
Citation: Zhu, C.; Zhao, X.; He, X.;

Tang Z. Hybrid Optimization Method

Based on Coupling Local Gradient

Information and Global Evolution

Mechanism. Mathematics 2024, 12,

1234. https://doi.org/10.3390/

math12081234

Academic Editor: Ioannis G. Tsoulos

Received: 15 March 2024

Revised: 16 April 2024

Accepted: 18 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hybrid Optimization Method Based on Coupling Local
Gradient Information and Global Evolution Mechanism
Caicheng Zhu , Xin Zhao, Xinlei He and Zhili Tang *

College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
zhaoxin970314@nuaa.edu.cn (X.Z.); hxl131@nuaa.edu.cn (X.H.)
* Correspondence: tangzhili@nuaa.edu.cn

Abstract: Multi-objective evolutionary algorithms (MOEA) have attracted much attention because
of their good global exploration ability; however, their local search ability near the optimal value
is weak, and for large-scale decision-variable optimization problems the number of populations
and iterations required by MOEA are very large, so the optimization efficiency is low. Gradient
optimization algorithms can overcome these difficulties well, but gradient search methods are
difficult to apply to multi-objective optimization problems (MOPs). To this end, this paper introduces
a stochastic weighting function based on the weighted average gradient and proposes two multi-
objective stochastic gradient operators. Further, two efficient evolutionary algorithms, MOGBA and
HMOEA, are developed. Their local search capability has been greatly enhanced while retaining
the good global exploration capability by using different offspring update strategies for different
subpopulations. Numerical experiments show that HMOEA has excellent capture ability for various
Pareto formations, and it can easily solve multi-objective optimization problems with many objectives,
which improves the efficiency by a factor of 5–10 compared with typical multi-objective evolutionary
algorithms. HMOEA is further applied to the multi-objective aerodynamic optimization design of the
RAE2822 airfoil and the ideal Pareto front is obtained, which indicates that HMOEA is an efficient
optimization algorithm with potential applications in aerodynamic optimization design.

Keywords: aerodynamic optimization; multi-objective optimization; evolutionary algorithm;
gradient optimization

MSC: 68T20; 90C26

1. Introduction

Aircraft shape optimization is one of the key issues in aerodynamic layout design.
The traditional aerodynamic optimization method that relies on experience and focuses
on trial-and-error methods has high computational costs, long design cycles, and cannot
guarantee the optimal aerodynamic shape [1]. With the rapid development of computer
technology, aerodynamic optimization methods that combine optimization algorithms
with computational fluid dynamics (CFD) technology can effectively and economically
explore large design spaces to obtain the best solutions. This method has been used in
aerodynamics in the past few decades. Optimization has played an important role in the
design process [2–4]. From an engineering perspective, aerodynamic optimization can
be regarded as MOPs, because researchers usually need to consider multiple objective
functions, such as the performance of the aircraft at different altitudes and speeds. Ideally,
researchers would prefer to obtain a solution that represents the best performance for a
specific problem, but such a solution often does not exist in multi-objective situations.
Obtaining the Pareto optimal set is a more preferable way because the decision maker
can choose the solution that best suits their needs based on the Pareto optimal set [5].
Although many optimization algorithms have been developed and applied to aerodynamic
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optimization design, they often fail to provide satisfactory results for such problems. In
general, optimization algorithms based on local gradient information (GBAs) and global
evolutionary algorithms (EAs) are the two most widely used methods in aerodynamic
optimization [1]. This is because, unlike other optimization problems, the evaluation
function for aerodynamic optimization is generally CFD. It is well known that the time cost
of CFD is very expensive. Moreover, aerodynamic optimization problems usually have
large-scale design variables and the search of such spaces is not an easy task. Therefore,
efficiency is a crucial issue in aerodynamic optimization, even beyond theoretical optimality.
A large search space is good for evolutionary algorithms to find the global optimal solution,
but it also means that a large population size is needed. In aerodynamic optimization,
large populations often imply high CPU computational costs. Therefore, it is necessary to
develop efficient multi-objective optimization algorithms.

GBAs can quickly converge to the vicinity of the extreme solution, and the optimization
efficiency is very impressive. However, it depends on the initial value and gradient
information; GBAs are essentially only local search algorithms and, thus, are difficult to
converge to the global optimal solution [6]. In aerodynamic optimization, GBAs have been
widely used due to the emergence of the adjoint method [7]. Unlike the finite difference
method or the complex variable difference method, the adjoint method evaluates sensitivity
information by solving the adjoint equation accompanying the flow equation and its
computational complexity is independent of the number of design variables [8]. However,
this technology still has shortcomings in dealing with MOPs and constrained optimization
problems. Most of the existing optimization algorithms based on local gradient information
focus on finding a single improvement direction. Using this method, it is difficult to
evenly distribute the solution across the entire Pareto front, especially for a non-convex
and discontinuous Pareto front.

EA is a population-based global optimization algorithm that uses the global structure
of the search space to explore the objective function. It uses an evolutionary mechanism
based on stochastic operations to provide perturbations to the population with genetic
operators (selection, crossover, mutation, etc.) to find possible global optimal solutions,
so they are particularly suitable for solving complex multimodal problems. It has good
robustness because it does not require objectives and constraints to be continuous or
differentiable. The population search mechanism of EAs can ultimately obtain a set of
solutions instead of one solution. This characteristic determines that EAs are very suitable
for solving MOPs [9]. The main advantage of EAs is their ability to optimally combine
extraction and exploration [10]. Although this optimal combination may be suitable for
EAs in theory, there are some problems in practical engineering applications. This is
because, in theory, EAs assume that the population size is infinite, the fitness function
accurately reflects the applicability of the solution, the interactions between genes are very
small, etc. [11]. However, the actual population size is limited, which affects the sampling
ability of EAs. Finite populations dictate that information about the local structure of
the search space is often overlooked [12]. This leads to the fact that EAs require a lot of
evaluation of the objective function, and the evaluation of the aerodynamic function is very
time-consuming, making EA-based aerodynamic optimization methods very time-costly.
Therefore, more attention should be paid to the number of function evaluations required by
EAs when solving aerodynamic optimization problems. Optimization efficiency is a crucial
issue faced by EAs when solving aerodynamic optimization problems. For this reason, it is
essential to explore efficient aerodynamic optimization algorithms.

If different algorithms are combined into a hybrid algorithm, their deficiencies can
be avoided as much as possible while retaining their respective favorable features; thus,
adding local search methods to EAs not only helps to overcome the convergence difficulties
due to the limited population size [13] but also avoids the dilemmas of GBAs in dealing
with constrained problems and MOPs. Although EAs can quickly locate the region where
the global optimum is located, they take a relatively long time to find the exact local
optimum in the convergence region, and the combination of EAs and local search methods
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can improve the ability to accurately locate and accurately search for the global optimum
solution [14]. With this hybridization, the local search helps direct the EAs to the globally
optimal solution, thus improving the overall convergence efficiency. If a proper balance
between global exploration and local exploitation capabilities can be further achieved, the
algorithm can easily produce highly accurate solutions.

We know that in a single-objective case, additional use of gradient information can
effectively improve the efficiency of the optimization algorithm. However, so far, there is no
mature multi-objective optimization algorithm based on gradient information. Therefore,
how to use gradient information to improve the efficiency of MOEA is an interesting
question [15,16]. Based on this, our paper first proposes the multi-objective stochastic
gradient operator, which uses a novel random weighted variable method to solve multi-
objective problems, allocates new random weights in each iteration, and performs gradient
optimization. This method is expected to make the solution diffuse in different directions
during iteration so as to obtain a widely distributed Pareto-optimal solution. In addition,
we also provide two modes for assigning random weights: single-weight and multi-weight
modes. The single-weight mode generates a single random weight for each individual
to perform gradient evolution, and the multi-weight mode generates multiple random
weights for each individual to perform gradient evolution. Furthermore, based on the multi-
objective gradient operator, the multi-objective gradient optimization algorithm (MOGBA)
is proposed, which retains the main framework of MOEA while using the multi-objective
gradient operator to replace the offspring generation mechanism based on crossover and
mutation. Optimization can start with a random population, randomly assigning weights
to each individual at each iteration, weighting the objective, and then performing gradient
optimization. Theoretically, multi-weight search represents a multi-directional search,
which can effectively explore the target space but also produces a lot of meaningless or
inefficient searches. The computational cost is an important issue we need to consider.
Therefore, we took advantage of the regularity of MOPs to divide the population with a
clustering algorithm, conducted multi-weight searches for densely populated areas and
degraded individuals, and performed single-weight searches for individuals in other areas
to avoid wasting computing resources.

Although the use of gradient information does improve optimization efficiency to
a certain extent, its local search characteristics make it difficult to handle complex prob-
lems, and excessive use of gradient information will quickly lose diversity and make the
algorithm fall into local optimality [17]. Therefore, we propose a hybrid multi-objective
evolutionary algorithm (HMOEA) based on MOGBA. HMOEA retains the genetic operator
of MOEA as a global search operator and the multi-objective gradient operator as a local
search operator. HMOEA evolves offspring populations by alternating between evolution-
ary operators and multi-objective gradient operators, which not only enhances the mining
and convergence capabilities of the algorithm but also avoids the excessive use of gradient
information, thereby ensuring the diversity of the population and the exploration capabil-
ity of the algorithm. HMOEA combines the gradient-information-based multi-objective
optimization algorithm of this paper, which is used to enhance mining capacity and speed
up convergence, and the NSGA-III algorithm, which is used to enable the exploration of
the optimal distribution of solutions. After successful validation in mathematical test cases,
the method has been successfully applied to aerodynamic shape optimization, effectively
reducing computational cycles.

2. Performance Analysis and Optimization Performance Comparison between EAs
and GBAs

An optimization problem is a problem of finding the design variables that make the
objective optimal, subject to constraints [1]. Optimization problems cover the fields of
physics, chemistry, mathematics, biology, medicine, economics, aerospace, and other fields
in the form of mathematical programming. Many problems in scientific research and
engineering technology practice can be transformed into optimization problems. To solve
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the optimization problem, we must first abstract the specific problem into a mathematical
model—that is, systematically analyze the problem and define the corresponding relation-
ship between the decision variables and the objective function. After that, solving the
mathematical model is another crucial task. Optimization methods can be divided into
optimization algorithms based on gradient information and heuristic algorithms according
to different orientations.

The gradient optimization method is a search method based on gradient information.
The methods for obtaining gradient information mainly include the finite difference com-
plex variable method, automatic differentiation method, and adjoint method, among which
the adjoint method is the most efficient. Combining the adjoint method with the gradient-
based optimization algorithm can significantly improve the efficiency of large-scale design
variable optimization problems. However, the gradient-based optimization algorithms are
essentially local optimization methods, which can easily fall into local optimality and make
it difficult to obtain the global optimal aerodynamic shape. The heuristic algorithm has
better global characteristics and can search for the global optimal solution with a greater
probability. The natural parallelism of the algorithm is also very suitable for large-scale
parallel computing. However, its optimization process may require a large number of calls
to CFD analysis. What is more serious is that as the dimensionality of variables increases, a
“curse of dimensionality” may occur.

In this section, we take the test function as an example to compare the performance of
EAs and GBAs. Consider the following minimization problem of the Rosenbrock function:

f (x) =
d−1

∑
i=1

[
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

]
(1)

where xi ∈ [−2.048, 2.048]. This function is a unimodal function with the global minimum
located in a narrow parabolic valley. The function graph is shown in Figure 1. However,
even if this valley is easy to find, converging to the minimum is very difficult. Let D repre-
sent the variable dimension; we tested the 2-dimensional and 10-dimensional Rosenbrock
functions. All parameters of the Genetic Algorithm (GA) [18] and L-BFGS-B [19] are set to
default values. The GA population size is 20 times the decision variable dimension, and the
iterations are 500 generations. Therefore, the number of fitness evaluations (FEs) is 1000D.
L-BFGS-B performs the same number of fitness value evaluations, and the iterative process
of each algorithm is shown in Figure 2.

It can be seen from the figure that when D = 2, L-BFGS-B converges faster in the early
stage, and the convergence speed does not decrease with the iteration, while GA performs
stepwise descending convergence, which is relatively slow. The FEs required for GA and
L-BFGS-B to achieve a convergence accuracy of 1× 10−5 are 12,320 and 1480, respectively,
and the calculation amount required for GA is 8 times that of L-BFGS-B; when D = 10,
L-BFGS-B can converge to near the optimal value very fast, but the convergence speed of
GA is slower. To achieve a convergence accuracy of 1× 101, GA and L-BFGS-B require
FEs of 7600 and 400, respectively, which is nearly a 20-fold difference in computation.
The convergence speed of GA at D = 10 is significantly lower than that at D = 2, which
shows that the increase in variable dimension brings great difficulties to the convergence
of GA; however, L-BFGS-B does not encounter such problems. It can be seen that for
continuous optimization problems, GBAs have unparalleled advantages in efficiency, and
this advantage will gradually expand as the variable dimension increases, which is difficult
for EAs to match.
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Figure 1. Rosenbrock function.
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Figure 2. Rosenbrock function optimization convergence process.

Therefore, when solving engineering optimization problems, especially the optimiza-
tion design problems of aerodynamic shape, we cannot just rely on evolutionary algorithms.
It is best to integrate gradient information into the optimization design process to greatly
improve the optimization efficiency.

3. Multi-Objective Deterministic Optimization Method Based on Stochastic
Gradient Operator

It is well known that aerodynamic optimization problems usually have a high-dimensional
design space in order to accurately describe the geometry of the vehicle, whereas evolu-
tionary optimization in a high-dimensional space requires a large population size. In
evolutionary algorithms, large population sizes are always accompanied by high CPU
consumption [20]; efficiency is a crucial issue in aerodynamic optimization, even beyond
the rigor of optimization theory.

Taking the 20-dimensional single-objective aerodynamic optimization problem as an
example, we estimate the number of flow field calculations required for EAs and GBAs to
conduct a simple efficiency evaluation. In general, the required population size for EAs is
about 5–20 times the number of decision variables, and about 50 generations of evolution
for aerodynamic optimization with EA methods will usually result in a relatively optimal
solution, so the number of EA flow field calculations is about 5000–20,000; however, the
computational cost of the gradient-based adjoint optimization method is independent
of the number of design variables, and the computational cost of the adjoint equation is
comparable to the computational cost of the flow field. Thus, it can be considered that
the computational cost of solving one gradient is equivalent to the computational cost of
solving two flow fields, and GBAs tend to converge after 50–100 iteration calculations, so
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it can be considered that the number of flow field calculations of GBAs is about 100–200
times. In addition, for multi-objective optimization problems, the number of populations
required for EAs increases geometrically as the number of objectives increases, so the
number of flow field calculations will also increase significantly, while GBAs based on
weighted averages always have single-objective optimization properties, and the number
of calculations will not increase as much as EAs. Thus, for continuous problems, gradient-
based algorithms are always the fastest way to find optimization, although they may only
find local optimal solutions.

Although the GBA method based on weighted average can efficiently solve multi-
objective optimization problems with convex Pareto fronts, it cannot effectively solve multi-
objective optimization problems with other types of Pareto fronts (concave, discrete, etc.)
because it contains too much certainty and lacks randomness. In particular, it completely
fails when solving discontinuous, discrete, and non-uniformly distributed Pareto front
problems. Based on this, this section will introduce randomness based on the concept
of weighted average and develop a multi-objective deterministic optimization algorithm
based on stochastic gradient operators.

3.1. Stochastic Gradient Operator for Multi-Objective Optimization

Although the GBA method has high optimization efficiency, it is easy to fall into local
optimality; more seriously, when facing multi-objective optimization problems, the GBA
will not evenly distribute the solution across the entire Pareto front. Especially, when the
Pareto front is non-convex, the optimization results will move toward the extreme point.
When the objective function is weighted and averaged with a set of randomly given static
weight functions, the optimization results will move to points A or B [21], as shown in
Figure 3. In addition, when the objective function is complex, the GBA method may fall
into a local optimum, like point C. Our analysis believes this is due to the fact that the GBA
method based on static weights has more than enough certainty in the search direction but
insufficient randomness when solving multi-objective optimization problems. Therefore,
this paper tries to introduce uncertainty into the determinism in order to improve this kind
of problem—that is, the random weights are reassigned to each objective function at each
iteration, which makes the solution spread in different directions at each iteration but at the
cost of slightly reducing the convergence speed due to the continuous change in direction.

Figure 3. Weighted function behavior in non-convex Pareto fronts.
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Taking the minimization problem of multi-objective function f (x) with M objectives
as an example, the jth group of random weights assigned to the individual in the parent
population with population N is as follows:

λ
j
i =

[
λ

j
i1, λ

j
i2, · · · , λ

j
iM

]
(2)

where λ
j
i1, λ

j
i2, · · · , λ

j
iM are random numbers and satisfy

M

∑
k=1

λ
j
ik = 1, 0 ≤ λ

j
ik ≤ 1 (3)

So, multi-objective optimization is transformed into

min
x

f (x) =
M

∑
k=1

λ
j
ik fk(x) (4)

In the single-weight mode, j = 1, in the multi-weight mode, j > 1—that is, in the single-
weight mode, each individual corresponds to only one set of weights, and in the multi-
weight mode, each individual corresponds to multiple sets of weights. Whether it is
single-weight mode or multi-weight mode, each GBA optimization iteration regenerates a
new random weight factor, which we call dynamic random weight factor. Figure 4 presents
the search under single-weight and multi-weight modes. After that, each individual can be
used as the initial value of the GBA. Gradient information can be obtained according to each
objective function, and a local search can be performed to obtain the offspring population.

(a) Single-weight searches (b) Multiple-weight searches

Figure 4. Single-weight and multiple-weight searches.

The main reasons for developing the multi-weight model are as follows:

• Individual search in single-weight mode may be degraded; at this time, it is necessary
to give more than one search direction for the individual to improve the search
efficiency. In this case, although it will increase the computation by a small amount, it
can improve the optimization efficiency of the algorithm.

• In practical engineering applications, it is possible to obtain one or a few initial values
using engineering means, so iterative optimization using a small number of initial
values (individuals) with a priori knowledge makes good engineering sense. The
single-weight model in this case does not guarantee the diversity of solutions and is
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prone to fall into local optimality, in which case individuals need to be given multiple
search directions for searching.

• If individuals in a certain area are very dense, then the location of this area may be
very important, such as an inflection point or concave area, so individuals in this area
should search in more directions [22].

3.2. Multi-Objective Gradient Optimization Algorithm (MOGBA) Based on Stochastic
Gradient Operators

Based on the multi-objective gradient operator explained in Section 3.1, this paper
develops the population-based multi-objective optimization algorithm MOGBA. The basic
framework of MOGBA is similar to that of NSGA-III, but its offspring generation mecha-
nism has undergone a significant change by introducing a multi-objective gradient operator
to generate offspring. The main loop of MOGBA is described in Algorithm 1. First, an
initial parent population P of size N is randomly generated based on the problem to be
solved, including the number of decision variables V, the number of objectives M, and
the constraints B. In this paper, B is the upper and lower bounds of the decision variables.
Then, a multi-objective gradient operator is used to generate the offspring population Q.
After that, we used fast non-dominated sorting to non-dominate the merged population
P = P ∪Q and then used the reference point-based environmental selection mechanism
in NSGA-III [23] to select N individuals as the next parent population. This process of
offspring generation and selection is repeated until the termination condition is satisfied,
and the final population P will be the solution set.

Algorithm 1: Main loop of MOGBA
Input: N: population size

M: objectives
V: variable dimension
B: constraints
T: maximum evolutionary generations

Output: P: last generation population
1 Initialize the population P and evaluate it;
2 for t = 1→ T do
3 Generate offspring population Q through multi-objective gradient operator;
4 Evaluate the offspring population Q and merge it with the parent population

P;
5 Using the environmental selection mechanism, select N individuals from the

merged population as the next generation population P;
6 end

Different from existing research work, MOGBA uses a clustering algorithm to di-
vide the population into subpopulations. MOGBA’s offspring generation mechanism first
divides the current population P into K subpopulations through the AP clustering algo-
rithm [24]; then, it performs a multi-weight search on the subpopulation containing the
most individuals and performs a single-weight search on other subpopulations. It will
judge the new solutions generated by the single-weight search. If degradation occurs—that
is, the old solution dominates the new solution—then it performs a multi-weight search
on the old solution again and merges all the new solutions generated into the descendant
population Q. The offspring generation mechanism of MOGBA can be described as the
following Algorithm 2.
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Algorithm 2: MOGBA local search offspring generation mechanism
Input: P: parent population

N: population size
M: objectives
L: weights

Output: Q: Offspring population
1 Use AP clustering algorithm to classify P into K subpopulations S1, S2, · · · , SK;
2 for t = 1→ K do
3 if Si is the largest subpopulation then
4 for xk ∈ Si do
5 for j = 1→ L do
6 Generate random weight λj = {λj1, λj2, · · · , λjM};
7 Weight the M objectives f (x) = ∑M

m=1 λjm fm(x);
8 Perform gradient optimization (L-BFGS-B) with xk as the initial

value and obtain a new solution yjk;
9 Keep yjk to Q;

10 end
11 end
12 else
13 for xk ∈ Si do
14 Generate random weight λ = {λ1, λ2, · · · , λM};
15 Weight the M objectives f (x) = ∑M

m=1 λm fm(x);
16 Perform gradient optimization (L-BFGS-B) with xk as the initial value

and obtain a new solution yk;
17 end
18 if xk ≺ yK then
19 for j = 1→ L do
20 Generate random weightλj = {λj1, λj2, · · · , λjM};
21 Weight the M objectives f (x) = ∑M

m=1 λjm fm(x);
22 Perform gradient optimization (L-BFGS-B) with xk as the initial

value and obtain a new solution yjk;
23 Keep yjk to Q;
24 end
25 else
26 Keep yk to Q;
27 end
28 end
29 end

3.3. Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

Although MOGBA can improve optimization efficiency to a certain extent, MOGBA is
still essentially a local optimization algorithm. For optimization problems with complex
Pareto fronts, MOGBA may fall into local optima due to the rapid loss of diversity, and
gradient search for all individuals will greatly increase time costs and reduce optimization
efficiency. The offspring generation mechanism of MOEA can be considered as a combina-
tion of two different search technologies: crossover and mutation. In generally, crossover
and mutation in MOEA are simulated binary crossover (SBX) and polynomial mutation,
respectively, and they will show different behaviors when searching the decision variable
space. Crossover generates candidate solutions (offspring) through the combination of two
parents, such that the solution obtained, independent of the way the parents are selected
and combined, may be far from the initial solution. Therefore, the crossover operator
is a powerful tool for searching the decision variable space and picking out the global
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optimal region. It is the core operator of MOEA but it lacks the ability to effectively re-find
suboptimal solutions. Mutation has a more local impact because the probability of mutation
is generally low and the changes in the decision variable space are usually small. Therefore,
the mutation operator plays two important roles in MOEA [25]: 1—to provide the ability
to efficiently regain suboptimal solutions; 2—to reintroduces alleles lost due to repeated
application of the crossover operator in the population to maintain the population diversity.
Although the mutation operator is beneficial to maintaining the diversity of the population,
its local improvement of candidate solutions is unsatisfactory.

In summary, the multi-objective gradient operator and the cross-mutation operator
are complementary to each other. We can combine these two operators to develop a hybrid
multi-objective optimization algorithm (HMOEA) with balanced mining and exploration
capabilities, making the algorithm efficient and robust. It is worth noting that the difference
between HMOEA and MOGBA is not only the use of cross-mutation operators, which
can spread excellent genes to other individuals, but also the fact that HMOEA only uses
gradient search for representative individuals, which greatly reduces the frequency of
the multi-objective gradient operator compared with MOGBA. The frequency of gradient
search is reduced from every generation to every k generation, enabling better global search
while reducing time cost.

The main loop of HMOEA is described in Algorithm 3. Similar to MOGBA, HMOEA
first initializes the number of objectives M, the dimensions of the decision variables V, and
the constraints B, and then generates the initial population P. Next, it is judged whether
the current generation is divisible by k. If so, the multi-objective gradient operator is
executed to generate the subpopulation Q (called local offspring generation). Otherwise,
SBX and polynomial mutation are executed to generate the progeny population Q (called
global offspring generation). The subsequent operations are the same as those mentioned
in MOGBA.

Algorithm 3: Main loop of HMOEA
Input: N: population size

M: objectives
V: variable dimension
B: constraints
T: maximum evolutionary generations

Output: P: last generation population
1 Initialize the population P and evaluate it;
2 for t = 1→ T do
3 if t%k == 0 then
4 Generate offspring population Q through multi-objective gradient operator;
5 else
6 Generate the offspring population Q through the crossover mutation

operator;
7 end
8 Evaluate the offspring population Q and merge it with the parent population

P;
9 Using the environmental selection mechanism, N individuals are selected from

the merged population as the next generation population P;
10 end

In our design, the role of the multi-objective gradient operator in HMOEA is more to
increase the mining capability of the algorithm and improve the optimization efficiency.
Therefore, a different gradient search mechanism from MOGBA is used here. The mecha-
nism for generating offspring using multi-objective gradient operators in HMOEA is given
in Algorithm 4. HMOEA also uses a clustering algorithm to divide the population into sub-
populations. In the HMOEA local offspring generation mechanism, the current population
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P is first divided into K subpopulations by the AP clustering algorithm; then, one individual
is randomly selected to perform a multi-weight search in the subpopulation containing the
most individuals, and for the other subpopulations, one individual is randomly selected to
perform a single-weight search. Here, the same operation as in MOGBA is performed for
the degraded individual—that is, the new solution generated by the single-weight search is
judged. If degradation occurs—that is, the old solution dominates the new solution—then
a multi-weight search is performed on the old solution again. Finally, all the new solutions
generated are merged into the offspring population Q. It should be noted that the offspring
population generation mechanism only performs a local search for random individuals in
each subpopulation, so the size of the offspring population Q may be smaller or larger than
N, but this does not hinder subsequent environmental selection.

Algorithm 4: HMOEA local search offspring generation mechanism
Input: P: parent population

N: population size
M: objectives
L: weights

Output: Q: Offspring population
1 Use AP clustering algorithm to classify P into K subpopulations S1, S2, · · · , SK;
2 for t = 1→ K do
3 if Si is the largest subpopulation then
4 Select xk ∈ Si randomly;
5 for j = 1→ L do
6 Generate random weight λj = {λj1, λj2, · · · , λjM};
7 Weight the M objectives f (x) = ∑M

m=1 λjm fm(x);
8 Perform gradient optimization (L-BFGS-B) with xk as the initial value

and obtain a new solution yjk;
9 Keep yjk to Q;

10 end
11 else
12 Select x ∈ Si randomly;
13 Generate random weight λ = {λ1, λ2, · · · , λM};
14 Weight the M objectives f (x) = ∑M

m=1 λm fm(x);
15 Perform gradient optimization (L-BFGS-B) with xk as the initial value and

obtain a new solution yk;
16 if xk ≺ yK then
17 for j = 1→ L do
18 Generate random weightλj = {λj1, λj2, · · · , λjM};
19 Weight the M objectives f (x) = ∑M

m=1 λjm fm(x);
20 Perform gradient optimization (L-BFGS-B) with xk as the initial

value and obtain a new solution yjk;
21 Keep yjk to Q;
22 end
23 else
24 Keep yk to Q;
25 end
26 end
27 end

It should be noted that the application object of the algorithm proposed in this paper
is the aerodynamic shape optimization design; so, the acquisition of the gradient also takes
a considerable amount of time, which is equivalent to the scale of solving the flow field
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control equations. Therefore, in this paper, each gradient solution is also regarded as a
fitness value solution.

4. Numerical Experiments and Analysis
4.1. Experimental Settings and Performance Metrics

In order to verify the performance of the algorithm proposed in this paper, we used
12 benchmark multi-objective optimization problems for numerical experiments, including
5 two-objective functions ZDT1–ZDT4 and ZDT6 [26], and 7 three-objective functions
DTLZ1–DTLZ7 [27]. These test functions provide sufficient tests for the algorithm’s search
capabilities, convergence, and diversity of solution set distributions. The parameter settings
of the test problem are shown in Table 1.

Table 1. Test function parameter settings.

Test Function Variable Dimension Number of Objectives

ZDT1 ZDT3 30 2
ZDT4, ZDT6 10 2

DTLZ1 7 3
DTLZ2 DTLZ6 12 3

DTLZ7 22 4

MOGBA and HMOEA were compared and analyzed with typical multi-objective
optimization algorithms NSGA-II [28], NSGA-III, MOEA/D [29], and RVEA [30]. In order
to evaluate the performance of the studied algorithm on MOPs, the following performance
metrics are adopted.

1. Inverted Generational Distance [31] (IGD). This metric is evaluated by calculating the
average distance from the true Pareto-optimal solution set to the approximate non-
dominated solution set. Suppose that P represents the approximate non-dominated
solution set obtained by the algorithm and P∗ represents the true Pareto solution set.
IGD can be defined as follows:

IGD =
∑v∈P∗ d(v, P)
|P∗| (5)

where d(v, P) represents the minimum distance between the target point v and all
points in the set P, and |P∗| represents the number of points in P∗. Obviously, if P∗ is
large enough, it can represent the Pareto front well. The smaller IGD is, the closer the
approximate non-dominated solution set is to the true front.

2. Hypervolume [32] (HV). HV represents the evaluation of the volume enclosed by P
using a reference point r and is defined as follows:

HV = VOL

(⋃
x∈P

[ f1(x), r1]× [ f2(x), r2]× · · · × [ fM(x), rM]

)
(6)

where r = (r1, r2, · · · , rM) is the reference point dominated by any solution in the objec-
tive space and VOL is Lebesgue measure. The larger HV is, the better the convergence
and diversity of the approximate non-dominated solution set corresponding to P.

For the ZDT and DTLZ series problems tested in this paper, considering the fairness
between all studied algorithms in the experiment, all comparison algorithms maintained
their original designs. For example, all comparison algorithms use the same evolution
operator, like SBX and polynomial mutation, etc. In addition, the upper limit of the number
of evaluations for a single run of the test function is set to 10,000. The specific parameters
of various algorithms are shown in Table 2.
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Table 2. Algorithm parameter settings.

Test Function Parameters Settings

HMOEA pc = 1.0, pm = 1/n, ηm = 20, k = 5, N = 100, L = 5
ZDT4, ZDT6 N = 100, L = 5

DTLZ1 pc = 1.0, pm = 1/n, ηc = 20, ηm = 20, N = 100
DTLZ2 DTLZ6 pc = 1.0, pm = 1/n, ηc = 20, ηm = 20, T = 20, δ = 0.9, K = 5, N = 100

DTLZ7 pc = 1.0, pm = 1/n, ηc = 20, ηm = 20, N = 100

4.2. Experimental Results and Analysis

Figures 5–9 show the distribution of non-dominated solutions obtained by the six
algorithms on ZDT1–ZDT4 and ZDT6, respectively. As can be seen from these figures,
MOGBA has a performance second only to HMOEA in ZDT1–ZDT4, which verifies our
expectations for multi-objective gradient operators. For the ZDT6 function, MOGBA did
not obtain a non-dominated solution with good distribution and its performance was not
as good as HMOEA and MOEA/D. This may be due to the rapid loss of diversity caused
by the local optimization characteristics of MOGBA when processing complex functions.
Compared with other algorithms, HMOEA obtains non-dominated solutions with higher
quality and more uniform distribution on the ZDT functions, which demonstrates the
effectiveness of the hybrid strategy we proposed.

To reduce the impact of algorithm randomness on the results, all algorithms were
independently run 30 times on each problem, and the IGD and HV values of 30 runs were
collected for comparison. All algorithms are terminated when a predetermined maximum
number of evaluations is reached. The mean and standard deviation of IGD and HV
are shown in Tables 3 and 4. In order to obtain more reliable statistical conclusions, the
Wilcoxon rank sum test is performed at the significance level of α = 5%. The symbols “+,
−, =” indicate that the result is significantly better, significantly worse, and statistically
similar to those of HMOEA and MOGBA, respectively.

Figure 5. ZDT1 non-dominated solution distribution.
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Figure 6. ZDT2 non-dominated solution distribution.

Figure 7. ZDT3 non-dominated solution distribution.
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Figure 8. ZDT4 non-dominated solution distribution.

Figure 9. ZDT6 non-dominated solution distribution.

Finally, the mean value of the average index ranking of each algorithm on ZDT and
DTLZ is calculated and counted separately, which is also called Mean ranking (MR). Further,
the number of ”+, −, =” obtained by each algorithm is counted to reflect the performance of
the algorithm, as shown in Table 5. Among 120 (24× 5 = 120) indicators, HMOEA received
118 “+” and 2 “=”, while MOGBA obtained 60 “+”.

Based on various data, it can be seen that HMOEA and MOGBA have better perfor-
mance. For the ZDT functions, the MR rankings from high to low are HMOEA, MOGBA,
MOEA/D, NSGA-II, NSGA-III, and RVEA. For the DTLZ functions, the MR rankings are
HMOEA, NSGA-II (NSGA-III), MOGBA, MOEA/D, and RVEA, as shown in Figure 10.
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It can be seen that although MOGBA’s comprehensive performance is second only to
HMOEA, and MOGBA’s performance in ZDT functions is second only to HMOEA, its
performance in DTLZ function is not as good as that of other algorithms. Its performance in
DTLZ functions has declined significantly, indicating that MOGBA has certain deficiencies
in processing complex functions. This can be attributed to MOGBA’s lack of global search
capabilities and rapid loss of diversity, which is why we develop a hybrid strategy.

Table 3. IGD metric. The first row in each cell represents the mean value µ, and its ranking in
ascending order is listed in square brackets with the 1st place highlighted in bold. The second row is
the standard deviation σ. The third row represents the results of the Wilcoxon rank sum test WR; the
first bracket indicates the algorithm vs. HMOEA and the second indicates the algorithm vs. MOGBA.

Function NSGA-II NSGA-III MOEA/D RVEA HMOEA MOGBA

ZDT1

µ 4.61 × 10−3 [5] 3.99 × 10−3 [4] 3.89 × 10−3 [3] 1.88 × 10−2 [6] 3.98 × 10−3 [1] 3.99 × 10−3 [2]
σ 2.05 × 10−4 6.51 × 10−5 1.42 × 10−5 3.48 × 10−3 2.40 × 10−6 2.50 × 10−6

WR (−)(−) (−)(−) (−)(=) (−)(−) ( )(+) (−)( )

ZDT2

µ 5.66 × 10−1 [4] 7.59 × 10−1 [5] 9.89 × 10−2 [3] 1.42 [6] 3.80 × 10−3 [1] 3.83 × 10−3 [2]
σ 1.07 × 10−1 1.01 × 10−1 1.11 × 10−1 5.81 × 10−1 6.60 × 10−7 4.50 × 10−6

WR (−)(−) (−)(−) (−)(−) (−)(−) ( ) (+) (−)( )

ZDT3

µ 1.28 × 10−2 [3] 1.78 × 10−2 [4] 1.97 × 10−2 [5] 1.59 × 10−1 [6] 6.01 × 10−3 [1] 8.19 × 10−3 [2]
σ 8.94 × 10−3 7.89 × 10−3 1.25 × 10−2 2.14 × 10−2 1.42 × 10−4 1.45 × 10−3

WR (−)(=) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

ZDT4

µ 2.38 × 10−1 [4] 4.79 × 10−1 [5] 4.24 × 10−2 [3] 1.24 [6] 3.89 × 10−3 [1] 3.90 × 10−3 [2]
σ 1.68 × 10−1 2.33 × 10−1 4.11 × 10−2 3.40 × 10−1 3.14 × 10−6 3.50 × 10−6

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

ZDT6

µ 4.65 × 10−2 [4] 1.82 × 10−1 [5] 5.32 × 10−3 [2] 3.39 × 10−1 [6] 3.11 × 10−3 [1] 8.55 × 10−3 [3]
σ 2.39 × 10−2 6.88 × 10−2 2.92 × 10−3 7.76 × 10−2 6.50 × 10−7 3.75 × 10−3

WR (−)(−) (−)(−) (−)(+) (−)(−) ( )(+) (−)( )

DTLZ1

µ 5.35 × 10−2 [5] 3.44 × 10−2 [4] 2.35 × 10−2 [2] 9.09 × 10−2 [6] 2.01 × 10−2 [1] 3.06 × 10−2 [3]
σ 6.96 × 10−2 4.87 × 10−2 2.81 × 10−3 6.85 × 10−2 1.63 × 10−4 8.00 × 10−3

WR (−)(=) (−)(+) (−)(+) (−)(−) ( )(+) (−)( )

DTLZ2

µ 6.98 × 10−2 [6] 5.51 × 10−2 [2] 5.53 × 10−2 [3] 5.64 × 10−2 [4] 4.50 × 10−2 [1] 5.99 × 10−2 [5]
σ 2.37 × 10−3 2.07 × 10−4 5.23 × 10−4 5.94 × 10−4 3.89 × 10−5 2.01 × 10−2

WR (−)(−) (−)(+) (−)(+) (−)(+) ( )(+) (−)( )

DTLZ3

µ 8.29 [3] 1.18 × 101 [4] 2.32 × 101 [6] 2.14 × 101 [5] 6.88 × 10−2 [1] 5.16 × 10−1 [2]
σ 3.97 4.67 1.60 × 101 6.93 7.41 × 10−3 3.28 × 10−3

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

DTLZ4

µ 1.92 × 10−1 [3] 2.17 × 10−1 [4] 4.58 × 10−1 [6] 5.66 × 10−2 [2] 5.49 × 10−2 [1] 3.79 × 10−1 [5]
σ 2.35 × 10−1 2.29 × 10−1 3.43 × 10−1 1.26 × 10−3 6.39 × 10−5 1.26 × 10−1

WR (−)(+) (−)(+) (−)(=) (−)(+) ( )(+) (−)( )

DTLZ5

µ 6.02 × 10−3 [2] 1.30 × 10−2 [3] 3.33 × 10−2 [5] 8.88 × 10−2 [6] 3.55 × 10−3 [1] 1.46 × 10−2 [4]
σ 2.68 × 10−4 1.02 × 10−3 2.51 × 10−4 1.78 × 10−2 5.29 × 10−4 2.30 × 10−3

WR (−)(+) (−)(+) (−)(−) (−)(−) ( )(+) (−)( )

DTLZ6

µ 6.14 × 10−3 [2] 1.71 × 10−2 [4] 2.95 × 10−1 [5] 1.56 × 10−1 [3] 3.65 × 10−3 [1] 3.30 × 10−1 [6]
σ 3.31 × 10−4 6.49 × 10−3 5.41 × 10−1 1.62 × 10−1 3.70 × 10−4 5.89 × 10−2

WR (−)(+) (−)(+) (−)(=) (−)(+) ( )(+) (−)( )

DTLZ7

µ 9.61 × 10−2 [2] 1.29 × 10−1 [4] 1.86 × 10−1 [5] 2.34 × 10−1 [6] 6.90 × 10−2 [1] 1.21 × 10−1 [3]
σ 9.18 × 10−3 9.25 × 10−2 1.76 × 10−1 5.91 × 10−2 5.78 × 10−3 1.31 × 10−2

WR (−)(+) (−)(+) (−)(−) (−)(−) ( )(+) (−)( )
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Table 4. HV metric. The first row in each cell represents the mean value µ, and its ranking in
descending order is listed in square brackets with the 1st place highlighted in bold. The second row is
the standard deviation σ. The third row represents the results of the Wilcoxon rank sum test WR; the
first bracket indicates the algorithm vs. HMOEA and the second indicates the algorithm vs. MOGBA.

Function NSGA-II NSGA-III MOEA/D RVEA HMOEA MOGBA

ZDT1

µ 7.19 × 10−1 [5] 7.20 × 10−1 [4] 7.20 × 10−1 [3] 6.99 × 10−1 [6] 7.29 × 10−1 [2] 7.29 × 10−1 [1]
σ 2.53 × 10−4 2.04 × 10−4 4.15 × 10−5 4.26 × 10−3 7.76 × 10−6 6.33 × 10−6

WR (−)(−) (−)(−) (−)(−) (−)(−) ( ) (=) (=)( )

ZDT2

µ 3.89 × 10−2 [4] 1.19 × 10−6 [5] 3.52 × 10−1 [3] 0.00 [6] 4.40 × 10−1 [1] 4.40 × 10−1 [2]
σ 3.61 × 10−2 6.40 × 10−6 9.42 × 10−2 0.00 4.19 × 10−7 3.67 × 10−6

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

ZDT3

µ 5.83 × 10−1 [3] 5.78 × 10−1 [5] 6.00 × 10−1 [1] 4.64 × 10−1 [6] 5.88 × 10−1 [2] 5.80 × 10−1 [4]
σ 2.92 × 10−2 2.43 × 10−2 4.40 × 10−2 1.73 × 10−2 1.51 × 10−4 3.55 × 10−4

WR (−)(−) (−)(−) (=)(=) (−)(−) ( )(+) (−)( )

ZDT4

µ 4.92 × 10−1 [4] 2.71 × 10−1 [5] 6.76 × 10−1 [3] 7.87 × 10−3 [6] 7.29 × 10−1 [1] 7.29 × 10−1 [2]
σ 1.55 × 10−1 1.70 × 10−1 4.22 × 10−2 2.24 × 10−2 3.92 × 10−6 6.51 × 10−6

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

ZDT6

µ 3.63 × 10−1 [4] 2.22 × 10−1 [5] 4.13 × 10−1 [3] 9.78 × 10−2 [6] 4.37 × 10−1 [1] 4.18 × 10−1 [2]
σ 2.76 × 10−2 5.74 × 10−2 3.08 × 10−3 4.08 × 10−2 6.26 × 10−7 1.44 × 10−3

WR (−)(−) (−)(−) (−)(=) (−)(−) ( )(+) (−)( )

DTLZ1

µ 7.56 × 10−1 [5] 8.05 × 10−1 [4] 8.28 × 10−1 [2] 6.84 × 10−1 [6] 8.49 × 10−1 [1] 8.06 × 10−1 [3]
σ 1.71 × 10−1 1.17 × 10−1 9.67 × 10−3 1.49 × 10−1 2.48 × 10−4 1.48 × 10−2

WR (−)(=) (−)(+) (−)(+) (−)(−) ( )(+) (−)( )

DTLZ2

µ 5.29 × 10−1 [6] 5.55 × 10−1 [3] 5.54 × 10−1 [4] 5.51 × 10−1 [5] 5.62 × 10−1 [1] 5.59 × 10−1 [2]
σ 3.69 × 10−3 9.01 × 10−4 1.64 × 10−3 1.35 × 10−3 7.99 × 10−5 3.62 × 10−3

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

DTLZ3

µ 0.00 [3] 0.00 [3] 0.00 [3] 0.00 [3] 5.49 × 10−1 [1] 2.48 × 10−1 [2]
σ 0.00 0.00 0.00 0.00 1.12 × 10−2 5.55 × 10−4

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

DTLZ4

µ 4.80 × 10−1 [4] 4.83 × 10−1 [3] 3.60 × 10−1 [5] 5.51 × 10−1 [2] 5.61 × 10−1 [1 ] 2.82 × 10−1 [6]
σ 1.04 × 10−1 1.01 × 10−1 1.77 × 10−1 2.65 × 10−3 1.30 × 10−4 2.36 × 10−2

WR (−)(+) (−)(+) (−)(+) (−)(+) ( )(+) (−)( )

DTLZ5

µ 1.99 × 10−1 [2] 1.93 × 10−1 [3] 1.82 × 10−1 [5] 1.44 × 10−1 [6] 2.01 × 10−1 [1] 1.56 × 10−1 [4]
σ 2.12 × 10−4 1.03 × 10−3 1.44 × 10−4 1.03 × 10−2 4.42 × 10−4 1.56 × 10−3

WR (−)(+) (−)(=) (−)(−) (−)(−) ( )(+) (−)( )

DTLZ6

µ 1.99 × 10−1 [2] 1.91 × 10−1 [3] 1.39 × 10−1 [4] 1.09 × 10−1 [5] 2.09 × 10−1 [1] 9.98 × 10−2 [6]
σ 2.08 × 10−4 4.59 × 10−3 7.65 × 10−2 4.24 × 10−2 3.59 × 10−4 1.61 × 10−2

WR (−)(+) (−)(+) (−)(=) (−)(=) ( )(+) (−)( )

DTLZ7

µ 2.47 × 10−1 [4] 2.43 × 10−1 [5] 2.51 × 10−1 [3] 1.85 × 10−1 [6] 2.99 × 10−1 [1] 2.69 × 10−1 [2]
σ 5.41 × 10−3 8.75 × 10−3 1.32 × 10−2 2.39 × 10−2 2.16 × 10−3 4.29 × 10−3

WR (−)(−) (−)(−) (−)(−) (−)(−) ( )(+) (−)( )

In general, our proposed MOGBA can perform well on some simple functions and can
obtain Pareto solutions with better quality and distribution, showing higher efficiency, but
its performance on complex functions slips significantly. HMOEA has the best performance
on almost all test functions, and some non-dominated solutions with higher quality and
better distribution can be obtained from these experiments. This verifies the effectiveness
of our proposed solution that the hybrid of GBA and MOEA performs as we expected on
MOPs. Therefore, we can conclude that the offspring generation mechanism based on multi-
objective gradient operators contributes to the rapid convergence of the algorithm and
enhances the algorithm mining capability. When dealing with complex problems, MOEA’s
global search mechanism based on crossover and mutation plays an important role in
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improving the performance of the algorithm and determines the exploration capability of
the algorithm. By combining these two complementary offspring generation methods, the
proposed HMOEA performs efficiently and robustly on the studied problem.

Table 5. Comprehensive performance metrics.

Algorithm HMOEA MOGBA NSGA-II NSGA-III MOEA/D RVEA

ZDT MR 1.200 2.200 4.000 4.700 2.900 6.000
DTLZ MR 1.000 3.786 3.500 3.500 4.143 4.643

HMOEA(+/−/=) 23/0/1 24/0/0 24/0/0 23/0/1 24/0/0
MOGBA(+/−/=) 0/23/1 14/7/3 14/9/1 13/5/6 19/4/1

Figure 10. Algorithm’s metrics ranking for different test functions (left: rank of the IGD mean value;
right: rank of the HV mean value).

5. HMOEA in Airfoil Aerodynamic Optimization

In the aerodynamic shape optimization design of aircraft, airfoil optimization design
is a crucial step, and the fast and efficient design of airfoils to meet the engineering needs is
the goal that researchers have been striving for. HMOEA has shown good performance in
the optimization of benchmark functions. In this section, HMOEA is introduced into the
optimal design of airfoils to complete the multi-objective optimization design and test the
application value of HMOEA in engineering optimization.

5.1. Airfoil Optimization Framework

The airfoil aerodynamic optimization framework in this section is shown in Figure 11,
which includes airfoil parameterization, structured mesh generation tools, flow, and adjoint
solvers (SU2 [33]). For each iteration, the optimizer calls the components sequentially
if necessary.

Figure 11. Airfoil optimization framework.
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In each iteration, the optimizer first updates the design variables and then converts
them into the coordinate points of the airfoil through a parametric method. Then, a
structured mesh is generated, and finally, the optimizer launches the flow field solver
to evaluate the objective function. If necessary, it will drive the adjoint solver to obtain
gradient information.

5.2. Airfoil Parameterization Method

Airfoil parameterization is a crucial step in aerodynamic optimization. Its accuracy
determines the accuracy and reliability of the optimized airfoil. Many airfoil parameteri-
zation methods have been developed at home and abroad, such as FFD [34], Bezier [35].
CST [36], etc. This paper uses the fourth-order CST parametric method to control the airfoil
shape. The parameter expression of the upper and lower surface curves of the airfoil is
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=
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where c is the airfoil chord. When A = 1 or− 1, it represents the upper or lower surface
of the airfoil. Rle is the radius of the leading edge of the airfoil; β and β′ are the trailing
edge inclination angles of the upper and lower surfaces of the airfoil, respectively; and
bi, b′i are the shape parameters of the upper and lower surfaces. There are 9 optimization
variables for the airfoil, and the benchmark airfoil is RAE2822. The design parameters and
corresponding bounds are shown in Table 6.

Table 6. Design parameter settings.

Design Parameters Bounds

Rle [0.004, 0.012]
β [0.140, 0.280]
β′ [0.000, 0.140]
b1 [0.050, 0.200]
b2 [0.100, 0.300]
b3 [0.100, 0.300]
b′1 [0.050, 0.300]
b′2 [0.050, 0.300]
b′3 [0.100, 0.250]

5.3. Airfoil Optimization Problem

Taking the RAE2822 airfoil as an example, multi-objective optimization design is
performed on it. This section selects the lift-to-drag ratio of the airfoil in two states as the
optimization objectives. The design states are

1.Ma = 0.60, Re = 4.5e6, α = 2.31◦

2.Ma = 0.75, Re = 5.0e6, α = 2.31◦
(8)
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The optimization objectives are to maximize the lift-to-drag ratio in the two states.
The constraint is that the airfoil area and lift coefficient do not decrease. The mathematical
model can be described as follows:

J1 : max CL1/CD1

J2 : max CL2/CD2

s.t. : A/Abase − 1 ≥ 0
s.t. : CL1/CLbase

1 − 1 ≥ 0
s.t. : CL2/CLbase

2 − 1 ≥ 0

(9)

where CL1, CL2 and CD1, CD2 are the lift and drag coefficients in the two states, respectively.
The subscript base represents the baseline airfoil RAE2822. The parameterization method
adopts the CST method described in Section 5.2. The turbulence model uses k−ω SST, and
the spatial discretization uses Roe scheme. Figure 12 shows a global and local zoomed-in
view of the structured mesh used.

(a) Mesh overview (b) Zoomed-in view

Figure 12. Airfoil structured mesh.

In order to verify the accuracy of the aerodynamic characteristics analysis method, the
calculation state is selected:

Ma = 0.725, Re = 6.5e6, α = 2.92◦ (10)

The pressure coefficient Cp obtained from numerical solution is compared with the experi-
mental value, as shown in Figure 13. It can be seen that the numerical simulation calculation
results can closely approximate the experimental values and reflect the flow characteristics.



Mathematics 2024, 12, 1234 21 of 26

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

 Experiment
 CFD

Figure 13. Comparison of numerical simulation and experimental pressure coefficients.

5.4. Airfoil Optimization Results and Analysis

The optimization was performed using HMOEA, setting the population size to 50
and the maximum number of adaptive value evaluations to 4000, and the distribution
of non-dominated solutions obtained is shown in Figure 14. Here, three non-dominant
solutions are selected for analysis.

58 60 62 64 66 68 70 72

20

30

40
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60

 Pareto solution

Optimum 1

Optimum 2

Optimum 3

Figure 14. Distribution of non-dominated solutions.

Table 7 lists the comparison of the aerodynamic characteristics of the airfoil before and
after optimization in the two states. Optimized airfoil 1 improves by 10.91% and 47.72% in
state 1 and state 2, respectively, which shows that the airfoil improves the state 1 lift-to-drag
ratio by a small margin while greatly improving the state 2 lift-to-drag ratio. Optimized
airfoil 2 improves 19.53% and 32.38% in state 1 and state 2, respectively, and simultaneously
ensures an increase in lift-to-drag ratio in both states, making it a more comprehensive
airfoil. Optimized airfoil 3 improves by 22.63% in state 1, and the lift-to-drag ratio almost
remains unchanged in state 2.
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Table 7. Comparison of airfoil aerodynamic parameters.

Airfoil State CL/CD

Baseline (RAE2822)
1 56.3354
2 37.3572

Optimum 1
1 62.4824 (+10.91%)
2 55.0731(+47.72%)

Optimum 2
1 67.3352 (+19.53%)
2 49.4523 (32.38%)

Optimum 3
1 69.0864 (+22.63%)
2 37.4338 (+0.023%)

Figure 15 shows the geometric shape comparison of the airfoil before and after opti-
mization, and Figure 16 shows the comparison of pressure coefficient distribution before
and after optimization. For state 1, the improvement in lift–drag ratio of the three optimized
airfoils mainly comes from the increase in lift. For state 2, the lift of the three optimized
airfoils increased slightly. The shock wave of optimized airfoil 1 was largely erased. The
shock wave of optimized airfoil 2 was slightly weakened. The shock wave intensity of
optimized airfoil 3 remained almost unchanged. In other words, for optimized airfoil 1 and
optimized airfoil 2, the improvement in lift–drag ratio mainly comes from the reduction in
drag caused by the weakening of shock waves and the increase in lift. It is possible that the
lift–drag ratio of optimized airfoil 3 remained almost unchanged due to the simultaneous
increases in lift and drag.

Figure 15. Comparison of airfoil shape before and after optimization.

(a) State1 (b) State2

Figure 16. Comparison of pressure coefficient distribution before and after optimization.
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We give a series of Pareto-optimal solutions. For different Pareto-optimal solutions,
the aerodynamic characteristics of the optimized airfoil in the two states also have different
performances. Therefore, the Pareto-optimal solution suitable for specific problems can be
selected according to needs.

5.5. Comparative Analysis of Algorithms

In order to better verify the value of the algorithm proposed in the paper in engi-
neering applications, NSGA-II and MOPSO [37], which are commonly used in the field of
engineering optimization, are selected for comparison. NSGA-II has the same parameter
settings as the numerical experiment simulation case, and all parameters of the MOPSO
algorithm are default parameters. In addition, the population size of these two calculations
is set to 50, and the maximum number of fitness value evaluations is 4000. The comparison
of optimization results is shown in Figure 17.

As can be seen from Figure 17, with the same number of fitness value evaluations,
the distribution and convergence of the Pareto-optimal solution obtained by HMOEA
are significantly better than NSGA-II and MOPSO. It can be seen that for aerodynamic
optimization problems, HMOEA is obviously a more efficient algorithm. It can obtain a
more ideal Pareto-optimal set with fewer flow field calculations, which greatly improves
the efficiency of aerodynamic optimization.

56 60 64 68 72
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20

30

40

50

60

 MHMOEA
 NSGA-II
 MOPSO

Figure 17. Results of three algorithms in the airfoil optimization.

6. Conclusions

(1) This paper introduces a random weight function based on the weighted average
gradient, proposes a multi-objective gradient operator, and develops two modes
for assigning random weights: single-weight mode and multi-weight mode. Based
on this, the multi-objective gradient algorithm (MOGBA) was developed and then
combined with MOEA to develop the hybrid multi-objective evolutionary algorithm
(HMOEA). HMOEA combines NSGA-III and L-BFGS-B to enhance exploration capa-
bilities and speed up convergence, guide the development of optimal solutions, and
explore the optimal distribution of solutions. Moreover, the hybrid and local search
method developed can be extended to any stochastic and deterministic hybrid opti-
mization method, and is not limited to NSGA-III and L-BFGS-B. In order to evaluate
the comprehensive performance of the algorithm, it is compared with four classical
multi-objective evolutionary algorithms, and 12 benchmarking functions are used to
evaluate the performance of the proposed algorithm. The experimental results show
that the algorithm proposed in this paper outperforms similar MOEAs on most of the
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test functions. It has faster convergence speed, higher convergence accuracy, and is
able to obtain Pareto-optimal solutions with more uniform distribution.

(2) The HMOEA is further applied to the aerodynamic multi-objective optimization de-
sign of the airfoil with the objective of maximizing the lift-to-drag ratio in two typical
states, and the ideal Pareto front is finally obtained. This demonstrates the potential
application of HMOEA in multi-objective aerodynamic optimization. Comparing
HMOEA with NSGA-II and MOPSO, HMOEA obviously has higher optimization effi-
ciency and obtains Pareto-optimal solutions with better distribution and convergence
under the same number of flow field calculations, which proves that HMOEA can
solve complex multi-objective aerodynamic optimization problems more effectively
with less time. For more complex aerodynamic optimization problems, such as the
complex shape optimization of the whole vehicle and the multi-objective optimization
taking into account multiple states, the optimization algorithm will not make any
difference in essence. In other words, HMOEA has the potential to be extended to
complex aerodynamic optimization problems.

(3) Of course, the current research is preliminary. First, further parametric analysis
is needed to better realize the balance between optimal solution development and
solution optimal distribution exploration. Secondly, gradient-based methods can sig-
nificantly improve the efficiency of large-scale design variable optimization problems;
so, the algorithm proposed in this paper should also have the potential to handle
large-scale design variable optimization problems. This requires further experiments
to verify the performance of HMOEA on such problems. Finally, the aerodynamic
optimization example given in this paper is relatively simple, just a two-objective
optimization problem under low-dimensional variables. Further testing is needed to
evaluate the performance of HMOEA in engineering optimization. We will address
these shortcomings in future work.

Author Contributions: Data curation, C.Z.; formal analysis, Z.T. and X.Z.; funding acquisition,
Z.T.; investigation, C.Z.; methodology, C.Z. and Z.T.; project administration, C.Z.; resources, C.Z.
and X.Z.; software, C.Z.; supervision, Z.T.; validation, X.H. and C.Z.; writing—original draft, C.Z.;
writing—review and editing, C.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12032011,
11772154), the Project Funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD), and the Fundamental Research Funds for the Central Universities
(NP2020102).

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tian, X.; Li, J. A novel improved fruit fly optimization algorithm for aerodynamic shape design optimization. Knowl.-Based Syst.

2019, 179, 77–91. [CrossRef]
2. Lee, K.D.; Eyi, S. Aerodynamic design via optimization. J. Aircr. 1992, 29, 1012–1019. [CrossRef]
3. Hajela, P. Nongradient methods in multidisciplinary design optimization-status and potential. J. Aircr. 1999, 36, 255–265.

[CrossRef]
4. Buckley, H.P.; Zingg, D.W. Approach to aerodynamic design through numerical optimization. AIAA J. 2013, 51, 1972–1981.

[CrossRef]
5. Mokarram, V.; Banan, M.R. A new PSO-based algorithm for multi-objective optimization with continuous and discrete design

variables. Struct. Multidiscip. Optim. 2018, 57, 509–533. [CrossRef]
6. Tang, Z.; Hu, X.; Périaux, J. Multi-level hybridized optimization methods coupling local search deterministic and global search

evolutionary algorithms. Arch. Comput. Methods Eng. 2020, 27, 939–975. [CrossRef]
7. Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1988, 3, 233–260. [CrossRef]
8. Jiaqi, L.; Juntao, X.; Feng, L. Aerodynamic design optimization by using a continuous adjoint method. Sci. China Phys. Mech.

Astron. 2014, 57, 1363–1375.

http://doi.org/10.1016/j.knosys.2019.05.005
http://dx.doi.org/10.2514/3.46278
http://dx.doi.org/10.2514/2.2432
http://dx.doi.org/10.2514/1.J052268
http://dx.doi.org/10.1007/s00158-017-1764-7
http://dx.doi.org/10.1007/s11831-019-09336-w
http://dx.doi.org/10.1007/BF01061285


Mathematics 2024, 12, 1234 25 of 26

9. Lin, Q.; Liu, S.; Wong, K.C.; Gong, M.; Coello, C.A.C.; Chen, J.; Zhang, J. A clustering-based evolutionary algorithm for
many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 23, 391–405. [CrossRef]

10. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

11. Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 15, 56–69.
12. Bosman, P.A.; de Jong, E.D. Exploiting gradient information in numerical multi–objective evolutionary optimization. In Pro-

ceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 25–29 June 2005;
pp. 755–762.

13. Hu, X.; Huang, Z.; Wang, Z. Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms. In
Proceedings of the The 2003 Congress on Evolutionary Computation, Canberra, ACT, Australia, 8–12 December 2003; IEEE: New
York, NY, USA , 2003; Volume 2, pp. 870–877.

14. El-Mihoub, T.A.; Hopgood, A.A.; Nolle, L.; Battersby, A. Hybrid Genetic Algorithms: A Review. Eng. Lett. 2006, 13, 124–137.
15. Bosman, P.A. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evol.

Comput. 2011, 16, 51–69. [CrossRef]
16. Bosman, P.A.; de Jong, E.D. Combining gradient techniques for numerical multi-objective evolutionary optimization. In

Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 8–12 July 2006;
pp. 627–634.

17. Lahanas, M.; Baltas, D.; Giannouli, S. Global convergence analysis of fast multiobjective gradient-based dose optimization
algorithms for high-dose-rate brachytherapy. Phys. Med. Biol. 2003, 48, 599. [CrossRef] [PubMed]

18. Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
19. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,

W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
[CrossRef] [PubMed]

20. Tang, Z.; Luo, S.; Chen, Y.; Zhao, X.; Wu, P. Hierarchical variable fidelity evolutionary optimization methods and their applications
in aerodynamic shape design. Appl. Soft Comput. 2022, 114, 108135. [CrossRef]

21. Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154. [CrossRef]
22. Hua, Y.; Jin, Y.; Hao, K. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto

fronts. IEEE Trans. Cybern. 2018, 49, 2758–2770. [CrossRef] [PubMed]
23. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting

approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]
24. Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [CrossRef]
25. Vicini, A.; Quagliarella, D. Airfoil and wing design through hybrid optimization strategies. AIAA J. 1999, 37, 634–641. [CrossRef]
26. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002

Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; IEEE: New York, NY, USA, 2002; Volume 1,
pp. 825–830.

27. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable test problems for evolutionary multiobjective optimization. In Evolutionary
Multiobjective Optimization: Theoretical Advances and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 105–145.

28. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

29. Zhang, Q.; Li, H. A multiobjective evolutionary algorithm based on decomposition. In IEEE Transactions on Evolutionary Computation;
IEEE Computational Intelligence Society: Piscataway, NJ, USA, 2006.

30. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization.
IEEE Trans. Evol. Comput. 2016, 20, 773–791. [CrossRef]

31. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

32. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

33. Economon, T.D.; Palacios, F.; Copeland, S.R.; Lukaczyk, T.W.; Alonso, J.J. SU2: An open-source suite for multiphysics simulation
and design. AIAA J. 2016, 54, 828–846. [CrossRef]

34. Samareh, J. Aerodynamic shape optimization based on free-form deformation. In Proceedings of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, New York, NY, USA, 30 August–30 September 2004; p. 4630.

35. Andersson, F.; Kvernes, B. Bezier and B-Spline Technology. Ph.D. Thesis, Umea University, Umea, Sweden, 2003.
36. Straathof, M.H.; van Tooren, M.J. Extension to the class-shape-transformation method based on B-splines. AIAA J. 2011, 49,

780–790. [CrossRef]
37. Sierra, M.R.; Coello Coello, C.A. Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance.

In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Leiden, The Netherlands, 20–24 March 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 505–519.

http://dx.doi.org/10.1109/TEVC.2018.2866927
http://dx.doi.org/10.1109/TEVC.2010.2051445
http://dx.doi.org/10.1088/0031-9155/48/5/304
http://www.ncbi.nlm.nih.gov/pubmed/12696798
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://dx.doi.org/10.1016/j.asoc.2021.108135
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1109/TCYB.2018.2834466
http://www.ncbi.nlm.nih.gov/pubmed/29994342
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.2514/2.764
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2016.2519378
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.2514/1.J053813
http://dx.doi.org/10.2514/1.J050706


Mathematics 2024, 12, 1234 26 of 26

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Performance Analysis and Optimization Performance Comparison between EAs and GBAs
	Multi-Objective Deterministic Optimization Method Based on Stochastic Gradient Operator
	Stochastic Gradient Operator for Multi-Objective Optimization
	 Multi-Objective Gradient Optimization Algorithm (MOGBA) Based on Stochastic Gradient Operators
	Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

	Numerical Experiments and Analysis
	Experimental Settings and Performance Metrics
	Experimental Results and Analysis

	HMOEA in Airfoil Aerodynamic Optimization
	Airfoil Optimization Framework
	Airfoil Parameterization Method
	Airfoil Optimization Problem
	Airfoil Optimization Results and Analysis
	Comparative Analysis of Algorithms

	Conclusions
	References

