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Abstract: This article investigates the Oldroyd fluid, which is widely used in industrial and engi-
neering environments. When the Oldroyd fluid passes through a three-dimensional semi-infinite
cylinder, the asymptotic properties of the solutions are established. On this basis, we also studied the
continuous dependence of the viscosity coefficient.
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1. Introduction
In this paper, we let R denote that
R = {(xll X2, x3) ‘ (xll x2) S D/ X3 > 0}/
where D C(x1, x3)-plane, and D is bounded (see Figure 1). We also require that D has a
smooth boundary oD.
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Figure 1. Cylindrical pipe R.

Let u;, p, and g;(i = 1,2,3) denote the velocity, the pressure, and viscoelastic variables

of the fluid, respectively. These variables satisfy the following Oldroyd fluid equations

(see [1]):
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In (1)-(4) and the following, we use commas for derivation, repeated English subscripts
for summation from 1 to 3, and repeated Greek subscripts for summation from 1 to 2, e.g.,
ou; .
i = Y gt and e = Y7 Je
On the boundary, Equations (1)—(4) satisfy

ui(x,0) = q,(x,0) =0,x € R, (5)
ui(xll X2, O/ t) = gi(x1/x2/ t)/ (x1/ x2) S D/t > 0/ (6)
9i(x1,x2,0,t) = hi(x1,x2,t), (x1,%2) € D,t >0, )

a .
ui:0,a—z;:O,xean{xgzo},t>0, ®)

where g; and h; are given functions, and y,y, and A are positive constants.

Because viscoelastic fluid is widely used in real life, this type of fluid has attracted
more and more attention. The Oldroyd fluid Equations (1)—(3) are not only clearly recorded
in [2], but also discussed in [1]. Meanwhile, Oskolkov and Shadiev [2] and Christov and
Jordan [3] have proved the existence of the solution to Equations (1)—(3) under different
conditions. In the context of industrial and engineering applications, Oldroyd fluids always
pass through a cylinder. Therefore, it is necessary to study the properties and continuous
dependence of solutions to Oldroyd fluids on a cylinder.

The first purpose of the present paper is to study the spatial decay results of the
solutions to Equations (1)-(4) when x3 — 0. In fact, Keiller [4] studied the spatial decay of
steady perturbations of plane Poiseuille flow for the Oldroyd-B equations as t — cc. For
such a type of study, one can also see [5]. After the earlier work of Boley [6], the spatial
decay results of fluid equations with spatial variables in a cylinder, which can be thought
of as decay results of the Saint-Venant type, have been paid full attention. For more of
such Saint-Venant type results, one can see [7-16]. Compared with references [4,5], the
innovation of this paper is the use of the methods of references [9,11] to further extend the
attenuation results to a semi-infinite cylinder. We demonstrate that the solution decays
exponentially on the semi-infinite cylinder, indicating that the velocity and viscoelastic
variables of the fluid decay exponentially with distance from the finite end to the infinite.
This is the first result that we establish in the present paper.

The second purpose is to study the continuous dependence of the solutions to
Equations (1)—(4) on the viscosity coefficient. When a small disturbance occurs in the
viscosity coefficient, we study what kind of disturbance will occur in the solutions of the
equation. In past decades, studies on structural stability have received a lot of attention,
and a large number of papers have emerged, including those of Liu and Zheng [17], Avalos
and Lesiecka [18], Meyvact [19], Quintanilla [1,20,21], Liu et al. [22-26], Hameed and
Harfash [27], Scott et al. [28,29], Li et al. [30-33], Ciarletta and Straughan [34], and Franchi
and Straughan [35]. Straughan [1] proved that Kelvin—Voigt fluid depended continuously
on the coefficients of the fluid. Research results have been focused on bounded regions in
both two-dimensional and three-dimensional spaces.

In fact, the study of structural stability in the cylindrical region is equally important.
Due to its widespread application in practice, it has gradually begun to receive attention
(see [36-38]). This paper will continue the research in this field. We want to extend the
results of [1] to the case of the semi-infinite cylinder. Taking the viscosity coefficient as an
example, we demonstrate how to derive the continuous dependence results of the solutions
on the other coefficients in Equations (1)—(4). In this process, we adopted methods of energy
estimation and prior estimates.

2. The Main Theorems

We first list some lemmas.
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Lemma 1 (See [7]). If)(‘aD =0, then

M / XdA < / XaXadA,
D D
where A1 is the smallest positive eigenvalue of
Ap+Ap=0,inD, ¢ =0, onadD.

Lemma 2 (See [39]). Assume that oR is the Lipschitz boundary of R. If f rvdx = 0, then
3 ¢ = (91, @2, ¢3) and @lar = 0 such that

@i =70, inR,

and
/Rq)i,j(l’i,jdx <k /R[qoj,j}zdx, ki > 0.

This lemma in the case of two dimensions has been established by [40].
We consider the identity

/ / ”1 o — HAu; — AAgi + P,i] u; ydxdn =0, 9)

where R, = {(Xl,XZ,X3) ’ (x1,x2) €D, x3 >z > 0}. By using the divergence theorem and (5),
(8), we have

7“”;4/ z)uj ju; jdx + / / e (& —2) [ul i + wyu,]uz]}dxdvy
= —y/ / 37w77”i,;7”i,3d’<d77 —)\/ / e’“’”ui,qqiﬁdxdiy
+/ / e~ “ug , pdxdn — /\/ / z)q; Ui jydxdn

= fy/o / e~ u; 3dxdn f)\/o /R e~ “u; ,q; 3dxdy (10)

t
+/ / e_“’”ug,,,?pdxdqf/\e_“”/R (& —2)q; jui jdx

—/\w/ / & —z)q; juidxdn

+ A/O /R e (& — 2)q; jyu; jxdn,

where w is a positive constant.
By (2), we have the following identity:

/ / —z) %m + 95 — ”i,]} Qi,jrdedﬂ =0. (11)
From (11), it follows that
e ( 1
“hy 2)4i i jdx + (& —2) [ wYqi i + qz,qu,m] dxdiy

= / / ul]ql jpdxdn. (12)
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If we let
[—
E(zt) = € /R (& —2z) [V”i,jui,j + 517171‘,]"71',]' dx
1
+ / / —2) ul Uiy + w,’bluljuz] + (U'stl%ﬂz] + 0149i,n4i, ]17} dxdn, (13)

then from (10) and (12), we have

t t
E(z,t) = —y/ / e_w”ui,vuiﬁdxdr]f/\/o /R e “Tu; ,q;3dxdy

/ sy~ Ae" [ (&~ 2)gi s jax (14)
_Aw// e~ (¢ — z)q; ju; jdxdn + (A + 1) // & —2)q; jyui jdxdy

6
=) Ai(zt)

i=1

where 61 > 0.
Based on the energy function E(z, t), we can obtain the spatial decay theorem.

Theorem 1. Let (u;,q;, p) be the solutions of Equations (1)—(8). If g; € C(dD x [0,c0)) and
Jp 83dA = 0, then the following inequality holds:

1 o
i

1
+// ¢—z) ”H7”H1+ qu”w+ SWY01:,4i + 014i,jn i jy dxdyy
<7 t —nmyz
le(O Je

where my > 0, and Q(0,t) > 0 is a computable function that depends only on t.

Remark 1. Obviously, e=™* — 0as z — co. Therefore Theorem 1 shows that the solutions of
(1)—(8) decay exponentially to zero as z — co.
We suppose that u;, q;, and p are the solutions of (1)=(8), and uj,q;, and p* are the solutions

of (1)—(8) with v = *. Let
Ui:ui_u:‘ﬁ/ leql_q;k/ ﬂ:p_p*, 7:/)/_,)/*,

Then, v;, %, and 7t satisfy

Vi — HAV; —AAL; + 7, =0, x€ER, t >0, (15)
v;;, =0, xeR,t>0, (16)

Zi,t + ’7%‘ + ’)/*Zi —0v;=0,x€R,t>0, (17)
0j, Ul',]', Zi/ Zi,j/ — 0,as x3 — oo (18)

and the following conditions

v;(x,0) = Z;(x, )—O X € R, (19)
(Xl,XQ,O t) (xl,xz) e D,t >0, (20)
¥i(x1,%2,0,¢) =0, (x1,x2) € D, t >0, (21)
0= 0,25 —0,x €aD x {x3 > 0},¢ > 0. (22)

on
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The continuous dependence theorem can be written as follows.

Theorem 2. Let u; and q; be the solutions of (1)~(8) and u; and q7 be the solutions of (1)—~(8) with
v =" 1If [ g3dA =0, then

(ui,qi) = (uj,q;), asy — "

Specifically,

1 t B t B
ZWV/O /RZ(C—Z)E wﬂvi,jvi,jdXdU+/o /RZ(C—z)e “; y0; ydxdn

1 . [ _ 1 t _
+ 15260’)’ /0 /RZ (C:,r — Z)e “’Wzi,jzi,jdxdn + 5(52/0 /RZ (é - Z)e wﬁzi,jﬂz‘i,]'ﬂd)(dn

26, Lrl 29
< g S|z
~ wyté Q0,1)y [mz + ml}e +

41112(52
wy*my(my — my)dy

QNP [ ),

or

1 t B t -
iWV/O /RZ(C*Z)e w”vi,jvi,jdxdﬂ+/0 ./Rz(ijfz)e “v; ;i ydxdy
1 . 1 - 1 t B
+ Z(Sz(ﬂ’)’ /0 ,/RZ (C — Z)e “’Wzi/]-Zi/]-dxdiy + 552/0 /RZ (C - Z)e w’?z‘i,ji]z‘i/]'ﬂd)(dn

252 1 —i—i]eimzz—i-
2 I

~ 4771252
Hy? | —
wy*d Q0,57 {m

wy*myd

Q(0, t)y?ze ™22,

where my and & are positive constants.

3. The Proof of Theorem 1

In this section, we first state some lemmas that are related to (1)—(8). Using these
lemmas, we can obtain Theorem 1.

Lemma 3. Suppose that u;, q;, and p are the solutions of (1)—(8) with [, g3dA = 0. Then,

1 d
Bz ) < o[ - 5EG 1),
where 51 = %, w > S(A;Tf])z,and
1 [ \/k2y+ \/kz N VKA f - A }
mq \/7 V2 \/2’)/51 2\/7 2\//\1 \/ \/2’)/(51(0

Proof. From (13), we also have

] 1 _
5EEn = e [ [V”w“w+51Wiff‘7f/f]dx

1
+ / /R ul,ﬂul,ﬂ + w,uul,]uz,] + W'Y(Slql,]qz,] + (Slql,jﬂql,jﬂ:| dxdﬂ (23)
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Next, we bound each A;(i = 1,2,...,6) in terms of ——E(z t). By Holder’s and
Young’s inequalities, we have

1
) <u // ’7u,3u13dxd17// ”ui,ﬂuilvdxdﬂ}z
// ’7u13u13dxd17—|—// ulﬂul,]dxdiy} (24)

Ax(z,t) < 40’)/51/0 / “g;3q; 3dxd17+/ / ”ui,,]ui,,]dxdiy], (25)
Ay(z, ) < \/% {zye—wt/R (& — z)u; ju; jdx + 2751(3 wt /Rz(gfz)qiqui,jdx}, (26)
As(z,t) < ’yyél 2 y/ /Rz & — z)u; ju; jdxdn

+ Ew'yél/o /R e (g — z)q,]qudxdq} (27)
As(z,t) < A;;iisl / /Z 2)i,jy9i A%y

+ wy/ / ¢—z uljul]dxdq} (28)

Next, we will bound As(z, t). To do this, we note that

Z
/ s d A = / s dA + / / s 3 d AdE
D. D 0 Jo;

- "z
= [Jusida— [ [ uwodade (29)
D Jo Jp¢

= /D g3,tdA.

In view of [}, g3dA = 0, we have sz uzdA = 0. Through using Lemma 2, 3 ¢ =
(91, @2, @3) such that

@i; = u3s, in R, ¢; = 0,on oR.

Therefore, we have

As(zt) = /Ot /:’ /Dg e o ipdxdy = — /Ot /;O /Dg e “To;p idxdn
= /Ot /Zoo /Dé e “; [ui,q — pbu; — AAql} dxdy
:/Ot /Z°° /Dé e_wﬂ(piui,ﬂdxd;y+y/()t /:" /Dé e~ g, ju; jdxdy (30)
+/\/Ot /Zoo /D,: e gjq;dxdy

3
= ZA3I (Z t)
i=1
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Using the Schwarz inequality and Lemmas 1 and 2, we have

t 1
Azi(z,t) // “i,n”i,nd’“i’?// efw”(PifPidxdﬂz
Ry
1
// Wulﬁulﬂdxdﬂ// W(Pi,ﬁﬁoi,ﬁdxdﬂz

<7
VAL
1
S\/\/% // uwulﬂdxdiy// w”(plldxdn}z (31)
1
S\/\/g // e"””uilquil,]dxdq/o /R e’“’”uélﬂdxdn}z

< \ﬁ/ /Z M ydxdy,
1
A32 z, t <u / / u”ul]dxdq/ / (p,»,jgoi,jdxdﬂ :
< 2 y/ /Z u”uudxdnqt/ / “"7u3,7dxd17} (32)

Aszs(z,t) < 51y ~Wq; iqi,dxdn + ef“’”ugr,?dxdiy . (33)
27(51a) 0 JR,

Inserting (31)—(33) into (30) and in view of (23), we obtain
d

k
A3(z,t)§[r ‘/ﬁ WH—EE( )} (34)

Since 5 )
16A w > 8(A+4d7)

07 M
by inserting (24)—(28) and (34) into (14), we can obtain Lemma 3.
We also need the bound of E(0, t). Therefore, we bound E(0, t) using known data. [J

61 =

7

Lemma 4. Assume that u;,q;, and p are the solutions of (1)~(8) with |, p &3dA = 0. Then,

1 _
Ee wt/ [yuijuij+(51’)/qi,]'qilj}dx
1 1
+/ / uz;y”ziy"" S WHU; U+ w751q1]q1]+‘51‘71]17qzm]d’(d’7
< Q(0,1),
and

E(0,1) < —Q(0,1),

mq

where Q(0, t) is a positive computable function.

Proof. We let z = 0 in Lemma 3, and then we can have

3
E(0,1) < mil[— 2 E,1)]. (35)
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Therefore, to bound E(0, t), it is necessary to seek a bound for — %E (0,t). In (23), by
choosing z = 0, we have

0 1
—EE(O,t) =5 “’t/R {H”i,jui,j‘i‘él'ﬂhj%,j} dx

t _ 1 1
+ /0 /RE wn [ui,ﬂuilﬂ + Ewyui,jui,j + 5“’751%‘,]‘%',1 + 51’11‘,]‘;7071',]‘77} dxdiy. (36)

From (14), we have

0 t B t B
_EE(O'” = —;4/0 /De w”uilﬂuilgdAdiy—)t/O /De “Tu; ,q;3d Adn

t
—l—/o /De “lus , pd Ady — Ae “’t/qu/jui,jdx (37)
t t
—Aa)/ /e_w”qi,jui,jdxd17+()\+(51)/ /e_w”qi,jﬂui,jdxdiy
0 JR 0 JR
6
=) 0i(0,t),
i=1

Now, we let G denote
G(x, t) = g(x1,x2,0,t)e” 1%, (38)

where 7 is a positive constant, and g, « — 0183 = 0.
Using Equation (1) and the divergence theorem, we have

0, (0, t) + @2(0, t) + @3(0, t)
t t
= _‘u/O /‘Deiw’?Gi,qui,SdAdVI _/\/(; /Deiwqciﬂqi/g,dAdﬂ
t
+ [ [ e 1Gapandy
—A// 1(q:Giy), dxd17+y/ / U1,y ) ey
- /0 ./R e (pGiy) idxdn (39)
t t
= ﬂ/o /Re_“’”ui,jG,-,jﬂdxdnvL/\/o /Re_w”‘h,sz‘,jqudﬂ

t
—/0 /Re_“’”ui,”Gi,”dxdq

=01(0,t) +02(0,£) + 03(0, t).

Combining Holder’s inequality and Young's inequality in (39), we obtain

10,1 < ;M / e ddyy + 2 i / [ €711y Gyjytvi, (40)

2(0,1) < gwrd /0 e ”quql]dxdn+7w5 / [ €71,y Gy, (41)
1t .

< E/O /R€ w”uilnuilﬂdxdry—k/o /RB w”Gi,qGi,;dedﬂ- (42)

Inserting (40)—(42) into (39), we have

01(0,1) + ©2(0,1) + O5(0,1) < ;[ - aaE(O n] + 000, 43)
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where

1 2 .
1Q(o,t)z[apwwél // ”GIMG,dequr// G, Gy iy,

Combining Holder’s inequality and Young’s inequality again, we obtain

A 1 1
< L ,wt/ L ,wt/
®4(0/ t) = \/W [Zﬂe uz,]uz,]dx+ ’)/(516 ql,]ql,]dx]r (44)
05(0,t) < wy/ / My ju; dxdn + w'y(51/ / qi,jq,',jdxdn}, (45)
7#51
©6(0,1) < AN / / “g; i indxdn + fwy/ / e~ “Mu; iu; -dxd;y] (46)
e i 29H Jo Ik i
Since ) )
5 161 s+
TH o1
we have
1 0
©4(0,1) + ®s(0,t) + @ (0, 1) < 5[ —E(0, t)} (47)

Inserting (43) and (47) into (37), we have

~ 9k, < é[

9 1
= 21— —E(O,t)} +4Q0,). (48)

0z

Combining (35), (36), and (48), we can obtain Lemma 4.
From Lemma 3, it follows that

]

2 {EGnem) <o, “9)

Integrating (49) from 0 to z, we have
E(z,t) < E(0,t)e ™= (50)
Combining (50) and Lemma 4, we can obtain Theorem 1. O

4. The Proof of Theorem 2

From Theorem 1, we have the following result

2 -
/ / _Z ql]%]dxdﬂ = WQ(OI t)e me, (51)

From Lemma 4, it can be followed that

t 1
W g dxdn <
/0 /Re 1,143 = wYy*oy

We let F(z,t) denote

F(z,t) :—y// “o; ;i 3dxdn — )\// Yo, L 3dxdy

—wn dxdn. 53
+/0/Rze T3,y dxdn (53)

Q(0,1). (52)



Mathematics 2024, 12, 1240

10 of 14
By using the divergence theorem and (15)-(18), (22), we obtain
E(z,t) fA/ /Z‘w" 2) 01, X by — y/ / 1(E — 2) joy,0; ey
+/ / imvidxdny
._/K/ e (¢ —zvmmUMﬂq+y/1/ (& — 20, jy0i ey
+A/ﬂ/ e (& — 2)0; 1y % ey (54)
fwy/ / § — 2o joi dxdn + 5 L “’ty/ — 2)0;,jv; jdx
+Ae*wf/R (-2 ,]vl]dx+/ / & — 2)0;,y0; ydxidy
—A/ /ZﬂW —zlmuﬂmn+wA/‘/ V5, 0 .
We begin with
/ 42 = 2)e ™ [Ty + 703+ 7 Tij — 03] Ty = 0. (55)
Using (17), we have from (55) that
/Ot/R(C—z ZlMZldedry—i- e~ 'y/ z)L; % jdx
— /Ot /Z@ —z)e L jyv; idxdn + Ew'y*/o /RZ@ —z)e WL ;% dxdy (56)
= -7 /Ot/Z(C— z)e” g, % jydaxdy.
Now, we let
H(z, t) fe y/ z)v; jv; jdx + wy/ / ¢ — z)v; jv; jdxdn
+/ / e’“’”(C—z)vi,,ivwdxdn—i—/ / (& —z)e” %, jy X, jydxdn
ot i/(g z”;ﬂm+-anf/‘/ —2)e WIS, ¥, dxdy  (57)
+ Ae Wt /Rz(gf z)% l]vl]dx—i-w)\/ / )Z; jvi jdxdn
—-A /Ot /Z e” (g — z)%; j,v; jdxdn — /0 /RZ(C —z)e ML, iy v; idxdn.
Combining (53) and (56), we can have
Hz, t) = —A/ / 01,7 i 3dxdn — y/ / vmvladxdiy
(58)

+// e rv3 pdxdn — 7(52// —z)e “q; ;% jpdxdy
4

=) Izt
i=1
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It follows from (57) that

d 1 _
—E’H(Z,t) = 5¢ “’ty/R 0;,j0;,jdx + wy/ / “; vy dxdny

+/ / vz,ivmdxdq+ (52(.0’)/ / / WZi,jZi,jdxdiy
+52/0 [ €y 45 Loty / %% dx
Ae~ ¢t /RZ Zi,jvi,jdx%—w)x/o Az e_‘””Zi,jvi,jdxdn

t
— ()\+52)/0 /R e_“’WZi,j,]v,«/jdxd;y,

where 6, is a positive constant.
In view of Holder’s and Young’s inequalities, we obtain

_ 1 A2
e ‘Ut/ Z,’,]‘Ui,]'dxz —76 wty/ Ul',]'vl',]'dx— ﬂe wt /I;Z Zi,jZi,jdx,
t
w/\/o /R Y o idxdn > —fwy/ / “o; jv; idxdy
2)2
— Cu/ / e“"”Zi,jZi,jdxdq,

t
()\—0—52)/0 /Rz e L iyv; idxdny > —fw‘u/ /Rz “o; jv; idxdn

2(A +6,)? _
— 7(‘]” /0 /RZ e ‘””Ziquziljﬂdxd;y.

2
Inserting the above inequalities into (56) and choosing J, > 7 0 ffy}
M, we obtain
Ho2

9 1 t - t -
—E’H(z,t) > ley/o /Rze wﬂvi,jvi,jdxdﬂ-f—/o /Rze T pvi ydxdn
1(5 [ TYNY, 3 idxd 1(5 t TONE i X ipdxd
+ZL QWY A e i,j2i,j A% 77+§ 2, Rze i,y i, jiy AXAT]

Next, we use similar methods to those in (24), (25), and (34) to obtain

Li(z,t) < \\? 2 y/ /Z ”vl3vl3dxd11+// ”virqvilﬂdxdiy},

t
L(zt) < Tzw ;lwv*éz/ / €_w”2i,32i,3dx¢i77+/0 /Rz e_wnvi,ﬂvi,ﬂdxdﬂ/

k
W,t)g[ o, vk, m}[_inzﬂ}

4(z, t) <——(52// —z)e I Zlmzlmdxdiy—i-ézfy // —z)e “q; ;q; jdxdn.

Combining (60)—(63), we have

1 0
H(z,t) < 2—{ BZH(Z t)}—i— “H(z, t) + 57 // —z)e g, ;q; dxdy,

(59)

(60)

(61)

(62)

(63)

(64)
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where

i:ﬂ_k A szﬂ_f_ \/EA
2my  Jw o Y6w \ﬁ Vo o Ve

Combining (51) and (64), we have

44,

1 ) o
< — | — miz
H(zt) < mz[ —H(zt)] g QOO (65)
or
d 41112(52 2
- myz| L 70272 (my—my)z
3z [H(Z,f)e ] < wy*ml(le( t)y°e , (66)

Integrating (61) from 0 to z, we have

2 2 _ 4mydy o[ _
< moz myz —mpz /
(z,£) < 70, t)e wy*my(my —my)dy 200,4)7 {e } if m 2 (67)
_ 4my oy o .
< mpz _ters mpz _ .
H(z,t) < H(0,t)e + —— Q(0,t)y ze ™, if m=my (68)

Now, we choose z = 0 in (65) to obtain

17 9
H(0,t) < %[— gﬁ(o,t)} n

44,

;2
s QOF, (©9)

From (68), we have
9 gy gy
—EH(O,t) = —y/o /De v; 4 0i3d Adn —/\/O /De vy Zi3dAdy
t t
—i—/o /wa”ﬂva,qdfld?]—?%/o /Re*“’”qi,]-Zi,dedﬂ. (70)
From (60), we obtain
——7—[ 0,t) > wy/ / vl]vl]dxd17+/ / “v; 0 ydxdn
+ 15260’)’* /O /R 6_6‘”72,',]‘21‘,]'(13&'5117 + 552 /0 /R e‘w”Zi,j,]Zi,j,]dxdry. (71)
In view of (20) and (21), we can conclude from (70) that
d [t —wy
—E}[(O, t) = —’)’/O /Re qi,]-Zi,]-”dxdq
1 £ _ ~ t _
< 1(52/0 /1;8 wnzi,jﬂzi,jndxdﬂ+’)/252/() AE ‘””qiqui,]-dxdiy. (72)

Using (52) and (71), we have from (72) that

1 o) 1 o)
S HON < 5[~ SHO]+ 00T
or
0 26, 9
- < .
M0 < 20007 73)
Inserting (73) into (69), we have
26, oIl 2
< 4 =
HO8) < 20007 -+ -] 74)



Mathematics 2024, 12, 1240 13 of 14

Inserting (74) into (67) and (68), we have

26, L1209
< 4+ = 2
Hizt) < wY*dy Q(0.6)7 [mz + ml}e
4m0; 2| ,—mz —mpz | :
- 7
t oy (g — mz)(s]Q(O’m [e e },zf my 7 my, (75)
252 ~2 1 2 _ 41’71252 ~ .
t) < BY? | — + — e ™% + —==_Q(0, ¢ oz = m,. 7
H(z ) < 200,07 P 5, QAT 2 if iy = m (76)

Inequalities (75) and (76) show that (z, t) decays exponentially as z — oo. Therefore,
integrating (60) from z to co, we obtain

1 t B t B
Flet) 2 g [ [ (€= 2)eTogjoyavdy + [ [ (&= 2)e™ vy dxdy
1 L [t _ 1 t _
+goror [ ] (@2 sy vy + 50 [ [ (@~ 2)e 8T ydvdy. (77)
Combining (75), (76), and (77), we can obtain Theorem 2.

5. Conclusions

In this article, we used energy estimations and prior estimations to obtain the proper-
ties and structural stability of the solution on a cylinder. This can also provide reference for
further research on other fluid equation systems.
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