neurophysiolog-
ical experiments have revealed that the medial prefrontal cortex (mPFC) contributes to
regulating RL parameters such as learning rate and exploration rate. Additionally, repre-
sentations in the entorhinal and ventromedial prefrontal cortex (vmPFC) play a significant
role in generalizing the framework of RL problems. While various computational models
of information processing have been developed for the BG, the most prominent one is
the actor–critic model of RL, which closely aligns with the neural architecture of the basal

Mathematics 2024, 12, 1230. https://doi.org/10.3390/math12081230 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081230
https://doi.org/10.3390/math12081230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9451-340X
https://orcid.org/0000-0002-9736-1608
https://orcid.org/0000-0002-9895-5686
https://doi.org/10.3390/math12081230
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081230?type=check_update&version=1

Mathematics 2024, 12, 1230 2 of 26

ganglia [2–8]. The actor–critic implements the following two computational modules: the
critic, responsible for learning state values and potentially implemented in the ventral
striatum (possibly in conjunction with the amygdala and orbitofrontal cortex); and the actor,
responsible for learning stimulus-response (S-R) associations and potentially implemented
in the dorsal striatum. Both the critic and the actor utilize dopamine-signaled prediction
errors to update their estimates [9–11].

Inspired by the hippocampus, hierarchical state-space structures have been employed
in grid-world simulations, while meta-learning has been utilized to mimic neurotransmitter
dynamics [12,13]. Another significant area of research involves the emulation of theory of
mind capabilities, achieved through spiking neural networks for actor networks and artifi-
cial neural networks for critic networks [14]. Attentional reinforcement learning techniques
have also found applications in various domains [15–20].

Quantum machine learning has arisen as an intriguing focal point within the scientific
community. Notably, variational quantum circuits (VQC), also know as quantum neural
networks (QNN), have exhibited success across various domains, including unsupervised
learning [21] and supervised learning [22–24]. Although research on quantum reinforcement
learning (QRL) is still in its nascent stages, recent studies have showcased that QNNs can
surpass classical models in reinforcement learning (RL) for energy-efficiency scenarios. They
achieve superior cumulative rewards while requiring fewer parameters to be learned [25,26].

Moreover, numerous researchers argue that quantum probability theory receives
greater emphasis in quantum cognition compared to its physical counterpart. This is
because quantum probability theory, functioning as a generalized probability theory, offers
a more robust representation for tasks and internal states. Permitting internal states to
exist in an indefinite state prior to an action being taken [27]. Several examples of quantum
brain-inspired works exists, such as the study of Li et al. [28], which demonstrated the
efficacy of quantum reinforcement learning (QRL) in mimicking human decision-making.
Their research involved comparing 2 QRL and 12 classical RL models using the Iowa
Gambling Task with healthy and cigarette-smoking subjects. They contended that human
decision-making exhibits quantum-like characteristics, wherein choices can impact the
subjective values of alternatives owing to the superposition of quantum states.

Drawing inspiration from a theory of prefrontal cortex and hippocampus function,
our work delves into the intricate roles of these brain regions. While the hippocampus is
involved in the formation and recall of specific memories, the prefrontal cortex accumulates
features of related memories to shape the ‘context’ of interconnected experiences [29]. More-
over, our study is motivated by the widely accepted memory model proposed by Atkinson
and Shifrin [30], which delineates the short-term store (STS) for transient memory storage and
the long-term store (LTS) for maintaining memories over extended periods [31,32].

Supporting this perspective, our model mimics the prefrontal cortex using quantum
spiking neural networks (QSNN) and the hippocampus using quantum long short-term
memory (QLSTM). The QSNN effectively filters out noisy and infrequent events while
strengthening information with stronger space-time correlations. Subsequently, we access
QLSTM to retrieve specific information, engage in processing and memorization phases,
and transform it from short-term to long-term storage. Given the temporal nature of
QLSTM, our approach ensure the preservation of both temporal and spatial information
throughout the learning process. The QSNN component captures information at a low-level
perspective, mirroring the role of the hypothalamus. Subsequently, the QLSTM processes
this information at a higher level, identifying and memorizing the correlated patterns
while reinforcing long-term memorization, emulating the hippocampus and mitigating the
risk of catastrophic forgetting [33]. Catastrophic forgetting, characterized by the loss of
previously learned knowledge when new information is introduced, presents a significant
challenge in real-time systems with small batch sizes, often limited to one [34]. In essence,
our innovative approach combines the strengths of QSNN for novel learning with QLSTM’s
capacity to preserve and build upon the existing knowledge. Furthermore, the integration
of QSNN and QLSTM not only aligns with the biological architecture of the human brain

Mathematics 2024, 12, 1230 3 of 26

but also provides a comprehensive solution to the challenge of catastrophic forgetting
in continual learning scenarios. It ensures a seamless transition from short-term to long-
term memory, preserving both temporal and spatial information throughout the learning
process and enabling the system to adapt to new knowledge without erasing previously
acquired insight.

In this manuscript, we will undertake a comparative study focusing on energy effi-
ciency. Previous research has delved into this scenario of energy efficiency in buildings,
both with classical models (e.g., [35–37]) and quantum models (e.g., [25,26]).

We will evaluate three different architectures, artificial neural networks (ANN), along
with quantum architectures, including quantum neural networks (QNN) and a novel
model comprising quantum spiking neural network (QSNN) and quantum long short-term
memory (QLSTM). Our research will focus on determining which of these architectures
exhibits the optimal performance.

2. Background

To comprehensively cover the topics addressed in this manuscript, this section presents
a concise introduction to spiking neural networks (SNNs), long short-term memory, quan-
tum neural networks (QNNs), and deep reinforcement learning (DRL), which constitute
the principal subjects addressed in this research.

At the outset, in Section 2.1, we delve into the essentials of spiking neural networks.
This section provides an introduction to the fundamental structure and functionality of
SNNs, along with a discussion of Hebbian Theory.

Subsequently, in Section 2.2, we explore the architecture and operation of long short-
term memory networks, followed by the Section 2.3, which introduces the reinforcement
learning principles and their integration with (deep) artificial neural networks.

Lastly, in Section 2.4, we introduce quantum neural networks, elucidating their key
concepts and principles.

2.1. Spiking Neural Networks

SNNs draw inspiration from the neural communication patterns observed in the brain,
resembling the encoding and retention processes of working memory or short-term memory
in the prefrontal cortex, along with the application of the Hebbian plasticity principle.

The Hebbian theory is a neuroscientific concept that describes a fundamental mecha-
nism of synaptic plasticity. According to this theory, the strength of a synaptic connection
increases when neurons on both sides of the synapse are repeatedly activated simultane-
ously. Introduced by Donald Hebb in 1949, it is known by various names, including Hebb’s
rule, Hebbian learning postulate, or Cell Assembly Theory. The theory suggests that the
persistence of repetitive activity or a signal tends to induce long-lasting cellular changes
that enhance synaptic stability. When two cells or systems of cells are consistently active
at the same time, they tend to become associated, facilitating each other’s activity. This
association leads to the development of synaptic terminals on the axon of the first cell in
contact with the soma of the second cell, as depicted in Figure 1 [38].

Mathematics 2024, 12, 1230 4 of 26

Figure 1. The standard structure of a neuron includes a cell body, also known as soma, housing the
nucleus and other organelles; dendrites, which are slender, branched extensions that receive synaptic
input from neighboring neurons; an axon; and synaptic terminals.

Despite DNNs being historically inspired by the brain, there exist fundamental dif-
ferences in their structure, neural processing, and learning mechanism when compared
to biological brains. One of the most significant distinctions lies in how information is
transmitted between their units. This observation has lead to the emergence of spiking
neural networks (SNNs). In the brain, neurons communicate by transmitting sequences of
potentials or spike trains to downstream neurons. These individual spikes are temporally
sparse, imbuing each spike with significant information content. Consequently, SNNs
convey information through spike timing, encompassing both latencies and spike rates.
In a biological neuron, a spike occurs when the cumulative changes in membrane poten-
tial, induced by pre-synaptic stimuli, surpass a threshold. The rate of spike generation
and the temporal pattern of spike trains carry information about external stimuli and
ongoing computations.

ANNs communicate using continuous-valued activations and, for that reason, SNNs
are more efficient. This efficiency stems from the temporal sparsity of spike events, as
elaborated bellow. Additionally, SNNs posses the advantage of being inherently attuned
to the temporal dynamics of the information transmission observed in biological neural
systems. The precise timing of every spike is highly reliable across various brain regions,
indicating a pivotal role in neural encoding, particularly in sensing information-processing
areas and neural-motor regions [33,39].

SNNs find utility across various domains of pattern recognition, including visual
processing, speech recognition, and medical diagnosis. Deep SNNs represent promising
avenues for exploring neural computation and diverse coding strategies within the brain.
Although the training of deep spiking neural networks is still in its nascent stages, an
important open question revolves around their training, such as enabling online learning
while mitigating catastrophic forgetting [40].

Spiking neurons operate by summing weighted inputs. Instead of passing this result
through a sigmoid or ReLU non-linearity, the weighted sum contributes to the membrane
potential U(t) of the neuron. If the neuron becomes sufficiently excited by this weighted
sum and the membrane potential reaches a threshold θ, it will emit a spike to its down-
stream connections. However, most neuronal inputs consist of brief bursts of electrical
activity known as spikes. It is highly unlikely for all input spikes to arrive at the neuron
body simultaneously. This suggests the existence of temporal dynamics that maintain the
membrane potential over time (Figure 2).

Mathematics 2024, 12, 1230 5 of 26

Saline

Membrane

Neuron Body

Membrane

Intracellular
Medium

Extracellular
Medium

Na+

ion channel

(a)

R C

Iin

vU(t)

(b)

t

t

t

t

Inputs

Dendrites

Neuron

Body
Output

Axon

(c)

0 50 100 150 200 250In
p
u
t
sp
ik
es

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
te
n
ti
al

U
(t
)

0 50 100 150 200 250

Time (ms)
O
u
tp
u
t
sp
ik
es

v

(d)

Figure 2. The leaky integrate-and-fire neuron model [33] involves an insulating lipid bilayer mem-
brane that separates the interior and exterior environments. Gated ion channels enable the diffusion
of charge carriers, such as Na+, through the membrane (a). This neuron function is often modeled
using an RC circuit. When the membrane potential exceeds the threshold, a spike is generated (b).
Input spikes are transmitted to the neuron body via dendritic branches. Accumulation of sufficient
excitation triggers spike emission at the output (c). A simulation depicting the membrane potential
U(t) reaching a threshold of θ = 0.5 V, leading to the generation of output spikes (d).

Louis Lapicque [41] observed that a spiking neuron can be analogously likened to a
low-pass filter circuit, comprising a resistor (R) and a capacitor (C). This concept is referred
to as the leaky integrate-and-fire neuron model. Even in the present, the idea remains valid.
Physiologically, the neuron’s capacitance arises via the insulating lipid bilayer constituting
its membrane, while the resistance is a consequence of gated ion channels regulating the
flow of charged particles across the membrane (see Figure 2b).

The characteristics of this passive membrane can be elucidated through an RC circuit,
in accordance with Ohm’s Law. This law asserts that the potential across the membrane,
measured between the input and output of the neuron, is proportional to the current
passing through the conductor [33].

Iin(t) =
U(t)

R
(1)

The behavior of the passive membrane, which is simulated using an RC circuit, can be
depicted as follows:

τ
dU(t)

dt
= −U(t) + Iin(t)R (2)

Mathematics 2024, 12, 1230 6 of 26

where τ = RC, representing the time constant of the circuit. Following the Euler method,
dU(t)/dt without ∆t→ 0:

τ
U(t + ∆t)−U(t)

∆t
= −U(t) + Iin(t)R (3)

Extracting the membrane potential in the subsequent step:

U(t + ∆t) =
(

1− ∆t
τ

)
U(t) +

∆t
τ

Iin(t)R (4)

To isolate the dynamics of the leaky membrane potential, let us assume there is no input
current Iin = 0:

U(t + ∆t) =
(

1− ∆t
τ

)
U(t) (5)

The parameter β = U(t + ∆t)/U(t) represents the decay rate of the membrane potential,
also referred to as the inverse of the time constant. Based on the preceding equation, it
follows that β = 1− ∆t/τ.

Let us assume that time t is discretised into consecutive time steps, such that ∆t = 1.
To further minimize the number of hyperparameters, let us assume R = 1 Ω. Then

β = 1− 1
τ
⇒ U(t + 1) = βU(t) + (1− β)Iin(t + 1) (6)

When dealing with a constant current input, the solution to this can be obtained as

U(t) = Iin(t)R + [U0 − Iin(t)R]e−t/τ (7)

This demonstrates the exponential relaxation of U(t) towards a steady-state value following
current injection, with U0 representing the initial membrane potential at t = 0

U(t) = U0e−t/τ (8)

If we compute Equation (8) at discrete intervals of t, (t + ∆t), (t + 2∆t) . . . , then we can
determine the ratio of the membrane potential between two consecutive steps using:

β =
U0e−(t+∆t)/τ

U0e−t/τ
=

U0e−(t+2∆t)/τ

U0e−(t+∆t)/τ
= . . .⇒ β = e−∆t/τ (9)

This equation for β offers greater precision compared to β = (1− ∆t/τ), which is accurate
only under the condition that ∆t≪ τ.

Another non-physiological assumption is introduced, wherein the effect of (1− β) is
assimilated into a learnable weight W (in deep learning, the weight assigned to an input is
typically a parameter that can be learned):

WX(t) = Iin(t) (10)

X(t) represents an input voltage, spike, or unweighted current, which is scaled by the
synaptic conductance W to produce a current injection to the neuron. This generates the
following outcome:

U(t + 1) = βU(t) + WX(t + 1) (11)

by decoupling the effects of W and β, simplicity is prioritized over biological precision.
Lastly, a reset function is added, which is triggered each time an output spike occurs:

U(t) = βU(t− 1)︸ ︷︷ ︸
decay

+WX(t)︸ ︷︷ ︸
input

− Sout(t− 1)θ︸ ︷︷ ︸
reset

(12)

Mathematics 2024, 12, 1230 7 of 26

where Sout(t) ∈ {0, 1} is the output spike, 1 in case of activation and 0 in otherwise. In
the first scenario, the reset term subtracts the threshold θ from the membrane potential,
whereas in the second scenario, the reset term has no impact.

A spike occurs when the membrane potential exceeds the threshold:

Sout(t) =

{
1, if U(t) > θ

0, otherwise
(13)

Various techniques exist for training SNNs [33], with one of the more commonly
utilized approaches being backpropagation using spikes, also known as backpropagation
through time (BPTT). Starting from the final output of the network and moving backwards,
the gradient propagates from the loss to all preceding layers. The objective is to train the
network utilizing the gradient of the loss function concerning the weights, thus updating
the weights to minimize the loss. The backpropagation algorithm accomplishes this by
utilizing the chain rule:

∂L
∂W

=
∂L
∂S

∂S
∂U︸︷︷︸
{0,∞}

∂U
∂I

∂I
∂W

(14)

Nevertheless, the derivative of the Heaviside step function from (13) is the Dirac Delta
function, which equates to 0 everywhere except at the threshold Uthr = θ, where it tends
to infinity. Consequently, the gradient is almost always nullified to 0 (or saturated if U
precisely sits at the threshold), rendering learning ineffective. This phenomenon is referred
to as the dead neuron problem. The common approach to address the dead neuron problem
involves preserving the Heaviside function during the forward pass, but substituting it
with a continuous function, tilde(S), during the backward pass. The derivative of this
continuous function is then employed as a substitute for the Heaviside function’s derivative,
denoted as ∂S/∂U ← ∂S̃/∂U, and is termed the surrogate gradient. In this manuscript, we
utilize the snnTorch library, which defaults to using the arctangent function [33].

The structure of QSNNs follows the hybrid-architecture formed by classical linear
layers and VQC for QLIF implementation (quantum leaky integrate-and-fired neuron) and
trained using the gradient descent method. The Figure 3 shows the general pipeline for
this model for a classification task and the detailed architecture is defined in Section 3.

Data

Input

Spike coded inputs

t

[Input, Hidden]

Spiking
Neural
Network

[Hidden, Output]

Spike coded outputs

t
Predicted

class

Figure 3. SNN pipeline. The input data for an SNN may undergo transformation into a firing rate or
alternative encodings to produce spikes. Subsequently, the model is trained to accurately predict the
correct class by employing encoding strategies, such as the highest firing rate or firing first, amongst
other options.

Previous works have been inspirational in brain functionality emulating for clas-
sification tasks such as MINST dataset classification using SNN and hyperdimensional
computing [42] or in the decoding and understanding of muscle activity and kinematics
from electroencephalography signals [43], utilizing hyperdimensional computing (HDC)
and SNN for the MNIST classification problem [42]. Other works have explored the appli-
cation of reinforcement learning for navigation in dynamic and unfamiliar environments,

Mathematics 2024, 12, 1230 8 of 26

supporting neuroscience-based theories that consider grid cells as crucial for vector-based
navigation [44].

2.2. Long Short-Term Memory

Long short-term memory (LSTM) networks belong to a class of recurrent neural net-
works that have the ability to learn order dependence in sequence prediction problems.
These networks are crafted to address the challenges encountered in training RNNs (re-
current neural networks). Retro-propagated gradients often exhibit substantial growth
or decay over time due to their dependency not only on the current error but also on
past errors. The accumulation of these errors impedes the memorization of long-term
dependencies. Consequently, long short-term memory neural networks (LSTM) are em-
ployed to tackle these issues. LSTMs incorporate a series of mechanisms to determine
which information should be retained and which should be discarded [45]. Furthermore,
standard RNNs have a limited ability to access contextual information in practice. The
impact of a specific input on the hidden layer and, consequently, on the network output,
diminishes or amplifies exponentially as it circulates through the recurrent connections
of the network. This phenomenon is known as the vanishing gradient problem, which
represents the second challenge to overcome using LSTM [46,47].

The behavior of this model is essential in complex problem domains such as machine
translation, speech recognition, and time-series analysis, among others.

These networks consist of LSTM modules, which are a specialized type of recurrent
neural network introduced in 1997 by Hochreiter and Schmidhuber [48]. They consist of
three internal gates, known as the input, forget, and output gates, which are detailed in
Figure 4.

σ σ Tanh σ

× +

× ×

Tanh

Ct−1

Cell State

Ht−1

Hidden State

xtInput Data

Ct

New Cell State

Ht

New Hidden State

Forget
Gate

Input
Gate

Output
Gate

Figure 4. LSTM Cell Architecture: Featuring three essential gates (forget, input, and output gates).
The tanh and σ blocks symbolize the hyperbolic tangent and sigmoid activation functions, corre-
spondingly. xt represents the input at time t, ht denotes the hidden state, and ct signifies the cell state.
The symbols ⊗ and ⊕ denote element-wise multiplication and addition, respectively.

These gates are filters and each of them have its own neural network. At a given
moment, the output of an LSTM relies on the following three factors:

• Cell state: The network’s current long-term memory;
• Hidden state: The output from the preceding time step;
• The input data in the present time step.

The internal gates mentioned above can be described as follows [49]:

Mathematics 2024, 12, 1230 9 of 26

• Forget gate: This gate decides what information from the cell state is important,
considering both the previous hidden state and the new input data. The neural
network that implements this gate is built to produce an output closer to 0 when the
input data are considered unimportant, and closer to 1 otherwise. To achieve this, we
employ the sigmoid activation function. The output values from this gate are then
passed upwards and undergo pointwise multiplication with the previous cell state.
This pointwise multiplication implies that components of the cell state identified as
insignificant by the forget gate network will be multiplied by a value approaching 0,
resulting in a reduced influence on subsequent steps.
To summarize, the forget gate determines what portions of the long-term memory
should be disregarded (given less weight) based on the previous hidden state and the
new input data;

• Input gate: Determines the integration of new information into the network’s long-
term memory (cell state), considering the prior hidden state and incoming data. The
same inputs are utilized, but now with the introduction of a hyperbolic tangent as
the activation function. This hyperbolic tangent has learned to blend the previous
hidden state with the incoming data, resulting in a newly updated memory vector.
Essentially, this vector encapsulates information from the new input data within the
context of the previous hidden state. It informs us about the extent to which each
component of the network’s long-term memory (cell state) should be updated based
on the new information.
It should be noted that the utilization of the hyperbolic tangent function in this context
is deliberate, owing to its output range confined to [−1, 1]. The inclusion of negative
values is imperative for this methodology, as it facilitates the attenuation of the impact
associated with specific components;

• Output gate: The objective of this gate is to decide the new hidden state by incorporat-
ing the newly updated cell state, the prior hidden state, and the new input data. This
hidden state has to contain the necessary information while avoiding the inclusion of
all learned data. To achieve this, we employ the sigmoid function.

This architecture is replicated for each time step considered in the prediction. The
ultimate layer of this model is a linear layer responsible for converting the hidden state into
the ultimate prediction. The quantum counterpart of this neural network is constructed
with a VQC model for each gate as Figure 5 shows. Finally, we summarize the Lstm
implementation steps as follows:

• The initial step involves determining what information to discard or preserve at the
given moment in time. This process is facilitated by the utilization of the sigmoid
function. It examines both the preceding state ht−1 and the present input xt, computing
the function accordingly:

ft = σ(w f · vt + b f) (15)

where vt = [xt, ht−1] and w f and b f are weights and biases;
• In this step, the memory cell content undergoes an update by choosing new informa-

tion for storage within the cell state. The subsequent layer, known as the input gate,
comprises the following two components: the sigmoid function and the hyperbolic
tangent (tanh). The sigmoid layer decides which values to update; a value of 1, indi-
cates no change, while a value of 0 results in exclusion. Subsequently, a tanh layer
generates a vector of new candidate values, assigning weights to each value based
on its significance within the range from −1 to 1. These two components are then
combined to update the state:

it = σ(Wi · vt + bi)

C̃ = tanh(Wc · vt + bc)
(16)

Mathematics 2024, 12, 1230 10 of 26

• The third step consists of updating the previous cell state, Ct−1 with the new cell state,
Ct, through the following two operations: forgetting irrelevant information by scaling
the previous state by ft and incorporating new information from the candidate C̃t:

Ct = ft · ct−1 + it · C̃t (17)

• Ultimately, the output is calculated through a two-step process. Initially, a sigmoid
layer is employed to determine what aspects of the cell state are pertinent for trans-
mission to the output.

ot = σ(Wo · vt + b0) (18)

Subsequently, the cell state undergoes processing via the tanh layer to normalize values
between −1 and 1, followed by multiplication with the output of the sigmoid gate.

ht = tanh(Ct) · ot (19)

2.3. Deep Reinforcement Learning

Reinforcement learning (RL) [50] is a branch of machine learning inspired by behav-
ioral psychology. In RL, an entity known as the agent adjusts its behavior based on the
rewards and penalties it receives from interacting with an unknown environment. RL
serves as the foundational framework for elucidating how autonomous intelligent agents
acquire the ability to navigate unfamiliar environments and optimize cumulative rewards
through decision making. Deep reinforcement learning (DRL) combines traditional RL
algorithms with neural networks. The general schema of DRL is illustrated in Figure 6:
When an agent interacts with an environment, it has no knowledge of the environment´s
state except for the observations it receives. At time t, the observation of the environment
is denoted as st. The agent then selects an action at from the set of the available actions and
executes in the environment. Subsequently, the environment transitions to a new state and
provides the agent with the new observation st+1 and a reward rt. The reward indicates
the quality of the action taken by the agent and is utilized to improve its performance in
subsequent interactions.

Data

Input

[Input, Input+Hidden] [Input+Hidden, NumQubits]

QLSTM Cell

[NumQubits, Hidden] [Hidden, Output]

Expected

Output

Figure 5. QLSTM architecture. The input data pass through an initial classical layer, which receives
the inputs data and produces the concatenated size formed by the input dimension and hidden size.
This output then passes trough a second classical layer, which outputs the same size as the number of
qubits expected by the quantum Qlstm cell, whose architecture is detailed in Figure 7. Subsequently,
this output is received by another classical layer that transform it into output of the hidden size.
Finally, this output is further transformed into the expected output.

Mathematics 2024, 12, 1230 11 of 26

Agent

Environment

action
at

st+1

rt+1

state
st

reward
rt

Figure 6. General reinforcement learning diagram [51]. At time t, the agent perceives state st and,
based on this state, selects an action at. The environment then transitions to a new state st+1 and
provides the agent with this new state along with a reward rt+1.

This sequential process is described using a Markov decision process (MDP), which
consists of the tuple

〈
S, A, P, r

〉
, where S and A represent the sets of states and actions,

respectively. P denotes the probability of state transition, defined as

P(s′|s, a) = P[st+1 = s′|st = s, at = a] (20)

indicating the likelihood of transitioning from state st at time t to state st+1 at time t + 1
when action at is taken at time t. Additionally, r(st, at, st+1) represents the reward function
associated with executing action at in state st and transitioning to state st+1.

The agent’s goal is to maximize its cumulative reward through a series of interactions
with the environment τ, beginning at time t0. This cumulative reward, referred to as
the return and defined in Equation (21), is influenced by the hyperparameter γ, which
determines the relative significance of recent versus past rewards in the learning process.
γ is commonly known as the discount factor. To maximize R(τ), the agent must acquire
knowledge about the optimal action a to take in a given state s, known as the policy π(a|s).
This policy function characterizes the agent’s behavior within the environment, providing
the probability of selecting action a in state s. In RL we consider the following two key
functions: the value of a state–action pair Q(s, a) (as defined in Equation (22), representing
the expected return obtained from starting at state s and taking action a), and the value of
a state V(s) (as defined in Equation (23), representing the expected return obtained from
starting at state s). Additionally, another relevant concept is the advantage of a state–action
pair Adv(s, a) (as defined in Equation (24)), which quantifies the benefit of selecting action
a in state s compared to the other available actions in the same state s.

R(τ) =
∞

∑
t=t0

rtγ
t−t0 (21)

Q(s, a) = Eτ∼π(R(τ)|st = s, at = a) =

∑
s′

p(s′|s, a)(r(s, a, s′) + γ ∑
a′

π(a′|s′)Q(s′, a′)) (22)

V(s) = Eτ∼π(R(τ)|st = s) = ∑
i

R(τi)π(ai|s) (23)

Adv(s, a) = Q(s, a)−V(s) (24)

Deep reinforcement learning aims to use a (deep) artificial neural network to learn
the optimal policy π(a|s). This policy takes the state s as the input and outputs either a
chosen action a (in the case of a deterministic policy) or the probability distribution of
the selection of action a in the state s (in the case of a stochastic policy). In recent years,
the literature has emphasized the following two main families of algorithms: deep Q-
networks (DQN) [52] and policy gradient [53]. The former focuses on training an artificial

Mathematics 2024, 12, 1230 12 of 26

neural network to approximate the function Q(s, a), while the latter directly approximate
π(a|s). DQN training draws inspiration from the classic Q-learning approach and aims to
minimize the loss function described in Equation (26). Here, Q̂(s, a) represents the output
value corresponding to action a generated by the neural network when provided with
input s. A deep Q-network consists of input neurons equal to the dimension of the state
and output neurons equal to the number of actions available in the action set.

On the contrary, the actor–critic policy gradient models necessitate the utilization
of at least the following two neural networks types for training: one (the actor) shares a
structure resembling that of a DQN, but its a-th output aims to yield π(a|s). The other
type endeavors to approximate V(s), mirroring the actor in terms of number of inputs and
featuring a single output value.

Various approaches have been developed to enhance DQN training and policy gradient
methods. For additional information, we direct readers to the following references: [52,53].
In this manuscript, we employ the advantage actor–critic (A2C) training algorithm [53],
which is characterized by its designed loss function outlined in Equation (25).

LogLoss = −∑
t

Adv(st, at)logπ(at|st) (25)

MSE = ∑
t

(
r(st, at, st+1) + γmaxat+1

[
Q̂(st+1, at+1)

]
− Q̂(st, at)

)2 (26)

2.4. Quantum Neural Networks

Quantum neural networks (QNNs) play a pivotal role in quantum machine learning
(QML) [54,55], utilizing variational quantum circuits (VQCs). These VQCs are hybrid algo-
rithms, combining quantum circuits with learnable parameters that are optimized utilizing
classical techniques. They have the ability to approximate continuous functions [54,56],
enabling tasks such as optimization, approximation, and classification.

Furthermore, it is noteworthy that quantum neural networks can be efficiently sim-
ulated in coherent Ising machines (CIMs) [57]. Additionally, there are other noteworthy
advancements in the realm of quantum neural networks, as evidenced by studies such
as those conducted by Hou et al. [58], Zhao et al. [59], Zhou et al. [60], Ding et al. [61],
Tian et al. [62], and a comprehensive review by Jeswal et al. [63].

Figure 7 depicts the overall structure of a VQC. This hybrid approach involves the
following stages [64]:

Preprocessing

Encoding
Layer

x− > |x⟩
U(x)

Variational
or Ansatz
Layer
V (θ)

Output

Postprocessing
f(x; θ)

Cost/Loss
function

θ
Modification

Classical/CPU Quantum/QPU Classical/CPU

Figure 7. General VQC Schema. The dashed gray line delineates the process carried out within
a quantum processing unit (QPU), while the dashed blue line illustrates the processes executed in
a CPU.

The VQC workflow comprises the following several steps:

1. Pre-processing (CPU): Initial classical data preprocessing, which includes normaliza-
tion and scaling;

Mathematics 2024, 12, 1230 13 of 26

2. Quantum Embedding (QPU): Encoding classical data into quantum states through
parameterized quantum gates. Various encoding techniques exist, such as angle
encoding, also known as tensor product encoding, and amplitude encoding, among
others [65];

3. Variational Layer (QPU): This layer embodies the functionality of quantum neural
networks through the utilization of rotations and entanglement gates with trainable
parameters, which are optimized using classical algorithms;

4. Measurement Process (QPU/CPU): Measuring the quantum state and decoding it to
derive the expected output. The selection of observables employed in this process is
critical for achieving optimal performance;

5. Post-processing (CPU): Transformation of QPU outputs before feeding them back to
the user and integrating them into the cost function during the learning phase;

6. Learning (CPU): Computation of the cost function and optimization of ansatz pa-
rameters using classic optimization algorithms, such as Adam or SGD. Gradient-free
methods, such as SPSA or COLYBA, are also capable of estimating parameter updates.

3. Methodology

In this manuscript, we conducted an extensive benchmarking analysis, comparing
various quantum-classical networks with their classical counterparts trained using gradient-
descent. These include quantum neural network (QNN), quantum spiking neural network
(QSNN), quantum long short-term memory (QLSTM), and a novel model designed to
closely emulate brain functionality by integrating QSNN and QLSTM, establishing a
scalable and robust cognitive learning system. To achieve this, the QSNN component
captures information at a low-level perspective, mirroring the role of the hypothalamus.
Subsequently, the QLSTM processes this information at a higher level, identifying and
memorizing correlated patterns while reinforcing long-term memorization, emulating the
hippocampus, and mitigating the risk of catastrophic forgetting [33]. Catastrophic forget-
ting, which occurs when new information causes the network to lose previously learned
knowledge [34], poses a significant challenge in real-time systems where the batch-size is
small, often one. Various strategies have been proposed to address catastrophic forgetting
in continual learning. These include employing higher-dimensional synapses [66], using
ensembles of networks [67], implementing pseudo-replay techniques [68], and penalizing
weights that exhibit excessively rapid changes [69]. In summary, this innovative approach
combines the advantages of QSNN for new learning with QLSTM’s ability to retain and
build upon previous knowledge.

Considering the diminishing learning rate as network parameters approach the opti-
mal values, wherein future data have less influence than past data, our model proactively
aims to prevent catastrophic forgetting by preserving previously acquired knowledge,
adding a QLSTM model to the existing and trained QSNN. This proactive approach en-
sures a more comprehensive and stable learning system that balances the integration of
new information with the retention of valuable past knowledge.

The initial model presented is a quantum neural network leveraging amplitude encod-
ing to minimize qubits usage. This strategy is chosen because it necessitates only log2n for
n features. Figure 8 illustrates this architecture.

Mathematics 2024, 12, 1230 14 of 26

Normalization
xn = | x∑n

i xi
|

PreProcessing Embedding Layer

|0⟩
|0⟩
|0⟩

Variational Layer

StateVector

PostProcessing

...

Figure 8. QNN architecture. This architecture involves several steps. First, classical data are
normalized as a preprocessing step, which is necessary for the subsequent encoding strategy. Then,
the amplitude encoding algorithm is applied, using only log2N qubits, where N corresponds to the
number of independent variables or the space dimension in the case of RL. This process generates
the corresponding quantum state, which is then fed into the ansatz circuit. Finally, the resulting
state-vector of this quantum system undergoes post-processing through a classical linear layer. This
layer transforms the dimension obtained with 2n, where n is the number of qubits, into the expected
output dimension.

The subsequent model is a quantum spiking neural network (QSNN), implemented
using the Python package snnTorch v0.8.1 [33]. The architecture of the QSNN is shown in
Figure 9. We enhanced the snnTorch library by incorporating a quantum version of a leaky
integrate-and-fire (LIF) neuron. In this quantum version, a VQC is employed to initialize
the membrane potential, replacing the conventional tensor approach. The VQC consists of
an encoding circuit that utilizes amplitude embedding to minimize qubit usage, and an
Ansatz composed of rotation gates along each axis and a controlled-Z gate.

State

(s)

Spike coded inputs

t

[Input, Hidden]

Variational
Quantum
Circuit

QLIF1

Variational
Quantum
Circuit

QLIF2
[Hidden, Output]

Spike coded outputs

t

π(a|s)
or

v̂(s)

Figure 9. QSNN architecture. This architecture involves an encoding step where classical data are
translated into spikes. The network comprises two LIFs orchestrated by VQC and is trained using
gradient descent. Various encoding strategies can be utilized, including the utilization of the highest
firing rate or firing first, among others.

The third model is a quantum long short-term memory (QLSTM), which utilizes VQCs
for its forget, input, update, and output gates, the quantum Lstm cell is detailed in Figure 10
and the entire structure in Figure 5. The encoding circuit employs angle encoding after a
classical linear layer to transform concat size (input and hidden dimension) to number of
qubits. Additionally, the ansatz circuits incorporate basic entangling layers, which uses Rx
and Cx gates.

The last quantum model is an innovative architecture that combines a quantum
spiking neural network (QSNN) and quantum long short-term memory (QLSTM), with
the QSNN and QLSTM architecture shown in Figure 9 and Figure 5, respectively. It
undergoes co-training, updating gradients simultaneously through a multi-optimizer with

Mathematics 2024, 12, 1230 15 of 26

distinct learning rates for each network’s parameters. The training process of this model is
illustrated in Figure 11.

σ σ Tanh σ

× +

× ×

Tanh

Ct−1

Cell State

Ht−1

Hidden State

xtInput Data

Ct

New Cell State

Ht

New Hidden State

Forget
Gate

Input
Gate

Output
Gate

vqc1 vqc2 vqc3 vqc4

Figure 10. QLSTM cell. Each VQC box follows the structure outlined in Figure 7. The σ and tanh
blocks denote the sigmoid and the hyperbolic tangent activation functions, respectively. xt represents
the input at time t, ht denotes the hidden state and ct signifies the cell state. Symbols ⊗ and ⊕ signify
element-wise multiplication and addition, respectively.

QSNN + QLSTM Co-training

State (s)

Spike coded inputs

t
Split QSNN

Layer

Spike coded outputs

t
QLSTM

π(s|a)
or

v̂(s)

Loss

Figure 11. Training process of QSNN–QLSTM. An instance of QSNN (see Figure 9) is combined
with a QLSTM instance (refer to Figure 5) for joint training. The loss computed from the output of
QLSTM is utilized for the concurrent update of QSNN and QLSTM.

4. Experimentation

In the literature, various scenarios related to energy efficiency and management are
explored. Simulation tools like Energy Plus [70] or Modelica [71] are crucial for training and
validating models before their deployment in real-world energy systems. RL environments
are build upon such simulation software; for instance, Gym-EPlus [72], Sinergym [73] or
EnerGym [74] are utilized for simulating energy consumption and control in buildings. The
environment utilized in our experimentation is accessible within Sinergym framework. It
includes reference problems designed specifically to improve energy efficiency and HVAC
control in buildings and facilities.

In this section, we conduct experiments to evaluate various models described in the
previous section in a scenario related to energy efficiency for QRL. Our objective is to
contrast the performance of each proposed architecture trained with the same advanced
actor–critic algorithm and determine whether the novel model composed of QSNN and
QLSTM achieves superior results. We performed 10 individual executions, each initiated
with distinct random seeds to facilitate reproducibility.

All implemented models make use of the PyTorch, PennyLane, SNNtorch, and Siner-
gym libraries.

Mathematics 2024, 12, 1230 16 of 26

4.1. Problem Statement

The focus of this study is the building environment named Eplus-5zone-hot-discrete-v1,
specifically targeting the scenario 5ZoneAutoDx [73]. Situated in Arizona, USA charac-
terized by subtropical weather and desert heat, the building comprises a single-floor
rectangular structure measuring 100 feet in length. It encompasses five zones, including
four exterior and one interior, typically occupied by office workers. The building is oriented
30 degrees east of north (as depicted in Figure 12). With an overall height of 10 feet, all
four facades feature windows, constructed with single and double panel of 3mm and 6mm
glass, along with argon or air gap of 6mm or 13mm, resulting in a window-to-wall ratio of
approximately 0.29. Glass doors adorn the south and north facades, while the walls consist
of wooden shingles over plywood, R11 insulation, and Gypboard. Additionally, the south
wall and door feature overhangs. The roof is composed of a gravel built-up structure with
R-3 mineral board insulation and plywood sheathing. The total floor area spans 463.6 m2

(5000 feet2).

Zone 5

Zone 1

Zone 3Z
on
e
4

Z
on
e
2

window/door

N

Zone Area (m²) Hight (m²)
1 100 2.4

2 43 2.4

3 100 2.4

4 43 2.4

5 186 2.4

Figure 12. Zone building plan.

A state s within this environment encapsulates a series of past observations concerning
the building (such as room temperatures or outdoor air temperature). The aim is to optimize
a set of KPIs (key performance indicators) related to energy consumption and overall
comfort. The specific features are outlined below as follows:

• State space: The state space encompasses 17 attributes; with 14 detailed in Table 1,
while the remaining 3 are reserved in case new customized features need to be added;

• Action space: The action space comprises a collection of 10 discrete actions as outlined
in Table 2. The temperature bounds for heating and cooling are [12, 23.5] and [21.5,
40], respectively;

• Reward function: The reward function is formulated as multi-objective, where both
energy consumption and thermal discomfort are normalized and added together
with different weights. The reward value is consistently non-positive, signifying that
optimal behavior yields a cumulative reward of 0. Notice also that there are two
temperature comfort ranges defined, one for the summer period and other for the
winter period. The weights of each term in the reward allow to adjust the importance
of each aspect when environments are evaluated. Finally, the reward function is
customizable and can be integrated into the environment.

rt =−ωλPPt − (1−ω)λT(|Tt − Tup|+ |Tt − Rlow|) (27)

Mathematics 2024, 12, 1230 17 of 26

where Pt denotes power consumption; Tt is the current indoor temperature; Tup and Tlow
are the imposed comfort range limits (penalty is 0 if Tt is within this range); ω represents
the weight assigned to power consumption (and consequently, 1−ω, the comfort weight),
and λP and λT are scaling constants for consumption and comfort, respectively [73].

In this experiment, a classic multilayer perceptron (MLP) neural network agent was
developed, featuring 17 inputs (environment state dimension) and 10 outputs (environment
action dimension) for the actor, along with 1 output for the critic. This agent underwent
training within the Eplus-5zone-hot-discrete-v1 environment using the advantage actor–
critic (A2C) algorithm [53]. Additionally, we trained a classic spiking neural network
(SNN) and a classic long short-term memory (LSTM) both described in Section 3. Subse-
quently, four different quantum agents were trained using the methodologies described
in Section 3, with each model configured according to the specifications detailed in the
aforementioned section. Importantly, the environment settings and A2C algorithm pa-
rameters remained consistent for both classic and quantum agents to ensure an equitable
comparison of performance.

Table 1. The observation variables consist of 14 variables, with an additional 3 empty variables
reserved for specific problem requirements if necessary.

Name Units

Site-Outdoor-Air-DryBulb-Temperature ◦C

Site-Outdoor-Air-Relative-Humidity %

Site-Wind-Speed m/s

Site-Wind-Direction degree from north

Site-Diffuse-Solar-Radiation-Rate-per-Area W/m2

Site-Direct-Solar-Radiation-Rate-per-Area W/m2

Zone-Thermostat-Heating-Setpoint-Temperature ◦C

Zone-Thermostat-Cooling-Setpoint-Temperature ◦C

Zone-Air-Temperature ◦C

Zone-Air-Relative-Humidity %

Zone-People-Occupant-Count count

Environmental-Impact-Total-CO2-Emissions-Carbon-Equivalent-Mass Kg

Facility-Total-HVAC-Electricity-Demand-Rate W

Total-Electricity-HVAC W

Table 2. Action variables.

Name Heating Target Temperature Cooling Target Temperature
0 13 37

1 14 34

2 15 32

3 16 30

4 17 30

5 18 30

6 19 27

7 20 26

8 21 25

9 21 24

Mathematics 2024, 12, 1230 18 of 26

4.2. Experimental Settings

We conducted seven types of experiments. Initially, we constructed the agent’s policy
using a classic feedforward multilayer perceptron (MLP). This was followed by the imple-
mentation of a classical spiking neural network in the subsequent experiment, and then
the utilization of a classical long short-term memory (LSTM) network in another. In the
fourth experiment, we utilized a variational quantum circuit for the agent’s policy, while
in the fifth, we employed a quantum spiking neural network (QSNN). The sixth experi-
ment introduced a quantum long-short term memory (QLSTM). Finally, we developed a
novel model by combining QSNN and QLSTM. We employed the advanced actor–critic
RL method to train the agent for these experiments. To this end, we concurrently executed
five environments, each with a maximum of 15 steps. The algorithm was set to terminate
after completing 100 episodes, serving as the stopping criterion. Furthermore, in the final
episode, the agent’s performance was evaluated using a deterministic policy that selected
the action with the highest probability, thereby assessing the agent’s ability to interact
effectively with the environment. To validate the experiments, we conducted 10 runs with
distinct initial random seeds, recording the total accumulated reward in each execution
to summarize the average, best, and worst total accumulated reward obtained by the
models. Tables 3 and 4 provide an overview of the configuration details of both classical
and quantum models, including the corresponding hyperparameters used.

The initial quantum model, denoted as the QNN model, consists of encoding and
ansatz circuits, each utilizing five qubits. The number of qubits is determined by log2N
where N represents the number of features. Additionally, it incorporates a single linear layer
that transforms 2N into the corresponding output dimension. The actor model comprises a
total of 405 parameters, calculated as follows: 5 (layers) × 3 (rotations) × 5 (qubits) + 32 ×
10 (weights) + 10 (bias). On the other hand, the critic model shares the same composition,
except for the output layer, which has 1 neuron. Therefore, the overall parameter count for
the critic model is 108.

The classical counterpart’s actor includes an input layer with 17 neurons, a hidden
layer with 450 neurons, and an output layer with 10 neurons. This classical network has a
total parameter count of 12,610, calculated as follows: 17 × 450 (weights) + 450 (bias) + 450 ×
10 (weights) + 10 (bias). Similarly, the critic shares the same composition, except for the output
layer, which has 1 neuron. Therefore, the total parameter count for the critic model is 8.551.

The second quantum model, QSNN as described in Section 3, consists of 2 QLIF cells
with 15 layers and 15 neurons in the hidden layer, and 5 qubits. This results in a total of
880 parameters, calculated as follows: 17 × 15 (weights) +15 (bias) + 15 (layers) × 3 (learning
parameters used in the three rotation gates for the ansatz circuit) × 5 (qubits) × 2 (number of
QLIF cells) + 15 × 10 (weights) + 10 (bias). Similarly, the critic shares the same composition,
except for the output layer, which has 1 neuron. Therefore, the total parameter count for
the critic model is 736.

For its classical counterpart, the actor is composed of a linear layer with 17 input
neurons and 15 output neurons (hidden), two LIF neurons, and a final linear layer with
15 input neurons and ten output neurons (number of classes). Consequently, the total of
parameters is 430, calculated as follows: 17 × 15 (weights) + 15 (bias) + 15 × 10 (weights)
+ 10 (bias). Similarly, the critic shares the same composition, except for the output layer,
which has 1 neuron. Therefore, the total parameter count for the critic model is 286.

The third quantum model, QLSTM, as described in Section 3, involves an actor com-
ponent consisting of 1.481 parameters. This model includes a Linear layer that transforms
an input size of 17 into 42 output neurons (the sum of input size and hidden size), and a
subsequent linear layer that converts 42 into 5 (the number of qubits): 17 × 42 (weights) + 42
(bias) + 42 × 5 (weights) + 5 (bias). It then incorporates the parameters for the corresponding
variational quantum circuits (VQCs): 4 × [5 (layer) × 5 (qubits) × 1 (learning parameter
employed in the rotation x gate for the ansatz circuit)]. Following this, another linear layer
transforms the number of qubits into the hidden size: 5 × 25 (weights) + 25 (bias). The
final layer is a linear transformation from a hidden size to an output dimension: 25 × 10

Mathematics 2024, 12, 1230 19 of 26

(weights) + 10 (bias). Similarly, the critic shares the same composition, except for the output
layer consists of only 1 neuron. Thus, the total parameter count for the critic model is 1.247.

For its classical counterpart, the actor is defined by a total of 25.460 parameters. It
includes a linear layer with 42 input neurons and 25 output neurons, followed by 2 LSTM
units, and a final layer transitioning from 25 input neurons to 10 output neurons (action
space dimension). In total, 4 × (17 + 25 + 1) × 25 + 4 × hidden (for the first LSTM layer) + [4
× (25 + 25 + 1) × 25 + 4 × hidden (for the rest of LSTM layers)] × 4 + 25 ×10 + 10 (hidden
layer to output layer). The critic model is similarly structured, but the final output layer
comprises just 1 neuron, leading to a total of 25.226 parameters.

The last agent, QSNN–QLSTM, as described in Section 3, consists of 5 layers of QSNN
and 5 layers of QLSTM for the actor component. Each QSNN layer contains 2 QLIF cells,
15 neurons for the hidden layer, and 5 qubits. Additionally, it incorporates a QLSTM module
with 125 neurons for the hidden layer. In total, the model comprises 5.635 parameters,
calculated as follows: [(17 × 15 + 15) + (5 (layers) × 3 (learning parameters utilized in the
three rotation gates within the ansatz circuit) × 5 (qubits) × 2 (number of QLIF cells)) + (15
× 10 +10)] + [(15 × 140 (concat size) + 140) + (140 × 5 +5) + (5 layers × 4 (VQCs) × 1 (rotation
gate) × 5 qubits) + (5 × 125 + 125 (for a linear layer)) + (125 × 10 + 10 (for the output layer))].
Similarly, the critic shares the same composition, except for the output layer, which has 1
neuron. Therefore, the total parameter count for the critic model is 4.357.

Table 3. Configuration of classical models. Hyperparameters and settings for the artificial neural
network, spiking neural network, and long short-term memory models, respectively.

MLP SNN LSTM

Optimizer Adam(lr = 10−4) Adam(lr = 10−3) Adam(lr = 10−3)

Batch Size 32 16 32

BetaEntropy 0.01 0.01 0.01

Discount Factor 0.98 0.98 0.98

Steps - 15 -

Hidden - 15 25

Layers Actor: [Linear[17, 450], ReLU Actor: [Linear[17, 15] Actor: [LSTM(17, 25, layers = 5)
Linear[450, 10]] Lif1, Lif2 Linear[25, 10]]

Linear[15, 10]]
Critic: [Linear[17, 450], ReLU Critic: [Linear[17, 15]

Linear[450, 1]] Lif1, Lif2 Critic: [LSTM(17, 25, layers = 5)
Linear[15, 1]] Linear[25, 1]]

Table 4. Configuration of quantum models. Hyperparameters and settings for the quantum neural
network, quantum spiking neural network, quantum long short-term memory, and the novel model
composed of the combination of the last two networks.

QNN QSNN QLSTM QSNN–QLSTM

Optimizer Adam(lr=10−2) Adam(lr = 10−3) Adam(lr = 10−3) [(Adam(QSNN.parameters, lr = 10−2),
Adam(QLSTM.parameters, lr = 10−2))]

Batch Size 128 16 128 128

Pre-processing Normalization Normalization - Normalization

Post-processing - - - -

BetaEntropy 0.01 0.01 0.01 0.01

Discount Factor 0.98 0.98 0.98 0.98

Steps - 15 15 15

Hidden - 15 25 15 (QSNN), 125 (QLSTM)

Mathematics 2024, 12, 1230 20 of 26

Table 4. Cont.

QNN QSNN QLSTM QSNN–QLSTM

Layers Actor: [[5 QNN] Actor: [Linear[17, 15] Actor: [Linear[17, 42]
ReLU 15 QSNN Linear[42, 5]

Linear[2N , 10]] Linear[15, 10]] 4 VQCs
Linear[25, 5]
Linear[5, 25]

Linear[25, 10]]
Critic: [[5 QNN Critic: [Linear[17, 15] Critic: [Linear[17, 42] 5 QSNN

ReLU 15 QSNN Linear[42, 5] 5 QLSTM
Linear[2N , 1]] Linear[15, 1]] 4 VQC’S

Linear[25, 5]
Linear[5, 25]
Linear[25, 1]]

Qubits 5 5 5 5

Encoding
Strategy

Amplitude
Encoding Amplitude Encoding Angle Encoding Amplitude Encoding

4.3. Results

The results of this use case are outlined in Table 5, which provides a summary of
the average, best, and worst total accumulated rewards obtained by the four quantum
agents and the three classical agents. In addition, the table also includes the computational
time for each experiment, measured in seconds, along with the average accuracy, which
represents the mean total accumulated reward obtained from 10 independent runs. Various
unchanging seeds were utilized to ensure reproducibility.

In our results analysis, we observed the excellent performance of the novel agent
QSNN–QLSTM, which emerged as the top-performing model in terms of the average
total reward, followed by the LSTM, QLSTM and QNN, and the QSNN and MLP models,
in this order. Similarly, in the category of best total reward, the QSNN–QLSTM agent
consistently achieved the highest result, followed by the LSTM and MLP. Nevertheless,
it’s worth mentioning that the performance of the MLP appears as an outlier in this
context. Consequently, the third position is occupied by the SNN. In the worst total reward
category (as illustrated in Figure 13), after removing the outlier of the QSNN–QLSTM
agent, once again this agent outperformed the others, with the QLSTM and QNN agents
achieving the second and third positions, respectively. Furthermore, when considering
the test rewards, the QSNN–QLSTM agent consistently obtained the highest rewards.
Importantly, the computation time for quantum agents is longer compared to their classical
counterparts. This is primarily due to the use of quantum simulators rather than real
quantum computers, as simulating quantum operations on classical hardware incurs
significant computational costs.

Upon further the analysis and examination of the boxplot shown in Figure 13, it
becomes apparent that the QNN and QSNN–QLSTM models exhibit better robustness
results than the others, with the MLP model showing the worst results.

Finally, considering the learning curves shown in Figure 14, we can witness a positive
progression in learning for QSNN–QLSTM agent. Significantly, there is a reduction in
variance during the later iterations, suggesting improved consistency and progress in
learning. The remaining agents display similar curves, except for MLP, which shows the
worst performance.

Mathematics 2024, 12, 1230 21 of 26

Table 5. Results obtained by classical and quantum models. Column 1: classical models followed by
quantum versions and the novel quantum model proposed; Column 2: average total reward post-training;
Column 3: best total reward post-training; Column 4: worst total reward post-training; Column 5: total
reward (evaluation with deterministic policy); Column 6: computational time in seconds.

Average Tot.Reward Best Tot.Reward Worst Tot.Reward Test Reward Time (s)

MLP −13.75 −9.67 −14.88 −13.25 297.8
SNN −11.05 −9.79 −12.15 −13.31 307.6

LSTM −10.56 −9.43 −12.11 −12.67 302.8
QNN −10.92 −9.90 −11.75 −12.87 326.1

QSNN −11.12 −9.89 −12.39 −13.32 467.4
QLSTM −10.72 −10.14 −11.14 −12.19 335.42

QSNN–QLSTM −9.40 −8.26 −12.73 −11.83 962.5

QNN QSNNQLSTM QSNN QLSTM MLP SNN LSTM
−15

−14

−13

−12

−11

−10

−9

−8

Figure 13. Boxplots that depict the distribution of average total reward achieved by quantum (QNN,
QSNN, QLSTM, and QSNN–QLSTM) and classical models (MLP, SNN, and LSTM).

0 20 40 60 80 100
Episodes

−16

−14

−12

−10

−8

R
ew

ar
d

QNN
QSNNQLSTM
QSNN
QLSTM
MLP
SNN
LSTM

Figure 14. Learning curves obtained from seven models. Three classical models: MLP, SNN, and
LSTM. Four quantum models: QNN, QSNN, QLSTM, and new brain-inspired model QSNN–QLSTM.

Mathematics 2024, 12, 1230 22 of 26

5. Discussion

We presented three classical models and four quantum models, one of which incorpo-
rates a novel approach inspired by brain function to address the scenario of reinforcement
learning in the context of energy optimization. A notable observation from the results
analysis is the effectiveness of utilizing quantum models inspired by the brain, which out-
perform the classical approaches and other quantum models. Additionally, the quantum
models demonstrate a reduced complexity, requiring fewer parameters during training
compared to the classical counterparts. However, it’s worth noting that, since they have
been executed in simulators, the runtime is impacted due to the computational load they
carry. Conducting and implementing large-scale experiments on existing quantum devices
poses challenges, and the intrinsic noise in these systems may impact the effectiveness
and dependability of the models. Furthermore, the cost of computational time is notable,
resulting in longer experiments and the finding of optimal hyperparameters. These con-
straints emphasize the necessity for continual advancements in both quantum hardware
and simulators to enable decreased computation times.

6. Conclusions and Future Work

Recent advancements in neuroscience-inspired learning have extended Hebbian plas-
ticity by incorporating rewards through the exploration of the neuromodulator dopamine.
Within the realm of reinforcement learning (RL), review articles on neo-Hebbian learning
have emerged, addressing diverse topics including the consolidation of associative memo-
ries and the connections among specific neo-Hebbian formulations and their counterparts
in computational RL theory [49]. Moreover, it is widely acknowledged that quantum prob-
ability theory plays a more prominent role in quantum cognition compared to its classical
analog. This is attributed to the fact that quantum probability theory, being a generalized
form of probability theory, offers a more robust representation for tasks and internal states
(for instance, allowing internal states to exist in an indefinite state prior to action) [27].

Our investigation has explored the integration of these theories into quantum agents.
Unveiling the potential benefits of infusing neuroscientific insights into quantum reinforce-
ment learning could pave the way for exciting advancements in the field, yielding new
perspectives and opening novel avenues. Our hypothesis, based on mimicking the func-
tionalities of the prefrontal cortex and hippocampus using QSNN and QLSTM, respectively,
for achieving enhanced performance, memory retention, and experience retrieval while
mitigating catastrophic forgetting, has been validated with the consideration of the results.
Thus, it is intriguing to continue researching the intersection of neuroscience, quantum
computing, and artificial intelligence, as it could offer mutual insights to comprehend the
physiological processes underlying in the human memory, particularly regarding what to
retain and what to forget.

Additionally, it could address other challenges in deep RL, such as generalization,
adaptability to change, and navigating uncertain environments, among others. Deep RL
systems have yet to demonstrate the ability to match humans in terms of flexible adap-
tation through structured inference, drawing on a substantial repository of background
knowledge. If these systems can bridge this gap remains an unanswered and compelling
question. Recent research suggests that under certain conditions, deep RL systems can effi-
ciently leverage previous learning to systematically adapt to new and seemingly unfamiliar
situations [75]. Nevertheless, this capability does not always occur [76], and exploring the
distinctions is of significance to both AI and neuroscience [77].

Another unresolved question concerns how to represent the intricate interaction
mechanisms among multiple brain areas using suitable RL models. This complexity arises
from the fact that the decision-making process is distributed across various brain regions,
which may dynamically change depending on specific task demands. Furthermore, there
is currently a lack of a mathematical theory capable of elucidating all the remarkable
discoveries in human brain learning. Hence, it is important for future research to advance

Mathematics 2024, 12, 1230 23 of 26

an integrative theory and develop computational models capable of harmonizing various
types of brain-inspired RL [2].

Finally, in the advancement of quantum neural networks, the development of new
training algorithms that harness the principles of quantum computing, alongside new brain-
inspired models, such as the one presented here, will be crucial to enhance convergence
and reduce execution times. However, the most significant impact on the progress of
quantum neural networks will heavily depend on hardware development, as it accelerates
experiments and facilitates drawing conclusions.

Author Contributions: E.A. conducted the conceptualization and implementation. All authors
participated in the review process. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The scenarios tested in the experimentation were originally proposed
in [73] (with the simulator publicly available at https://github.com/ugr-sail/sinergym, accessed on
27 July 2022).

Acknowledgments: This article was supported by the project QUANERGY (Ref. TED2021-129360B-
I00), Ecological and Digital Transition R&D projects call 2022 by MCIN/AEI/10.13039/501100011033
and European Union NextGeneration EU/PRTR.

Conflicts of Interest: The authors have no conflicts of interest to disclose.

Abbreviations
Abbreviations utilized in this manuscript comprise:

A2C Advantage Actor–Critic
BPTT Backpropagation through time
BG Basal Ganglia
CPU Central processing unit
DQN Deep Q-network
DRL Deep reinforcement learning
HDC Hyperdimensional computing and spiking
HVAC Heating, ventilation, air-conditioning
KPI Key performance indicator
LIF Leaky integrate and fired Neuron
LSTM Long/short-term memory
LTS Long-term store
mPFC Medial prefrontal cortex
MDP Markov decision process
MLP Multilayer perceptron
NISQ Noisy, intermediate-scale quantum era
PFC Prefrontal cortex
QC Quantum computing
QLIF Quantum leaky integrate and fired neuron
QLSTM Quantum long/short-term memory
QML Quantum machine learning
QNN Quantum neural network
QSNN Quantum spiking neural network
QPU Quantum processing unit
QRL Quantum reinforcement learning
RNN Recurrent neural networks
RL Reinforcement learning
SNN Spiking neural network
S-R Stimulus-response
STS Short-term store
vmPFC Ventromedial prefrontal cortex
VQC Variational quantum circuit

https://github.com/ugr-sail/sinergym

Mathematics 2024, 12, 1230 24 of 26

References
1. Zhao, L.; Zhang, L.; Wu, Z.; Chen, Y.; Dai, H.; Yu, X.; Liu, Z.; Zhang, T.; Hu, X.; Jiang, X.; et al. When brain-inspired AI meets AGI.

Meta-Radiology 2023, 1, 100005. [CrossRef]
2. Fan, C.; Yao, L.; Zhang, J.; Zhen, Z.; Wu, X. Advanced Reinforcement Learning and Its Connections with Brain Neuroscience.

Research 2023, 6, 0064. [CrossRef]
3. Domenech, P.; Rheims, S.; Koechlin, E. Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal

cortex. Science 2020, 369, eabb0184. [CrossRef]
4. Baram, A.B.; Muller, T.H.; Nili, H.; Garvert, M.M.; Behrens, T.E.J. Entorhinal and ventromedial prefrontal cortices abstract and

generalize the structure of reinforcement learning problems. Neuron 2021, 109, 713–723.e7. [CrossRef]
5. Bogacz, R.; Larsen, T. Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia. Neural

Comput. 2011, 23, 817–851. [CrossRef]
6. Houk, J.; Adams, J.; Barto, A. A Model of How the Basal Ganglia Generate and Use Neural Signals that Predict Reinforcement.

Model. Inf. Process. Basal Ganglia 1995, 13. [CrossRef]
7. Joel, D.; Niv, Y.; Ruppin, E. Actor–critic models of the basal ganglia: New anatomical and computational perspectives. Neural

Netw. 2002, 15, 535–547. [CrossRef]
8. Collins, A.G.E.; Frank, M.J. Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement

learning and choice incentive. Psychol. Rev. 2014, 121, 337–366. [CrossRef]
9. Maia, T.V.; Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 2011,

14, 154–162. [CrossRef]
10. Maia, T.V. Reinforcement learning, conditioning, and the brain: Successes and challenges. Cogn. Affect. Behav. Neurosci. 2009,

9, 343–364. [CrossRef]
11. O’Doherty, J.; Dayan, P.; Schultz, J.; Deichmann, R.; Friston, K.; Dolan, R.J. Dissociable Roles of Ventral and Dorsal Striatum in

Instrumental Conditioning. Science 2004, 304, 452–454. [CrossRef]
12. Chalmers, E.; Contreras, E.B.; Robertson, B.; Luczak, A.; Gruber, A. Context-switching and adaptation: Brain-inspired mechanisms

for handling environmental changes. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN),
Vancouver, BC, Canada, 24–29 July 2016; pp. 3522–3529. [CrossRef]

13. Robertazzi, F.; Vissani, M.; Schillaci, G.; Falotico, E. Brain-inspired meta-reinforcement learning cognitive control in conflictual
inhibition decision-making task for artificial agents. Neural Netw. 2022, 154, 283–302. [CrossRef]

14. Zhao, Z.; Zhao, F.; Zhao, Y.; Zeng, Y.; Sun, Y. A brain-inspired theory of mind spiking neural network improves multi-agent
cooperation and competition. Patterns 2023, 4, 100775. [CrossRef]

15. Zhang, K.; Lin, X.; Li, M. Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing
problems. Phys. A Stat. Mech. Appl. 2023, 611, 128451. [CrossRef]

16. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2019. [CrossRef]

17. Rezayi, S.; Dai, H.; Liu, Z.; Wu, Z.; Hebbar, A.; Burns, A.H.; Zhao, L.; Zhu, D.; Li, Q.; Liu, W.; et al. ClinicalRadioBERT:
Knowledge-Infused Few Shot Learning for Clinical Notes Named Entity Recognition. In Proceedings of the Machine Learning in
Medical Imaging; Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z., Eds.; Springer: Cham, Switzerland, 2022; pp. 269–278.

18. Liu, Z.; He, X.; Liu, L.; Liu, T.; Zhai, X. Context Matters: A Strategy to Pre-train Language Model for Science Education. In
Proceedings of the Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation
Tracks, Practitioners, Doctoral Consortium and Blue Sky; Wang, N., Rebolledo-Mendez, G., Dimitrova, V., Matsuda, N., Santos, O.C.,
Eds.; Springer: Cham, Switzerland, 2023; pp. 666–674.

19. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. arXiv 2020. [CrossRef]

20. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021. [CrossRef]

21. Aïmeur, E.; Brassard, G.; Gambs, S. Quantum speed-up for unsupervised learning. Machine Learn. 2013, 90, 261–287. [CrossRef]
22. Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [CrossRef]
23. Wiebe, N.; Kapoor, A.; Svore, K.M. Quantum Nearest-Neighbor Algorithms for Machine Learning. Quantum Inf. Comput. 2015,

15, 318–358.
24. Anguita, D.; Ridella, S.; Rivieccio, F.; Zunino, R. Quantum optimization for training support vector machines. Neural Netw. 2003,

16, 763–770. [CrossRef]
25. Andrés, E.; Cuéllar, M.P.; Navarro, G. On the Use of Quantum Reinforcement Learning in Energy-Efficiency Scenarios. Energies

2022, 15, 6034. [CrossRef]
26. Andrés, E.; Cuéllar, M.P.; Navarro, G. Efficient Dimensionality Reduction Strategies for Quantum Reinforcement Learning. IEEE

Access 2023, 11, 104534–104553. [CrossRef]
27. Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012.
28. Li, J.A.; Dong, D.; Wei, Z.; Liu, Y.; Pan, Y.; Nori, F.; Zhang, X. Quantum reinforcement learning during human decision-making.

Nat. Hum. Behav. 2020, 4, 294–307. [CrossRef]
29. Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [CrossRef]

http://doi.org/10.1016/j.metrad.2023.100005
http://dx.doi.org/10.34133/research.0064
http://dx.doi.org/10.1126/science.abb0184
http://dx.doi.org/10.1016/j.neuron.2020.11.024
http://dx.doi.org/10.1162/NECO_a_00103
http://dx.doi.org/10.7551/mitpress/4708.003.0020
http://dx.doi.org/10.1016/S0893-6080(02)00047-3
http://dx.doi.org/10.1037/a0037015
http://dx.doi.org/10.1038/nn.2723
http://dx.doi.org/10.3758/CABN.9.4.343
http://dx.doi.org/10.1126/science.1094285
http://dx.doi.org/10.1109/IJCNN.2016.7727651
http://dx.doi.org/10.1016/j.neunet.2022.06.020
http://dx.doi.org/10.1016/j.patter.2023.100775
http://dx.doi.org/10.1016/j.physa.2023.128451
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.2005.14165
http://dx.doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.1007/s10994-012-5316-5
http://dx.doi.org/10.1103/PhysRevA.101.032308
http://dx.doi.org/10.1016/S0893-6080(03)00087-X
http://dx.doi.org/10.3390/en15166034
http://dx.doi.org/10.1109/ACCESS.2023.3318173
http://dx.doi.org/10.1038/s41562-019-0804-2
http://dx.doi.org/10.1146/annurev.neuro.24.1.167

Mathematics 2024, 12, 1230 25 of 26

30. Atkinson, R.; Shiffrin, R. Human Memory: A Proposed System and its Control Processes. Psychol. Learn. Motiv. 1968, 2, 89–195.
[CrossRef]

31. Andersen, P. The Hippocampus Book; Oxford University Press: Oxford, UK, 2007.
32. Olton, D.S.; Becker, J.T.; Handelmann, G.E. Hippocampus, space, and memory. Behav. Brain Sci. 1979, 2, 313–322. [CrossRef]
33. Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking

Neural Networks Using Lessons from Deep Learning. Proc. IEEE 2021, 111, 1016–1054. [CrossRef]
34. McCloskey, M.; Cohen, N.J. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. Psychol.

Learn. Motiv. 1989, 24, 109–165. [CrossRef]
35. Raman, N.S.; Devraj, A.M.; Barooah, P.; Meyn, S.P. Reinforcement Learning for Control of Building HVAC Systems. In Proceedings

of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 2326–2332. [CrossRef]
36. Wang, Y.; Velswamy, K.; Huang, B. A Long-Short Term Memory Recurrent Neural Network Based Reinforcement Learning

Controller for Office Heating Ventilation and Air Conditioning Systems. Processes 2017, 5, 46. [CrossRef]
37. Fu, Q.; Han, Z.; Chen, J.; Lu, Y.; Wu, H.; Wang, Y. Applications of reinforcement learning for building energy efficiency control: A

review. J. Build. Eng. 2022, 50, 104165. [CrossRef]
38. Hebb, D. The Organization of Behavior: A Neuropsychological Theory; Taylor & Francis: Abingdon, UK, 2005.
39. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.

2019, 111, 47–63. [CrossRef]
40. Lobo, J.L.; Del Ser, J.; Bifet, A.; Kasabov, N. Spiking Neural Networks and online learning: An overview and perspectives. Neural

Netw. 2020, 121, 88–100. [CrossRef]
41. Lapicque, L. Recherches quantitatives sur l’excitation electrique des nerfs. J. Physiol. Paris 1907, 9, 620–635.
42. Zou, Z.; Alimohamadi, H.; Zakeri, A.; Imani, F.; Kim, Y.; Najafi, M.H.; Imani, M. Memory-inspired spiking hyperdimensional

network for robust online learning. Sci. Rep. 2022, 12, 7641. [CrossRef]
43. Kumarasinghe, K.; Kasabov, N.; Taylor, D. Brain-inspired spiking neural networks for decoding and understanding muscle

activity and kinematics from electroencephalography signals during hand movements. Sci. Rep. 2021, 11, 2486. [CrossRef]
44. Banino, A.; Barry, C.; Uria, B.; Blundell, C.; Lillicrap, T.; Mirowski, P.; Pritzel, A.; Chadwick, M.J.; Degris, T.; Modayil, J.; et al.

Vector-based navigation using grid-like representations in artificial agents. Nature 2018, 557, 429–433. [CrossRef]
45. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural

Networks 1994, 5, 157–166. [CrossRef]
46. Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained

Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [CrossRef]
47. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. Off. J. Int. Neural Netw. Soc. 2005, 18, 602–610. [CrossRef]
48. Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. Adv. Neural Inf. Process. Syst. 1996, 9, 473–479.
49. Triche, A.; Maida, A.S.; Kumar, A. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the

exploration–exploitation balance with bio-inspired neural networks. Neural Netw. 2022, 151, 16–33. [CrossRef]
50. Dong, H.; Ding, Z.; Zhang, S.; Yuan, H.; Zhang, H.; Zhang, J.; Huang, Y.; Yu, T.; Zhang, H.; Huang, R. Deep Reinforcement Learning:

Fundamentals, Research, and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020.
51. Sutton, R.S.; Barto, A.G. The Reinforcement Learning Problem. In Reinforcement Learning: An Introduction; MIT Press: Cambridge,

MA, USA, 1998; pp. 51–85.
52. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
53. Shao, K.; Zhao, D.; Zhu, Y.; Zhang, Q. Visual Navigation with Actor-Critic Deep Reinforcement Learning. In Proceedings of the

2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [CrossRef]
54. Macaluso, A.; Clissa, L.; Lodi, S.; Sartori, C. A Variational Algorithm for Quantum Neural Networks. In Proceedings of the

Computational Science—ICCS 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 591–604.
55. Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci.

Technol. 2019, 4, 043001. [CrossRef]
56. Zhao, C.; Gao, X.S. QDNN: Deep neural networks with quantum layers. Quantum Mach. Intell. 2021, 3, 15. [CrossRef]
57. Lu, B.; Liu, L.; Song, J.Y.; Wen, K.; Wang, C. Recent progress on coherent computation based on quantum squeezing. AAPPS Bull.

2023, 33, 7. [CrossRef]
58. Hou, X.; Zhou, G.; Li, Q.; Jin, S.; Wang, X. A duplication-free quantum neural network for universal approximation. Sci. China

Physics Mech. Astron. 2023, 66, 270362. [CrossRef]
59. Zhao, M.; Chen, Y.; Liu, Q.; Wu, S. Quantifying direct associations between variables. Fundam. Res. 2023. [CrossRef]
60. Zhou, Z.-r.; Li, H.; Long, G.L. Variational quantum algorithm for node embedding. Fundam. Res. 2023. [CrossRef]
61. Ding, L.; Wang, H.; Wang, Y.; Wang, S. Based on Quantum Topological Stabilizer Color Code Morphism Neural Network Decoder.

Quantum Eng. 2022, 2022, 9638108. [CrossRef]
62. Tian, J.; Sun, X.; Du, Y.; Zhao, S.; Liu, Q.; Zhang, K.; Yi, W.; Huang, W.; Wang, C.; Wu, X.; et al. Recent Advances for Quantum

Neural Networks in Generative Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12321–12340. [CrossRef]

http://dx.doi.org/10.1016/S0079-7421(08)60422-3
http://dx.doi.org/10.1017/S0140525X00062713
http://dx.doi.org/10.1109/JPROC.2023.3308088
http://dx.doi.org/10.1016/S0079-7421(08)60536-8
http://dx.doi.org/10.23919/ACC45564.2020.9147629
http://dx.doi.org/10.3390/pr5030046
http://dx.doi.org/10.1016/j.jobe.2022.104165
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1016/j.neunet.2019.09.004
http://dx.doi.org/10.1038/s41598-022-11073-3
http://dx.doi.org/10.1038/s41598-021-81805-4
http://dx.doi.org/10.1038/s41586-018-0102-6
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/TPAMI.2008.137
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1016/j.neunet.2022.03.021
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/IJCNN.2018.8489185
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1007/s42484-021-00046-w
http://dx.doi.org/10.1007/s43673-023-00077-4
http://dx.doi.org/10.1007/s11433-023-2098-8
http://dx.doi.org/10.1016/j.fmre.2023.06.012
http://dx.doi.org/10.1016/j.fmre.2023.10.001
http://dx.doi.org/10.1155/2022/9638108
http://dx.doi.org/10.1109/TPAMI.2023.3272029

Mathematics 2024, 12, 1230 26 of 26

63. Jeswal, S.K.; Chakraverty, S. Recent Developments and Applications in Quantum Neural Network: A Review. Arch. Comput.
Methods Eng. 2019, 26, 793–807. [CrossRef]

64. Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Elsevier: Amsterdam, The Netherlands,
2014.

65. Weigold, M.; Barzen, J.; Leymann, F.; Salm, M. Expanding Data Encoding Patterns For Quantum Algorithms. In Proceedings of
the 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C), Stuttgart, Germany, 22–26 March
2021; pp. 95–101.

66. Zenke, F.; Poole, B.; Ganguli, S. Continual Learning Through Synaptic Intelligence. Proc. Mach. Learn. Res. 2017, 70, 3987–3995.
[PubMed]

67. Rusu, A.A.; Rabinowitz, N.C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive
Neural Networks. arXiv 2016. [CrossRef]

68. Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual Learning with Deep Generative Replay. arXiv 2017. [CrossRef]
69. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.C.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-

Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. arXiv 2016. [CrossRef]
70. Crawley, D.; Pedersen, C.; Lawrie, L.; Winkelmann, F. EnergyPlus: Energy Simulation Program. Ashrae J. 2000, 42, 49–56.
71. Mattsson, S.E.; Elmqvist, H. Modelica—An International Effort to Design the Next Generation Modeling Language. Ifac Proc. Vol.

1997, 30, 151–155. [CrossRef]
72. Zhang, Z.; Lam, K.P. Practical Implementation and Evaluation of Deep Reinforcement Learning Control for a Radiant Heating

System. In Proceedings of the 5th Conference on Systems for Built Environments, BuildSys ’18, New York, NY, USA, 7–8
November 2018; pp. 148–157. [CrossRef]

73. Jiménez-Raboso, J.; Campoy-Nieves, A.; Manjavacas-Lucas, A.; Gómez-Romero, J.; Molina-Solana, M. Sinergym: A Building
Simulation and Control Framework for Training Reinforcement Learning Agents. In Proceedings of the 8th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 17–18 November 2021; pp.
319–323. [CrossRef]

74. Scharnhorst, P.; Schubnel, B.; Fernández Bandera, C.; Salom, J.; Taddeo, P.; Boegli, M.; Gorecki, T.; Stauffer, Y.; Peppas, A.; Politi, C.
Energym: A Building Model Library for Controller Benchmarking. Appl. Sci. 2021, 11, 3518. [CrossRef]

75. Hill, F.; Lampinen, A.; Schneider, R.; Clark, S.; Botvinick, M.; McClelland, J.L.; Santoro, A. Environmental drivers of systematicity
and generalization in a situated agent. arXiv 2020. [CrossRef]

76. Lake, B.M.; Baroni, M. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent
networks. arXiv 2018. [CrossRef]

77. Botvinick, M.; Wang, J.X.; Dabney, W.; Miller, K.J.; Kurth-Nelson, Z. Deep Reinforcement Learning and Its Neuroscientific
Implications. Neuron 2020, 107, 603–616. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11831-018-9269-0
http://www.ncbi.nlm.nih.gov/pubmed/31909397
http://dx.doi.org/10.48550/arXiv.1606.04671
http://dx.doi.org/10.48550/arXiv.1705.08690
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1016/S1474-6670(17)43628-7
http://dx.doi.org/10.1145/3276774.3276775
http://dx.doi.org/10.1145/3486611.3488729
http://dx.doi.org/10.3390/app11083518
http://dx.doi.org/10.48550/arXiv.1910.00571
http://dx.doi.org/10.48550/arXiv.1711.00350
http://dx.doi.org/10.1016/j.neuron.2020.06.014

	Introduction
	Background
	Spiking Neural Networks
	Long Short-Term Memory
	Deep Reinforcement Learning
	Quantum Neural Networks

	Methodology
	Experimentation
	Problem Statement
	Experimental Settings
	Results

	Discussion
	Conclusions and Future Work
	References

