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1. Introduction

COVID-19, first identified in Wuhan, the capital of Hubei Province, China, in 2019 [1],
is an acute respiratory disease. Since 2002, severe acute respiratory syndrome (SARS-CoV)
and Middle East respiratory syndrome (MERS-CoV) have been responsible for outbreaks
in humans, despite primarily infecting animals [2]. As per the International Committee on
Taxonomy of Viruses (ICTV), coronaviruses are classified within the sub-family Coronaviri-
nae, which is a part of the family Coronaviridae and the order Nidovirales. The sub-family
Coronavirinae encompasses four biological groups: &, B, v, and J-coronaviruses [3,4]. Stud-
ies indicate that all coronaviruses have their origins in animals [3,5]. Moreover, recent
research findings [6] suggest that although the precise origin of SARS-CoV-2 cannot be
definitively determined, the potential for laboratory origin cannot be easily ruled out.
a-coronaviruses, like HumanCoV-NL63 and HumanCoV-229E, usually result in mild in-
fections in humans. However, SADS-CoV (Swine acute diarrhea syndrome coronavirus),
which utilizes swines as intermediate carriers, does not induce infectious symptoms in
humans. While both HCoV-OC43 and HCoV-HKU1 belong to the 5-coronavirus category,
they typically pose no serious threat to humans [7]. However, the perception of highly
pathogenic coronaviruses changed significantly following the outbreaks of SARS-CoV
(severe acute respiratory syndrome coronavirus) in 2003 and MERS-CoV (Middle East
respiratory syndrome coronavirus) in 2012 [7].

Mathematical models that depict infectious diseases are pivotal in both theoretical
understanding and practical application [8-13]. Developing and scrutinizing models of
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this nature aids in comprehending the mechanisms of transmission and disease character-
istics. This understanding facilitates the formulation of effective strategies for prediction,
prevention, and control, ultimately safeguarding population health. To date, numerous
mathematical models for infectious diseases, formulated using differential equations, have
been constructed and analyzed to study the virus spread [12-15]. Recently, mathematical
models for the COVID-19 epidemic have attracted considerable interest from mathemati-
cians, biologists, epidemiologists, pharmacists, and chemists, producing noteworthy and
vital outcomes [15-20]. Furthermore, these investigations have extended to encompass
fractional-order models, as evidenced by studies like [21-23].

Recent research has extensively explored optimal control strategies for managing
COVID-19 and its co-infections [24-30]. Fractional variable-order optimal control problems
(V-FOCPs) have been formulated using various definitions of fractional derivatives, such as
Riemann-Liouville and Caputo derivatives, with illustrative examples provided in [31-33].
Moreover, the discrete-time fractional optimal control model has been investigated in
studies like [34-36]. Additionally, research has delved into optimal control problems for
variable fractional systems [32].

Model Formulation

We shall present a detailed proposal for the discrete-time variable-order fractional
COVID-19 system. Motivated by [37,38], we introduce the following notation: Let S(t),
E(t), I(t), Q(t), and R(t) denote the susceptible, exposed, infected, isolated, and removed
populations at time t > 0, respectively. The total population is represented by N (t) = S(t) +
E(t) + I(t) + Q(t) + R(t). All parameters (x,B,v,p,A, 0, 1,7, ¥, ¢, ¢1,T, ¢2) are positive
real numbers which are provided in Table 1. Here, x represent the recruitment rate.
The proposed model is presented as follows:

AOS(H = XﬁUNiIm +AR(t) = (64 p)S(b),
MO = prg — (4 WEG),

AOI() = yE(t) — (¢ + ¢+ g1+ p)I(t), (1)
AIQ(H) = pI(t) — (T+ @2+ u)Q(H),
A*OR(E) = 6S(t) + pI(t) + TQ(t) — (A + u)R(t),

with the initial conditions
S(0) = Sp, E(0) = Eop, I(0) = Iy, Q(0) = Qop, R(0) = Ry.

Here, the delta variable-order fractional difference of model (1) is given in sense of
Caputo where a(t) € (0,1).

Table 1. Description of the model parameters.

Parameters Description Value Reference
X Recruitment rate assumed -
I Saturation factor assumed -
v Contact rate 9.0631 [38]
B The transmission probabilities 0.2761 [38]
) Self protection rate 0.0439 [38]
A TransmlsS}on rate from temporarily removed 0.0028 [38]
to susceptible population
Rate of progression from exposed group to
i the infected group 0.1736 [38]
P Isolation rate 0.516 [38]
Death rate in infected group caused by
1 COVID-19 0.018 [38]
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Table 1. Cont.

Parameters Description Value Reference
Death rate in isolated group caused by _5

@2 COVID-19 3.7559 x 10 [38]

T Recovery rate 0.0534 [38]

¢ Self recovery rate 6.1462 x 1076 [38]

U Natural death rate 3.2811 x 107° [38]

This paper is organized as follows. In Section 2, we provide definitions of variable-
order fractional calculus in discrete-time along with some important auxiliaries related
to VOFDD. Section 3 discusses the existence and uniqueness conditions of solutions and
presents stability theorems for equilibrium points. Optimal control analysis is covered
in Section 4. Section 5 outlines the used numerical scheme. Section 6 presents numerical
simulations and results. Finally, Section 7 concludes our contribution.

2. Preliminaries

In this context, we introduce certain definitions and notations referenced from the
papers [39,40]. Let N, denote the set {a,a+1,a+2,...} and NaT represent the set {a,a +
l,a+2,...,T}.

Definition 1. Let a(t) > 0and o(s) = s + 1. For u(t) defined on N,, the delta variable-order
fractional sum of order a(t) is defined by

1

—a(t) _
A = Ty

t—a(t)
Y (t—o(s) O us), @

T(t+1)

where t(1)) is the discrete factorial functional given by t(*(t) = Fl—a() 1)

Definition 2. For u(t) defined on defined on N, a(t) > 0,a ¢ N, the delta Caputo variable-order
fractional difference is defined by
cptlh) ~(n-a(t) = =
Ayt = A, AMu(t) = RO Yo (t—o(s) M ODAMy(s),  (3)
S=a

where t € Ny, _op),m = [a(t)] + 1. Note that the forward difference operator is defined by
Au(t) =u(t+1) —u(t).

Theorem 1 ([41]). Let s € N,4q, then the following hold

> _ a(s)—1 _ (S — a)zx(s)
k:;rl(s k+1) = (4)

Theorem 2 ([42,43]). Consider the following fractional variable-order discrete system
AWy = f(x), x(0) = x, (5)

with x € R", & = infa(t) and @ = sup a(t) where 0 < a < a(t) < & < 1. The equilibrium
points of the system (5) are solutions to the equation f(x) = 0.

An equilibrium is locally asymptotically stable if all the eigenvalues A; (i = 1,2,...,n) of the
Jacobian matrix | = Af evaluated at the equilibrium satisfy

larg(A)] < Sa. (6)

NN
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On the other hand, if | arg(A;)| > g&, then the equilibrium point is unstable.

Theorem 3 ([44]). Consider the polynomial equation
p(A) = A2+ a1A +ao.
1. Forn =1, the condition for stability is a; > 0.

2. Forn = 2, the condition for stability either Routh-Hurwitz conditions [45] (a; > 0,a; > 0)

s
ora; <0,4ay > a3, tan~!(4ay —a3) > ER.
Definition 3 ([46]). Given a system of characteristic equations in the form of n-order polynomials

as follows
f(z) =diz" + diz" Vo d, iz dy 7)

If all the real parts of equation from the root are negative, then

dq dy dn
—>0,-—->0,---,5— >0. 8
do~ e do ~ ®)
Suppose dy, are real numbers fork =0,1,2,- -+ ,2n — 1 and dy are positive numbers. The Hur-
witz matrix for Equation (7) is defined as a square matrix of size n X n as follows:

di d3 ds d; - dyq
dy dy dy deg -+ doyo
0 dy dz3 ds -+ dy3
Hi=| 0 dy dy dy - doy g |- )
o 0 o o --- dy

where d = 0 for k < 0 or k > n. Therefore, the matrix element index is greater than n, or the
negative index must be replaced by zero. The k-level Hurwitz determinant, denoted by detHy;
k=1,2,---,n, formed from the Hurwitz matrix (9), is defined as follows:

dl d3 d5 d7 s dzi’l —1
do dz d4d6 ce d21’1 -2
0 dl d3 d5 s dzn -3

detH, = | ¢ dy dy dy - don—4
o o o0 0 - dy

Theorem 4 ([46]). The polynomial root (7) has a real part of its root that is negative if and only if
the inequality (3) is fulfilled and

detHy > 0; detH, > 0; detHz > 0; ---; detH, > 0. (10)
Thus, the equilibrium point Z is stable if and only if detH; > 0 for each j = 1,2, - -, n.

3. Properties of Solution
3.1. Non-Negativity and Boundedness of the Solutions

In this subsection, we discuss some properties related to the non negativity and
boundedness of the solution of model (1). To this aim, we show the following result.
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Theorem 5. All solutions of model (1) are non negative for any initial value (S(0), E(0), 1(0),
Q(0), R(0)) € (0,0,0,0,0) UR> and the feasible region of model (1) is defined by

N = {(S(£), E(t), I(£), Q(t), R()) € RS; 0 < S(£)+E(t) + I(t) + Q(t) + R(¢) < %}.

Proof. Suppose a general fractional variable-order discrete time model of system (1) as

AWS(H)]s—g = x+AR(Y),

SI
AOE(#)|peg = /SVN+pI,
A I()] 1= YE(t),
AIQ(Hgmo = I(t),
AOR(t)|rmo = 6S(t) + PI(t) +TQ(H).

From the above results, it easy to deduce that the solutions S(t), E(t), I(t), Q(t) and
R(t) are positive. Next, we have to show that the boundedness of the solution of model (1).
We have,

AYON(t) = x — uN(t) — 911(t) — 92Q(t) < x — uN(8).

According on the fractional order comparison Theorem in [47], we obtain

N(t) < =+ (N 0 )Elx e < =,
(t) " (0) » a(—ut™) ”

where N(0) < % O
3.2. Equilibrium Points and Basic Reproduction Number
First, to discover equilibria of the model (1) where X = (S,E, I, Q, R)T, we set
A*DX(t) = 0. (11)
We obtain the following algebraic system:

SI
N+ pI

pv

xX—Bv +AR(t) — (6 +u)S(t) =0,

SI =0
N +pl
YE(t) — (¢ +¢+ @1 +p)I(t) =0
PI(t) — (T+e2+u)Q(t) =0

0S(t) +@I(t) +1Q(t) — (A +u)R(t) =0

Using some algebraic calculations, we find two solutions of system (12). We have a
disease-free equilibrium point noted by Py = (Sy,0,0,0, Rp), and an endemic equilibrium
point denoted as P, = (Ss, E, I+, Q«, R«). Here,

— (v +uE(t , 12)

~

~

g _ XA+p) _ X9
pA+o+pu) 0T u(A+do+p)

More detailed discussion about an endemic equilibrium point are provided later. Now,
we identify the basic reproduction number of the model (1) denoted by R using the spectral
radius of the next generation matrix as in [48].

LetY = (E,I,Q)T. We have

AYY = F(Y) = V(Y)
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SI

. (ﬁvNerI) , V:( (v +u)E )

—YE+ W +o+ o1 +ul
I+ (T+¢2+p)Q

The Jacobi matrix of the above at the disease-free state P is given by

0 ﬁ;’\fo 0 Y+ 0 0
F=19 0o o V= -7 ¢+¢+o1+p 0 :
0 0

0 - T+@2+u

Hence, the spectral radius is denoted by ¢.

_ —1y _ BvrSo
Ro=cBV ) = N mwroroi i

Theorem 6. The proposed variable-order fractional model (1) has a unique disease endemic equilib-
rium point Py, = (S, Ex, L, Q«, Ry) if and only if Ry > 1.

Proof. We are able to obtain the endemic equilibrium P, = (S, E,, I, Q«, R+), and it is
written as

(0+mw)Ss+ (v +WE«— x| . X(A+p) — (By — Bo)Es

L =q1Es; 1Q« =qoli; R = ; = ’ 13
q1 Qs =1q2 1 PR (13)
where
= = ¥ B - (A+u)(y+u); Bo=Adq1 + Atqigz. (14)
Y+o+ 1 +pu T+@2+pu

We can obtain that

BB, AW EW@ ot o1+ p)(Ttertp) —APY(TH @t p) — ATy
b (@++o1+p)(T+ g2+ 1) ‘

Further, from the above equations, we have

(X(A+p) + (B2 — B1)x)q1 Ex
#(A+6+u)(N+pgiEs)

pv = (v +H)Es.

Define
(Xx(A+u) + (B2 — By)x)q1x
#(A+6+u)(N + pgrx)

g(x) = pv — (v +u)x, (15)

with g(x) =0, at x € {0, X()H_‘u)] where
Bi — By

(X(A+p) + (B2 — B)x)q1x
u(A+0+u)(N + pqix)

pv (v +mx=0,

and g(0) =0, g(Xé:‘jB’i )> = XA < 0. Now,

/ o *‘BV(BZ — Bl)qlx
$ ) = st N +pax) TP

m*(’YJFV),

§(0) = @b —(r+p) = (r+ ) (Ro —1).
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Here,
Ro = BvrSo .
Ny +m) (@ +¢+ 1+ u)

XA +p)
"B, — B,

Since ¢(x) is a continuous differentiable function x € [0 } .That g(x) =0

has a positive solution E,. If g(x) > 0 (R > 1) is proven. [

3.3. Existence and Uniqueness (E&U) of the Solution

In this subsection, we prove the existence and uniqueness of the solutions of our
problem (1). The kernels Hy, H, H3, H3, Hy and Hs are defined by

Hy(t,S(t)) = X—ﬁvN“inI+/\R(t)—((S+y)5(t),
HitE() = Prgo — (14 WE(),

Hs(t,I(t)) = 79E(t)—(p+¢+o1+u)l(t),
Hy(t,Q(t)) = oI(t) — (t+ @2+ u)Q(t),
Hs(t,R(t)) = 06S(t) +@I(t) +7tQ(t) — (A + p)R(¢).

Theorem 7. The Kernels Hy, Hy, H3, Hy and Hs have the Lipschitz condition.

Proof. Depending on the fractional discrete variable-order calculus properties, a solution

of (1) is given by
(1) = 5(0)+ A0~ Prgr +AR() — (5 +)S(1),
E(t) = E(0)+A“"(”(ﬁvN+p1—(’7+;4)E(t)),
I(t) = 1(0)+ A (YE(t) — (¥ + ¢ + o1 + p)I(1)), (16)
Q) = Q0)+ A (I(t) - (T+ @2+ 1)Q(H)),
R(t) = R(0)+A*BO(BS(t) +@I(t) +TQ(t) — (A + u)R(1)).
By definition,
1 SI
S() = SO+ gy L o) O rgT AR = (@4 0)S(0),
_ 1 P (a(t)-1) g, ST
EW) = EO+ gy L (o) v = (4 mEW),
t—a(t)
10 = 10+ 750 ) (= o)V E) (g + g+ g1+ (0, (17)
t—a(t)
Q) = QO+ gy X (o) WO ~ (v g2+ 0QW),
t—a(t)
R(t) = R(0)+r(a1(t)) » (t—0o(s)) @D (BS(t) + PI(t) + TQ(t) — (A + p)R(1)).

We consider the two functions S(t) and S*(t). We have

(0,500~ (e O] = (g + 6+ m)s -5 a9
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Suppose that
pr= gy + (5 +u)ll-

If ; < 1, we obtain
N +pl

1H1 (8, 5(t)) = Hi (£, 5" (D)l < pallS(£) = S*(H)]]-

We use similar arguments for other functions, we obtain

IHa(t E(t)) = Ha(t, E* ()| < p2l E(t) = E* ()],
1Ha(t, 1(£)) = H(t, I" ()| < palI(t) = ()],
[Ha(t, Q(£)) — Ha(t, Q" ()]l < pallQ(t) — Q7 (D), (19)
1Hs(t, R(t)) = Hs(t, R ()| < pslR(¢) = R*(B)]].

The respective Lipschitz constants to the functions Hj, Hy, H3, Hy and Hs are p1, p2,
p3, pa and ps. Therefore, the equations in (17) become

t—a(t)
S0 = SO+ gy & (o) O S6)
t—a(t)
B = EO+ gy L (o6 O k6 AG),
1 t—a(t)
I(t> = I<O)+F(1x(t)) ~ (t—(T(S))({X(t)il)Hg,(S,M(S)), (20)
t—a(t)
Q) = QO+ gy X (o) H C),
t—a(t)
R(H) = R(o)+r(;(t)) (= 0(5)) 0V Ha(s, R(s).

t—a(t)
i) = 50+ gy L (o6 O S (),
t—a(t)
E) = EO)+ L (= o(0) 0 V(s ()
5=0
1 t—a(t)
In(t) = I(O) + F(zx(t)) (t - U(S))(N(t)il)HS(sl Infl(s)>' (21)
s=0
1 t—a(t)
Qn(t) = Q(O) + F(oc(t)) ZO (t - U(S))(“(t)il)Hll(S/ anl (S)),
t—a(t)
Rn(t) = R(O) + F(ocl(t)) (t - O—(S))(a(t)_l)HS(sf Rn—l (S))/
s=0

the initial conditions are given by Sy(t) = S(0), Eo(t) = E(0), In(t) = I1(0), Qo(t) = Q(0)
and Ry(t) = R(0). Then, we take the expressions for difference of successive terms

1t
Y, (t—o(s) @OV (Hy(s,Sp-1(s)) — Hi(s,Sn2(s))),

19S,n(t) = Sn(t) - Sn71<t) = F(D&(t)) .

o
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t—a(t)
Oen(t) = En(t) = Ena(t) = r(;(t)) Y, (t=0(s)) "7V (Hy(s, En-1(s)) — Ha(s, En-2(5)),
5=0
t—a(t)
19I,n(f) = In(t) - n—l(t) = F(al(t)) 20 (t - U(S))(a(t)il)(HB:(sr In—l (S)) - HS(S/ In72(5)))/
t—a(t)
19Q,n(t) = Qn(t) - anl (t) = F(al(t)) Z (t - U(S))(’X(t)il) (H4(Sr anl(s)) - H4(Sr Qn—Z(s)))r
t—a(t)
Prn(t) = Ra(t) = Ry (b) = r(“l(t)) (t = 0(s)) O~V (Hs(s, Ry-1(s)) — Hs(s, Ru-2(s))),
s=0
where
Sut) = 20 5,(t) zﬁE] - 20 01,1
j= j=
Qn(t) = iﬂQJ t ,' Rn i’ = iﬁR,j(t)
j=0 =0
Considering
Osu-1(t) = Sp-1(t) = Su-alt),
l9E,n71<t) = E,_ l(t) (t>
Orn1(t) = Lia(t)— (f) (22)
Bon-1(t) = Qu-1(t)— Qn 2(t),
ﬂR,nfl(t) = R,- 1(t) (t)
we obtain the following:
p t—a(t) .
Isx®ll < prety & =@ 5ua )]
t—u(t)
. P2 . @(t)-1) |19 . )
R P MG IR L RO]
t—a(t)
. P3 _ (@(t)=1)|19 . ) 23
I < piktny K =) O 8 1)] @3)
p t—a(t) N
180401 < frqmy L ¢ oD OV 80 (o)]
t—a(t)
. P5 _ @(t)-1) |19 . .
R P MG O U IC]

O

Theorem 8. The solution of model (1) exists for t € [0, T| provided

kpi

T (D) <1li=1,..., 5.
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Proof. Here, the function S(t), E(t), I(t), Q(t) and R(t) are bounded, and the kernels
H;, Hy, H3, Hy and Hs satisfy the Lipschitz condition. By using the recursive principle,
the inequalities (23) involve

150(E)I (=,

851 < ks

Ien(] < BNy

O < Mol (s )" @
ool < IQuOI(Fs)"

a0 < IR(OI (s )"

Applying a limit, as n approaches oo, we obtain || ,(t)|| — 0. Hence, we have the
existence of the solutions of Equation (1). O

Theorem 9. The solution of (1) is unique if | N(t)]| (1 - 1"(?(?1‘))) > 0 holds true.

Proof. Assume that there exists another solution to model (1), and it is given as (S,(f),
Ex(t), Io(t), Q2(t), Ra(t)) where

mo [
t) — Ex(t p
RO = | 160 -B [ p= |
Q(t) — Qa(t) Pa
R(t) = Ra(t) ps
t—a(t)
S0 =50 = gy L ¢~ oO) O il S(6) (s, 526)),
1 t—a(t)
E(t) - Ex(t) = T (D) Zo(f—Cf(S))(““) V(L (s, E(s)) — Ha(s, Ea(s))),
t—a(t)
I(t) - L(t) = r(al(t)) N (t—o(s) OV (Ls(s, I;s)) — Ha(s, Ia(s))),  (25)
t—a(t)
Q- Q) = Frgy L (=) 0 (L5 Q) ~ Hals, Qa(s)),
s=0
t—a(t)
R(t) = Ra(t) = : (t—0(s) "D (Ls(s,R(s)) — Hs(s, Ra(s)))
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Applying the norm on (25), we obtain

t—a(t)
[S(t) = S2(t)]| = Ir(al(t» Zé(f—U(S))(”‘(”_l)(Hl(S,S(S))—H1(S,52(S)))II,
t—a(t)
IEO - B0 = gy L o) (ks EE) ~ Hals Bl
t—a(t)
11(t) = ()] = Ir(al(t)) » (t =0 (s)) OV (Hs(s, 1)) — Ha(s, 1a(s))) ],
t—u(t)
1001~ @0l = Ny &y ¢~ o) O (He(5,Q5)) ~ Hals, Q)
t—a(t)
RO ROl = Ny & (=) O (bs(s,R(s) — Hls, R
So
_ __ v R e _
I56) =S = Frgy L o) Ol 56) s Sl
1 t—a(t) e
”E(t)_EZ(t)” = F(zx(t)) s;)(t_g(S»( ® l)H(Hz(S,E(S))—Hz(S,Ez(S)))H,
1 t—a(t) e
11(t) = (D] = M) & (t—o(s)) D7V (Hz(s, I;s)) — Hs(s, La(s))) |, (26)
_ v R e _
100~ @0l = gy X o) VM5, Q) ~ Hals, QM)
1 t—a(t) e
RO ROl = gy X (o) (s RE) ~ Hs(s R

I50)-S:001 < gikty L (=@ Ols0) - 01,
IEO - B0 < s t::)a —o(s) OV E(E) — Ex(h)],
OEAGI r(gjft))tit)a—a(s))(“”1>||1<t>—12<t>|, @)
lQ) - Q)] < r<5?t>>tj:)“ o) Q) - Qa(0)]
RO-RO < L2 T (1= o) O DR~ Ralt)]:
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In consequence,
I5() =211 - k) < 0,

kp
IIE(t>—Ez(t)H(1—Wé))) < 0,

kp
11O - RO - 55y < O (28)

kp
||Q(t>_Q2(t)H(1_r(“é))) < 0,

kp
I\R(t)fRz(t)H(lfr(aé») < 0.

This is a contradiction, hence the result.
O

3.4. The Stability of Equilibrium Points
In this subsection, we study the local asymptotic stability of the equilibrium points.

Theorem 10. The disease-free equilibrium Py = (Sp,0,0,0, Rg) of the suggested discrete fractional
variable-order model is locally asymptotically stable if Ry < 1, and is unstable if Ry > 1.

Proof. The Jacobian matrix of model (1) estimated at P is given by

—(6+n) 0 Ny 0 A
0 —(u+7) pr 3 0 0
I (Py) = 0 v ~(p+e1+o+n) 0 0
0 0 P —(T+ @2+ p) 0
) 0 ¢ T —(A+p)

The characteristic polynomial of 7 is represented by
[T (Po) =AZ| = A+ w)(A+T+ 1+ p)A+A+d+p)L(AD) =0,

where
L(A) = (A)? + @A + ap.

Here,
am=7+P+o+¢+2u; aa=1-Ro)(v+u)(@+o+¢+pu).

There are five eigenvalues; A1 < 0; A; < 0; A3 < 0 and A4, A5 are the solution of L(A).

If Ryp < 1thena; > 0anda, > 0, L(A) has two real roots that are negative, then Py
is locally asymptotically stable. Likewise, condition R > 1 that A4A5 < 0 holds that the
equilibrium P, is unstable, and so the theorem is proven. [

Theorem 11. The endemic equilibrium P, is locally asymptotically stable if Ry > 1.

Proof. The Jacobian matrix of model (1) at Py is

—b, 0 —pul,b, O A
‘31/11 *bz ‘31/12 0 0
JPy=| 0 o b5 0 0 |,
0 0 w  —by 0
1) 0 ¢ T —bs
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01
)
3

4

5
Y14

a1(&1 —m) +a2(81 — a — a2) + az(as + as) + agas — p"0° — Pcehy,

where
by =Bvh+6+pu, by=vy+pu b=¢+¢+¢i+pu
I, SN

by=74+@+pu, bs=A+yp, llzm, I m

The characteristic equation is

IAE = J(P)| = A% + GiA* + LA + (A2 + TuA + s,

where

az[aqas + a1(ag + as)] + azlagas + ax(ay + ag + as) + a1 (ag + as)] + a1a4 as

+e“,8262"‘h1h2 — €*Bc*hy(ay + aq + as) — 0% (ap + a3 + ay),

a3[ay(agas + ay(ag + as)) + ajagas) + ajaagas + (ay + as)e* B2y hy
—(agas + ayas + aya4)e€*Pc*hy — (apag + azay + aaz)0%p™* + €0 B (p*hy — v*hy),

{5 = a1aa3a4as5 + a4a5e”‘,82c2"h1h2 — a1a4as5€* Bchy — arazas6*p*

+ase*0*Bc* (p%hy — v*hy) — €*6%0%n*Bc*hy.

If & > 0 (i = 2,3,4,5) and it is clear that {; > 0, the sufficient conditions can be
derived as follows:

. o1 oo a 20

Gl 16 o also |98 i (29)
i3 0o oLl (s Ca 03 02
> w3 0 0 5

for which the equilibrium P, is locally asymptotically stable. [

4. Optimal Control Problem

A vaccine for the emerging coronavirus (COVID-19) has been developed, aiming to
decrease the number of contacts between susceptible individuals and infected individuals
to limit infection and mitigate the spread of the virus. This can be realized through various
measures, including home quarantine, nucleic acid testing, and restrictions on residents’
movement. Mathematically, these measures can be represented by a coefficient denoted
as u in this section, indicating the intensity of different control measures. Consequently,
the model system of Equations (1) is modified as follows:

SI

AX(H) — g1 _ _ 20 L ARBR(E) — (640 a0
S = x= O —u®) gy + AR = @0+ s (),
SI
a(t) = a(t) (1 — 28 () ()
SOEW) = prOA—ul) g~ (0" + ),
MOI) = OB = @+ 98+ g 1t O)1(), (30)

Y
Azx(t)Q(t) _ wa(t)l(f) o (Ttx(t) + Qog(t) + ﬂa(t))Q(t),
AR = 6*OS(t) + ¢ D 1(t) + O Q(t) — (AYD 4 ) R(8).

The corresponding discrete fractional optimal control problem with variable order in
the Caputo sense is considered as follows:

J(u*) = min J(u),

ueQ)
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where | is defined by
= Y GiE(k) + CoI(k) 4+ C3Q(k) + C4u?(k),
k=0

and the control space () is defined by the set
Q={ueR"/0 < upy <u < Upyax < 1}.

The coefficients Cy, Cp, C3 and C4 represent the positive weight constants of exposed,
infected, isolated and control variables.

Theorem 12. Let u* denote the optimal control variable of the discrete fractional optimal control
with variable order, and let S*, E*, I*, Q*, and R* represent the optimal state solution. Additionally,
there exist adjoint variables x;, where i = 1,...,5, satisfying the following equations:

8Oy (1) = (B (1 = )y 6O O (O (1 — ) Cpra(tr 0t Ons(),

AMVi(t) = G — (" + p* D)y (t) + 1" Diep(t),

AW (t) = Q(mM%1wovfmymum(mMW1mU$3;y@u) (31)
(0 + 9O 1 ot + D)y (£) + 9 Oy (1) + ¢* O (1),

A1) = = (g () + s

A Wis() = A — (A% 4 12 (D))yeq

with Aof(t)xi(t) =0,i=1,---,5. Inaddition, the optimal control u*is characterized by

. Br* ST (x; — x1)
u —m1n<max< 2Ca(N + pl) ,O),l). (32)

Proof. We can determine the discrete optimal control u* by the application of a discrete
version of Pontryagin’s maximum principle as in [49-51] to the discrete Hamiltonian
function M as follows

M = CE+ Col + C3Q + Cati + 11 (x — pra® (1 — u) Nifpl 4 aAxOR — (5a(t) + uel)s)
2 B (g (g O ) E s (V=) -+ 90 e )1

+ K4(1l]"‘(t)l ( ( )+¢§(t)+y“(t))Q) + KS(éa(t)S + q;“(t I_|_T"‘(t)Q — (/\‘X( ) + H’X( ))R

By using the following formulations,

A?DM;:GH.AMﬂ OH o, _ OH ety OH ot _ 0H

357 °r Kz_ﬁ’ T K?)_Wr T K4:@} T K5_ﬁ’

the discrete-time fractional adjoint system with variable order is given as
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a(t) _ [ a(t) () a1y L alt)
A*Wiei (1) (,Bv (1 u)N+pI+5 + u e (£ (1 u)N+pIK2(t)—|—(5 K5(t),
AWy (1) Cr— (0 + )iy (1) + " Oien (1),
. I . SN
AWia(t) = C— (pvt (1—u)mkl(f)+(ﬁv Wl—u)mxz(t) (33)
— (0 4 g0 o Oy (1) 4 g Dy (1) + ¢ Dis (8),
Aa(t)K4(t) C3 — (Tlx(t) + q)z( ) + ,‘l/la(t))m;(t) + T a(t )K5,

A*Wies (1)

/\“(t)Kl — ()\“(t) + ‘letx(t))KS

oH
The control equation is 5, = 0, and we have the optimal condition

oH alt) alt)
ﬁ = 2C41/l + ﬁV mi{ ‘BV

SI
N +pl

2 =Y

y - ﬁv"‘(t)SI(Kz —%1)
 2(N+pDCy

and for the optimal control u*, we have

0 zf— <0
uw=<u if—:O
1 fa—H >0
and a(t)
u* = min(max(‘[gvzcjzl\;]fi ;I;q),O),l)
O

5. Numerical Simulation
5.1. Numerical Strategy without Control

In this subsection, we solve the discrete-time fractional variable-order model defined
by the system (1) using the Adams type predictor-corrector method proposed in [52].

syt = fley),
y(0)) = yh0<a(t)<1,0<t<T, (34)

where b = 0,1,...,n—1, and n = [a(t)]. Analogous to the fractional order meaning,
the above is equivalent to the Volterra equation

a(t)
E yob, Z @OV f(s,y(s)), (35)

to obtain the numerical solutions of the suggested model. We take

T
h= N; t, = Zh,‘ N = U[Nkferk]/' zZ = Nkflr-“/Nk S Z+,

a(t) = (aq,ap,...,a;) by means of letting v, ~ y(t.), the discretization of (1) is
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Sp1— 1 s téi)l LS YRy Sel: AR, — (64 1)S.)
q+1 - =0 r(“( ) ) =0 pZ,q+1 X ﬁvN‘i‘F)Iz Z ‘u z
h"‘( ) q 5511551 PF
T(a(k) +2) ; (Pgs1,9+1) (X — B m + )\Rqﬂ (6+ #)SqH)
= P
+(2)
[a (k)] (k) q S, I
q+1 zlz
Eq+1 - Z E 21 + F(Dé(k) +2) ZEO(PZ q+l)(ﬁVN+pIZ (7 + ‘u>EZ)
b b g B (4 )
T(a(k) +2) = YN preE, T T
k) tf;@l p® g
1q+1 - Z IO 1 F(a(k) + 2) ZE (Pz,qul)(’YEz - (4’ to+ o1+ V)IZ) (36)
ha(k) q
+ m r (Pq+1 q+1)('YE5£1(1P +¢+ g1+ V)I;-fl/
[ (k)] tfﬁgl (k) q
Qq+1 Z Qo 1 l"(a(k) T 2) )y (pz,q—&-l)(wlz - (T + @2+ ,”)Qz)
(k) q
+ W )y (Pq+1 q+1)( ( M,I;.fl (1/’15_{1 (T+¢2+ V)Qq-s-l)
Ry 'y R a0 i 3S. + I A+ )R
q+1 = Zg (I;Z), +r( (k)—|—2) g(Pz,q—&-l)( Z+(PZ+TQZ_( +‘H) Z)
h* 1
+ T(a(k) +2) Zgo(PcHl,qH)(‘sspPl +oIh + TP — (A+ wREL),
where
g*®+1 — (g — a(k)) (g +1)*®), ifz=0
Prgit = { (@ —2+2)* 0 4 (g —2)20F —2(q —z 4 1)*0F if1 <z <g (37
1, ifz=qg+1.
The proposed prediction formula is calculated as follows:
o)) a) 4
PF _ (z) [g+1 L
Sq+1 - = SO I + F(Dé(k) + 1) Z;)(]zq+1)(7( 'BUN—FP +AR; - ((5+ V)Sz)/
w) 2 a) 4
PF _ (z) “q+1 h ; S:lz
E‘7+1 - = EO ~1 + F(Dé(k) + 1) Z;(]qu+1)(18VN+pIZ (’Y +]’l)EZ)/
k) 1) ) 4
Bh= L0+ tam ey L)W oo+ k), (38)
i) ) ) a
o= X Q7+ e — (T4 02500,
LN )
Rgil _ » R(()Z)qTT 4 m ;)(jz,q+1)((5sz +¢L +71Q; — (A+ u)Ry)
where

jz,q+1 =@+1- Z)a(k) —(q- Z)a(k)'

5.2. Numerical Strategy with Control
In this subsection, to solve the (V-FOCP) in the discrete-time defined, we have
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t(z)

Yg11= ZY 1 (

where Y = (S,E, I, Q, R)T. We can rewrite the system of adjoint equations in the compact
form with

k) 1 h”‘ (k) 1 PF  PF
(k) + 2) Z(pz,q+1)g(tmyz'”q) 2 pq+1,q+l q+1qu+1r”q+1) (39)
z=0 =

( )
( )
L(t,Y,x,u) = | L3(t,Y,x,u)
( )
( )

We obtain
t
A (T — £) = LTy — £, Y (Ty — £),x(Ty — 1), u(Ty — t)). (40)
We have a discritized control system as in [38] with following algorithm.

5.3. Solution Algorithm of V-FOCP in Discrete Time

Step 1: Consider the initial estimation control # and used the initial condition.
Step 2: Find the adjoint variable and the optimal states by solving control problem.
Step 3: Find the control u™* using control function.

Step 4: Take uy = % to update the control.

Step 5: Stop the iteration when W otherwise return to Step 2.

6. Numerical Results and Discussion

In this section, we use the parameters provided in Table 1 to discuss the introduced
model (1) numerically. Additionally, the proposed model of fractional variable order in
discrete time is numerically solved using the method outlined in the previous section.
Moreover, the initial value conditions for the system (1) are set as follows:

S(0) = 5.5 x 10°%, E(0) = 4.25 x 10%, I(0) = 18,000, Q(0) = 3000, and R(0) = 4 x 10°
as in [38]. The following values are assumed for a(ty):

0(1:1

ay= (08 085 09 ),a3=(07 075 08 ),as=(06 065 07 ).

Figures 1-3 depict the influence of different values of the variable fractional parameter
ax on the dynamics of subdivisions for the total population of COVID-19. We obtained
interesting results by varying «j. Figure 1 illustrates changes in the susceptible population
graph as the value of a varies, with a decrease in the number of days separating the
two curves as & decreases. We observe a proportional relationship between the time taken
to reach the peak point in the graphs for exposed (E) and infected (I) individuals and the
changes in & as depicted in Figures 2 and 3.
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Figure 1. The behavior of the susceptible and removed population from some variable order «.
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Figure 2. The behavior of the exposed and infected population from some variable order «.
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Figure 3. The behavior of the isolated population from some variable order «.

Figures 4-8 present simulation results that demonstrate the significance of the control
variable to control the pandemic. The optimal control measures have a positive impact
on reducing the rate of infection and the number of individuals exposed to infection,
as depicted in Figure 5. Additionally, the number of people recovering increases more than
usual. However, the decline in the susceptible population slows down due to the reduction
in the number of individuals at risk resulting from the control measures.

6
55 :><1O
.l
5 *‘:.
45+
4+

351
With control

@ 3 /
251

2 | -
Without control

151 Tl
S, ""u-..,m"“mm
1F \“:

0'5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

time(Days)

Figure 4. Susceptible group with control and without control for « = [0.99,0.95,0.93].
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Figure 5. Recovered group with control and without control for & = [0.99,0.95,0.93].
4
45710
.‘..
4 |-
35f %
Without control
3r ..‘.. /
_25¢
150 " .
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g ""-\/‘
051 \
e
0 1 1 1 1 1 L - a
0 10 20 30 40 50 60 70 80 90
time(Days)

Figure

6. Exposed group with control and without control for « = [0.7,0.75,0.8].
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Figure 7. Infected group with control and without control for « = [0.7,0.75,0.8].
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Figure 8. Isolated group with control and without control for & = [0.7,0.75,0.8].

7. Conclusions

In this study, we have conducted an analysis of a novel mathematical model for the
"SEIQR’ epidemic (COVID-19), incorporating an isolated class. This model is characterized
by a discrete-time system of fractional variable order in the Caputo sense. We have
examined the non-negativity and boundedness of the solution, as well as determined
the reproduction number Ry by computing the spectral radius of the next-generation
matrix. Based on the threshold Ry, we have established the existence and stability of
both the disease-free equilibrium and endemic equilibrium points. Moreover, we have
applied an optimal control approach to a discrete-time COVID-19 model. A numerical
scheme utilizing the Adam’s numerical method was employed for the Caputo fractional
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variable-order system. We tackled the Variable-Order Fractional Optimal Control Problem
(VO-FOCP) in discrete time. Numerical simulations have been conducted to underscore
the significance of control measures. It has been observed that upon implementation of
control measures, the number of susceptible individuals increases, while the number of
infected and recovered individuals decreases.
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