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Abstract: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, continues to impact the world
even three years after its outbreak. International border closures and health alerts severely affected
the air transport industry, resulting in substantial financial losses. This study analyzes the global
data on infected individuals alongside aircraft types, flight durations, and passenger flows. Using
a Bayesian framework, we forecast the risk of infection during commercial flights and its potential
spread across an air transport network. Our model allows us to explore the effect of mitigation
measures, such as closing individual routes or airports, reducing aircraft occupancy, or restricting
access for infected passengers, on disease propagation, while allowing the air industry to operate at
near-normal levels. Our novel approach combines dynamic network modeling with discrete event
simulation. A real-case study at major European hubs illustrates our methodology.
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1. Introduction

Since its inception in the early 20th century, the air transport sector has undergone
a historical evolution in response to the economic, political, and social circumstances of
the time. Originally a prohibitively expensive enterprise with a primary focus on military
operations, the aviation industry has transformed into the ubiquitous and popular activity
we recognize today, albeit with numerous boom-and-bust cycles. However, significant
global events such as wars, economic crises, epidemics, or terrorist attacks have had
substantial impacts on the aviation sector [1]. At the beginning of 2020, the world was
struck by the outbreak of the COVID-19 pandemic, the greatest challenge the aviation
industry has ever faced, “making previous shocks such as the 1979 oil-price crisis, the Gulf
War, 9/11, and the Global Financial Crisis look like minor incidents in comparison” [2].
The ensuing global health crisis had devastating consequences for numerous industries
and sectors, with the air transport industry arguably being one of the hardest hit, primarily
due to the significant decline in travel demand [3].

Confronted with an alarming surge in positive cases and the challenges of containment,
governments worldwide implemented quarantines and travel restrictions, resulting in
a severe disruption to commercial aviation due to a lack of passengers. According to
both [3,4], global air traffic experienced a decline of nearly 70% in 2020 compared to the
previous year, with a 98% reduction in international flights during the initial months of
the pandemic.
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Looking back, there are legitimate doubts regarding the optimal management of
the situation, particularly during the initial months following the declaration of the pan-
demic. The aviation industry learned that relying solely on air traffic restriction policies
as the primary driver of pandemic control—without methodologies or tools that enable
decision-making based on data and models—was one of the main factors responsible for
the worldwide halt in economic activity.

Now, four years have passed since the initial outbreak of COVID-19, and for most
individuals, it seems to have become a thing of the past. However, this does not imply
that the scientific community, as well as society at large, should dismiss the necessity of
preparedness in the event of similar situations arising in the future. According to [5], the
impacts of climate change are projected to lead to the emergence of numerous new viruses
among animal species by 2070.

Our aim in this paper is to demonstrate that traveling within the cabin of a commercial
aircraft carries an acceptable level of risk, particularly when passengers are required to
provide a negative PCR test prior to boarding and/or when they are vaccinated or adhere
to mask usage policy, among other mitigation measures.

For this purpose, we build an air transport network (ATN) that represents the global
airport system, with nodes corresponding to airports and links denoting routes. The
network incorporates data from publicly available sources regarding the number of infected
individuals and the number of flights and travelers. Using that information, we devise a
Bayesian probabilistic model that assesses the likelihood of infection within the aircraft
cabin, taking into account multiple factors such as the incidence rate in the origin region
or the flight duration. We also evaluate the transmission of infectious diseases within the
ATN, allowing us to estimate the imported risks associated with a given network airport
or route.

We applied our methodology to the European ATN, analyzing the impact of infectious
diseases originating from other regions of the world on major European hubs. We modeled
the network performance using discrete event simulation (DES) [6], a powerful computa-
tional framework that facilitates the modeling of individual events and their effects on the
system, step-by-step over time.

This approach enables us to simulate the spread of a virus or its variants across Europe,
allowing us to make predictions such as estimating the arrival time of a specific variant in a
country after the first cases are detected in another region of the world. Additionally, our
model would help decision-makers in the eventual implementation of preventive measures
designed to safeguard the various affected regions while adhering to the safety regulations
set forth by local authorities. The effectiveness of such measures are evaluated by analyzing
their potential impact on curbing the spread of the infectious disease.

The paper is structured as follows. Section 2 provides an overview of ATNs. In
Section 3, we present the Bayesian probabilistic model, which we use to forecast the
expected number of infected passengers arriving at a specific airport. Section 4 analyzes
the transmission of infectious diseases throughout the ATN. In Section 5, we apply our
methodology to a real-case study of various significant European airport hubs, illustrating
our approach. Finally, we conclude with a discussion.

2. Characterizing the Air Transport Network

ATNs are an example of transport and spatial networks [7] that play a vital role
in connecting people, goods, and ideas across the globe. ATNs are characterized by
intricate interactions between airports, flights, and passengers. Traditional static network
models fail to capture the time-dependent nature of these systems, limiting their ability to
provide accurate representations of real-world scenarios. Therefore, we adopt in our work
a dynamic network modeling approach that accounts for temporal changes and events
occurring within the ATN. Figure 1 in [8] presents an example of a dynamic network, built
from data corresponding to commercial flights between European airports on a given day.
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In a dynamic network, airports represent nodes whose features may evolve over time,
and routes act as the edges connecting them. Each flight occurrence along a given route
is a discrete event, creating a network structure that adapts to real-time changes, such as
weather disruptions, flight delays, or passenger behavior. Such adaptability allows us
to simulate various scenarios and explore how the network would respond to different
contingencies. Specifically, we are interested in studying the spread of infectious diseases
within the ATN and assess potential mitigation strategies that could minimize their impact.

In particular, we consider a scenario where an infectious disease first appears in a
specific (origin) geographical area, denoted as Go. We aim to investigate how this new
virus/variant could spread to a sufficiently distant (destination) area Gd. We use I and D
to refer to the sets of airports lying in the geographical areas Go and Gd, respectively. Within
the latter, we are particularly interested in assessing the impact of the infectious disease
on a subset of target airports T ⊂ D, which could be of particular relevance to local or
national authorities or stakeholders.

For practical purposes, in our study, we only consider those routes R that connect
one airport in I with one airport in T within the same day after, at most, two stopovers.
To that end, we define {F ,S} ⊂ D as the sets of airports corresponding to the first or
second stopover, respectively. Once the set of suitable routes R (potentially carrying
infected passengers to the target airports) has been identified, we are further interested
in determining which routes or intermediate airports could pose higher risks as potential
vectors for the transmission of the infectious disease.

To address these issues, and given that the sequence of arrivals and departures at
different airports in the network constitutes a discrete series of events over time, it is natural
to employ DES as our fundamental modeling tool. Every event is scheduled to occur at a
specific time, and once it transpires, the system’s status is updated accordingly. The system
remains idle between successive events, enabling us to proceed directly to the scheduled
time of the subsequent event. By simulating the impact of each event on the network, we
can scrutinize the system’s behavior over time, discern emerging patterns, and conduct
sensitivity analyses.

The network model, along with its underlying DES mechanism, is implemented using
R [9]. This enables us to adeptly represent different epidemiological scenarios by adjusting
the relevant parameters, eventually incorporating new input data as they arrive. Once our
network model is trained and refined, it will empower us to forecast the progression and
potential dissemination of epidemic outbreaks, akin to the global experiences of early 2020.

3. On-Board Transmission of Infectious Diseases

In this section, we present a Bayesian probabilistic model to forecast the expected
number of infected passengers both before boarding the plane and upon arrival at the
destination. To accomplish this, we first need to assess the expected number of infected
passengers that could board a flight at a specific airport within the ATN. Then, we determine
the number of potential infections that could occur during the flight. Both estimates serve
as proxies for the rate at which an infectious disease is spreading. In what follows, we
assume that we have available a list of all flights conforming the set of suitable routes R
defined in Section 2. For a given flight k, we denote the sets of infected and susceptible
passengers at the time of boarding as Ik(0) and Sk(0), respectively.

In the next sections, we provide methods for eliciting the relevant parameters of the
proposed models. Whenever possible, we refer to the existing literature where estimates
of such parameters can be found. However, since we aim to better understand the trans-
mission process and its inherent uncertainty, we developed probability models for all the
relevant parameters and provide sampling techniques for each of them. In cases where
data are unavailable for any of the proposed inference methods, expert judgment can be
utilized to determine the appropriate parameter values [10,11]. Note that although we
aim at providing the most accurate elicitation for all the model parameters, in particular
with those associated with the potential mitigation measures we propose, our primary goal
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is to evaluate the impact of including or excluding them on the projected spread of the
infectious disease across the ATN.

3.1. Initial Number of Infected Passengers

We denote the initial epidemiological status of flight k as Ik(0) = card(Ik(0)). Such
quantity depends on (i) the number of passengers onboard, nk, which is equal to the aircraft
nominal capacity Nk under the full-occupancy hypothesis, and (ii) the epidemiological
status of the catchment area [12] of the origin airport. The latter is expressed in terms of the
probability pinfec that a randomly selected passenger from the catchment area is a carrier of
an infectious disease.

Therefore, the epidemiological status of flight k follows a binomial distribution:

Ik(0) ∼ Bin(nk, pinfec), (1)

where the size parameter is nk, and the success (infection) probability is pinfec. If pinfec
is constant, the expected number of infected passengers would be simply E[Ik(0)] =
nk · pinfec. However, assuming that pinfec is constant across different catchment areas is
quite unrealistic, given the heterogeneity in the prevalence data recorded by each region’s
competent authorities and the presence of various other factors that introduce additional
uncertainty. Therefore, we choose to model pinfec as a random variable, as detailed below.

3.1.1. Estimation of pinfec

Given that we are working with a probability, it is natural to model it using a beta distri-
bution. For practical purposes, we use a parametrization based on its mean µ and precision
κ, as described in [13]. The relationship between µ and κ and the parameters in the standard
formulation of the beta distribution, p ∼ Be(α, β), f (p) = pα−1(1 − p)β−1/B(α, β), α >
0, β > 0, is simply α = [(1 − µ)/κ2 − 1/µ]µ2 and β = α(1/µ − 1).

Therefore, we model the probability of being infected as pinfec ∼ Be(µinfec, κinfec).
However, our goal is not only to account for the uncertainty associated with pinfec but also
to reflect the fact that its expected value µinfec ≡ E[pinfec] may vary according to a specific
functional form determined by various parameters, which may themselves be regarded as
random variables. In this case, the expected value would no longer be deterministic, and
we would need to use a composition method to sample from it. Specifically, we assume the
following model, proposed in [14]:

µinfec =
Iitd
Ni

υγη, (2)

where

1. Iitd is the incidence rate, defined as the cumulative number of confirmed cases of the
infectious disease in the catchment area of airport i up to the current day t over the
past d days. It is common to choose d = 7 as the approximate length of the contagion
period for an infected individual, as described in [15] for the case of COVID-19.
Therefore, and unless otherwise stated, we use Iit7 in our calculations.

2. Ni is the population of the region of influence around the origin airport.
3. 1 < υ ≪ Ni/Iit7 is the underestimating factor, which reflects the extent to which

confirmed infected cases underestimate the actual number of cases.
4. γ < 1 is the asymptomatic factor, accounting for the proportion of infected individuals

who are asymptomatic and their alleged lower infectiousness.
5. η < 1 is the healthy passenger factor, capturing the likelihood that the per capita rate

of infected individuals among travelers boarding airplanes is lower than that in the
overall population.

We now provide details about the probability models associated with the incumbent
parameters in (2), as well as procedures to sample from them.
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3.1.2. Estimation of υ

There is a general consensus that there is a significant disparity between the number
of confirmed cases of an infectious disease and the actual number of cases at any given
time. Some studies have estimated υ = 10, as in the initial phases of a new disease source,
reliability often tends to be low [16]. Aiming to capture the inherent incertitude in υ, we
consider it a random variable and apply inferential methods to determine its expected
value and associated uncertainty.

For that purpose, we employ the capture–recapture method proposed in [17]. This
method involves repeatedly sampling a target population of size N for units of interest
(infections in our case). We define T as the number of consecutive times an infected
individual is detected in this sampling process before it is not detected at time T + 1, where
T = 0, 1, . . . Assuming that the probability of detection θ is the same for all sampling
instances, we can model T as a geometric distribution T ∼ Geom(θ). The probability
pt ≡ Pr(T = t) that an infected individual is detected t times before becoming undetected
at the (t + 1)-th time is given by pt = θt(1 − θ). The corresponding expected absolute
frequency is ft = Npt. Therefore, we can easily obtain an estimate of the number of hidden
infected individuals as f̂0 = f̃ 2

1 / f̃2, where f̃1 and f̃2 are the observed frequencies of infected
individuals detected exactly once and twice, respectively.

If we relax the assumption of a constant detection probability θ, we can model it as a
random variable with a density function f (θ) in the range θ ∈ (0, 1). In that case, it can be
shown that the estimate for f̂0 is actually a lower bound [18], i.e.,

f̂0 ≥ f̃ 2
1 / f̃2. (3)

We apply now (3) on a daily basis, keeping track of (i) f̃1, individuals detected as
positive cases on a given day, and (ii) f̃2, individuals who tested positive on the previous
day and are expected to test positive on the current day unless they have become deceased
within the last 24 h. Since we are focusing on recent infections reported on the current day
or the day before, we can disregard the number of recoveries.

Let us denote It,d as the cumulative count of infections in the past d days, where
t represents the current day. Therefore, we can calculate the number of new infections
on a specific day as It = It,d − It−1,d−1. This value serves as an estimator for f̃1. Simi-
larly, let Dt,d be the cumulative number of deceased individuals in the past d days and
Dt = Dt,d − Dt−1,d−1 be the number of deaths within the last 24 hours. By subtracting
Dt from It−1, we obtain an estimate for f̃2. The estimated number of new hidden infections
on day t, denoted as Ĥt, can be calculated as

Ĥt = I2
t / max(1, It−1 − Dt), (4)

which represents a lower bound for f̂0, as stated in (3). It is important to note that we explicitly
ensure the positivity of the denominator. To estimate the cumulative number of hidden
infections during the observation period, we sum up the values over the past d days:

Ĥt,d =
t

∑
t=t−d+1

Ĥt. (5)

The final estimate of the total infection size, denoted as Ît,d, combines the observed
data from the past d days with the estimated hidden numbers during that period and can
be calculated as Ît,d = It,d + Ĥt,d. Therefore, the underestimating factor can be estimated as
the ratio between the estimated and observed cumulative numbers of infected individuals:

υ̂ = Ît,d/It,d. (6)
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In summary, to obtain the estimate of υ̂ for a specific day t, we need to compute the
key quantity Ĥt,7 first. Figure 1 illustrates the necessary data that need to be retrieved from
our database in order to perform the computation

It−6 It−5 It−4 It−3 It−2 It−1 It
It−7 It−6 It−5 It−4 It−3 It−2 It−1
Dt−6 Dt−5 Dt−4 Dt−3 Dt−2 Dt−1 Dt
↓ ↓ ↓ ↓ ↓ ↓ ↓

Ĥt−6 Ĥt−5 Ĥt−4 Ĥt−3 Ĥt−2 Ĥt−1 Ĥt
∑−→ Ĥt,7

Figure 1. Recursive scheme to estimate the underestimating factor υ.

There is no closed-form expression available for either (4) or (6). However, procedures
based on the Gibbs sampler have been proposed for estimating (4), as discussed in [19,20].
These procedures allow for the generation of credible intervals to provide a measure of
uncertainty for υ̂ in each catchment region surrounding the origin airports.

3.1.3. Estimation of γ

Ref. [14] suggests that γ should not only consider the fraction of COVID-19 cases that
are asymptomatic but also take into account research results indicating that asymptomatic
carriers of the disease are less likely to be contagious compared to pre-symptomatic or
symptomatic carriers. Building upon this understanding, we propose the following model
for γ. Let us denote πa as the fraction of asymptomatic cases and γa as the infectiousness
of asymptomatic individuals. The infectiousness γ of a randomly chosen infected person,
i.e., the probability that they are contagious, is then given by

γ = (1 − πa)γs + πaγa, (7)

where the first term on the right-hand side of (7) represents the chance that the person is
symptomatic (and assumed to be contagious, hence γs = 1), and the second term represents
the chance that the person is both asymptomatic and contagious.

Based on the binomial distribution, Ref. [21] estimated πa to be 66.7% (95% confi-
dence interval (CI): 9.4%, 99.1%) for aged 0–19 years, 30.8% (95% CI: 22.6%, 40.0%) for
aged 20–59 years, and 52.8% (95% CI: 47.9%, 57.5%) for aged 60 years and older. Since it is
a proportion, modeling πa as a beta distribution πa ∼ Be(µπa , κπa) is a natural choice for
the three age groups. Without losing generality, we assume that πa is consistent across all
catchment areas and age groups, although this assumption can be easily relaxed if necessary
by employing a mixture of beta distributions. Regarding the value of γa, Ref. [22] estimated
that the transmission efficiency of asymptomatic carriers was approximately one-third of
that in symptomatic cases. Similarly to the πa case, we model γa using a beta distribution
γa ∼ Be(µγa , κγa). Provided there are data available, the parameters (µπa , κπa , µγa , κγa) can
be easily elicited.

The distribution of γ in (7) does not have a closed form, but sampling from it is
straightforward.

3.1.4. Estimation of η

Some studies suggest that air travelers may be significantly less likely to be contagious
than the general population. The “healthy passenger” factor η quantifies the extent to
which travelers boarding commercial flights have a lower probability of being carriers of an
infectious disease compared to randomly selected citizens. Ref. [14] argue that estimating
η is challenging due to the absence of direct empirical evidence. In their analysis for the
US, they split the population into two halves: the “healthy” half, comprising citizens less
likely to carry COVID-19, and the “riskier” half. By assuming distinct proportions of
carriers within these two sub-populations, they model η using a triangular distribution
with support in the interval (0.25, 0.70) and a mean of 0.40.
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We adapt the previous definition by using a mixture of beta distributions, where the
mixture weight πh is also assumed to follow a beta distribution πh ∼ Be(µπh , κπh). We
assume that boarding passengers are randomly distributed among a sub-population with
a lower likelihood of carrying an infectious disease, referred to as the “healthy” group,
represented by the πh-th quantile. In this group, the per capita infection rate is modeled as
a beta random variable ηh ∼ Be(µηh , κηh), while the infection rate of the “unhealthy” group
is modeled as ηu ∼ Be(µηu , κηu), with µηh = E[ηh] < E[ηηu ] = µηu . Therefore, the healthy
factor η can be defined as

η =
πhηh

πhηh + (1 − πh)ηu
.

The distribution of η does not have a closed form, but it can be easily sampled using
the method of composition. Again, the parameters (µπh , κπh , µηh , κηh , µηu , κηu) should be
elicited, either using the available data (if any) or expert elicitation.

So far, we have established sampling procedures for all the relevant parameters in (2),
which enable us to obtain samples from µinfec. Assuming a relatively large precision, such
as κinfec = 0.01, to account for limited knowledge about the underlying processes, we could
finally sample from Ik(0) in (1) using the method of composition, whose sampling scheme
is summarized in Figure 2.

Ik(0) ∼ Beta(nk, pinfec)

nk

(deterministic)

pinfec ∼ Be(µinfec, κinfec)

E[pinfec] = µinfec =
Nit7

Ni
υγη

κinfec = 0.1

Nit7

(deterministic)

γ = (1− πa)γs + πaγa

πa ∼ Be(µπa
, κπa

)

γa ∼ Be(µγa
, κγa

)

υ ∼ capture-recapture

η = πhηh

πhηh+(1−πh)ηu

πh ∼ Be(µπh
, κπh

)

ηh ∼ Be(µηh
, κηh

)

ηu ∼ Be(µηu
, κηu

)

Figure 2. Composition scheme to sample the initial epidemiological status Ik(0).

3.2. Final Number of Infected Passengers

Assuming a duration of mk minutes for flight k, its final epidemiological status Ik(mk)
is determined by the total number of infected passengers at the end of the flight, i.e.,

Ik(mk) = Ik(0) + Ĩk(mk), (8)

where Ĩk(mk) represents the number of newly infected passengers during the flight.
Let us define Sk(0) = card(Sk(0)) as the initial number of susceptible passengers

when the aircraft departs. We model Ĩk(mk) as the sum of Sk(0) independent (but not
identical) Bernoulli random variables κℓ ∼ Ber(ptrans,ℓ), where ℓ ∈ Sk(0) represents
each susceptible passenger. The probability of passenger ℓ becoming infected, ptrans,ℓ,
varies among susceptible passengers—as it depends on their distance to any potentially
contagious passenger, as we explain below—ruling out the possibility of modeling Ĩk(mk)
as a binomial random variable with parameters Sk(0) and ptrans,ℓ. Each random variable κℓ

indicates whether susceptible passenger ℓ will be infected by at least one of the infectious
passengers during the flight. Therefore, Ĩk(mk) can be easily computed as the sum of the
Sk(0) Bernoulli random variables:

Ĩk(mk) = ∑
ℓ∈Sk(0)

κℓ. (9)
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The transmission probability ptrans,ℓ can be expressed as one minus the probability
that susceptible passenger ℓ is not infected by any of the contagious passengers, i.e.,

ptrans,ℓ = 1 − ∏
m∈Ik(0)

(1 − ptrans,ℓ,m),

where ptrans,ℓ,m represents the probability that contagious passenger m would infect sus-
ceptible passenger ℓ.

To assess the value of ptrans,ℓ,m, we adopt the following functional form, considering
for simplicity only the effects of masks and vaccines (Other mitigating factors, such as eye
protection [23] or hand washing [24] could be easily incorporated into our model):

ptrans,ℓ,m = ρtrans,ℓ,m · (1 − ϵm) · (1 − ϵv), (10)

where

1. ρtrans,ℓ,m represents the unconditional probability that in the absence of masks and
vaccines, a contact between infected passenger m and susceptible passenger ℓ will
transmit the virus to the latter.

2. ϵm ≤ 1 is the effectiveness of masks.
3. ϵv ≤ 1 is the effectiveness of vaccines.

All these parameters are subject to uncertainty, and therefore, we need to model them
as random variables. In the following sections, we discuss their probability distributions
and sampling techniques. This provides us with a procedure to sample from ptrans,ℓ,m
in (10), which, in turn, allows us to obtain a sample from Ik(mk) in (8) straightforwardly.

3.2.1. Estimation of the Unconditional Transmission Probability, ρtrans,ℓ,m

For each infection model involving contact between a susceptible passenger ℓ ∈ Sk(0)
and an infectious passenger m ∈ Ik(0), the probability of the susceptible passenger becom-
ing infected during the flight, assuming the absence of face masks and other precautionary
measures, can be expressed as the product of two probabilities: (1) the probability of pas-
senger ℓ coming into contact with contagious passenger m ∈ Ik(0) and (2) the probability
of passenger ℓ becoming infected upon such contact. We represent these probabilities
using two indicator variables, Cℓm and Iℓm, respectively, which are equal to one if the
corresponding event occurs, and zero otherwise. Therefore, we have

ρtrans,ℓ,m = Pr(Cℓm = 1) · Pr(Iℓm = 1|Cℓm = 1). (11)

Both Pr(Cℓm = 1) and Pr(Iℓm = 1|Cℓm = 1) may vary among individuals and over
time. Typically, Cℓm and Iℓm are not independently distributed since the probability of
infection after contact can be correlated with the probability of contact itself. However,
considering the specific conditions of air transport, where a large number of people are
confined within a limited space for a prolonged time, we can treat them as independent. In
this case, (11) simplifies to:

ρtrans,ℓ,m = Pr(Cℓm = 1) · Pr(Iℓm = 1).

Furthermore, assuming that at least one infected passenger boards the flight, we can
reasonably consider Pr(Cℓm = 1) to be equal to one, resulting in ρtrans,ℓ,m = Pr(Iℓm = 1). In
other words, in the absence of any precautionary measures, we assume that all susceptible
passengers would have potentially hazardous contact with infected passengers. This
aligns with the hypothesis of a homogeneous mixture of passengers proposed by [25],
which suggests that any infectious passenger can come into contact with, and infect, any
susceptible individual.
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Once this has been ascertained, we model Pr(Iℓm = 1)—and, effectively, the uncondi-
tional probability ρtrans,ℓ,m for any pair (ℓ, m) of susceptible and infected passengers—as a
beta distribution, expressed in terms of its mean and precision:

ρtrans,ℓ,m ∼ Be(µtrans,ℓ,m, κtrans,ℓ,m). (12)

Ref. [14] proposed a model for the expected value of µtrans,ℓ,m based on factors such
as the locations of the susceptible and infected passengers within the aircraft and the
duration of the flight. Additionally, they considered other more subtle random factors, as
the probability of transmission also depends on the infected passenger’s virus emissions
through breathing, speaking, coughing, or sneezing, which can vary between individuals,
as well as the movement of droplets and aerosols within the airplane considering its
geometry and HEPA air-purification systems. However, none of these processes are fully
understood in terms of the transmission of infectious diseases.

Ref. [26] conducted one of the few studies shedding light on this subject. They
attempted to estimate viral transmission probabilities on an airplane, assuming an “omnidi-
rectional” viral output from contagious passengers and no transmission barriers provided
by seatbacks. Their approximation for the transmission probability was 0.018 for each
minute an uninfected traveler spent within one meter of an infected individual without
using masks. However, they acknowledged that this estimate was inflated by a factor of
four for conservative purposes. Building upon their findings, we assume that on a flight
with a duration of mk minutes, without masks or any preventive measures in place, the ex-
pected value of ρtrans,ℓ,m can be expressed in terms of the so-called per-minute transmission
probability ϱtrans,ℓ,m

µtrans,ℓ,m ≡ E[ρtrans,ℓ,m] = 1 − (1 − ϱtrans,ℓ,m)
mk . (13)

While Ref. [26] categorizes distances from contagious passengers as either “below one
meter” or “above one meter”, we adopt here the approach of Ref. [23] instead, treating the
per-minute risk of contagion as a continuous function of the distance between passengers.
Specifically, we rely on the conclusions of their meta-analysis, which indicate that in the
absence of barriers, such risk decays exponentially with distance. Additionally, following
Ref. [14], we also account for the possibility that seatbacks act as partial transmission
barriers, although less effective than plexiglass, by blocking some emissions from one row
to adjacent rows. Therefore, we assume that ϱtrans,ℓ,m has the general form

ϱtrans,ℓ,m = τ0e−λd(1 − ϕ)r,

where (i) τ0 represents the per-minute transmission probability to someone at “zero distance”
from the contagious passenger; (ii) λ is the parameter determining the rate of exponential
decay of risk with distance; (iii) d is the distance between the contagious and the uninfected
passengers; (iv) ϕ denotes the effectiveness of seatbacks as a barrier to prevent the spread
of infectious diseases (ϕ ≤ 1); (v) r represents the number of seatbacks separating the
contagious and uninfected passengers. As previously mentioned, ϱtrans,ℓ,m is conditioned
on the presence of a contagious passenger on board and the absence of masks and other
preventive measures.

When measuring the distance d between the contagious passenger and others, we
employ the “grid distance” metric, defined as d((x1, y1), (x2, y2)) = |x2 − x1|+ |y2 − y1|.
This choice reflects our assumption that emissions from a contagious traveler seated, for
instance, in 16A may reach the breathing space of a passenger in 15B by traveling through
the breathing space of the passenger in 15A. For this setting, we have d = 2 and r = 1.

Estimation of τ0

This is an especially challenging task. The transmission probability τ0 becomes rel-
evant only when contagious passengers board the aircraft (recall that we are assessing
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unconditional transmission probabilities in the absence of any preventive measures). Sev-
eral studies have attempted to provide estimates of τ0, often focusing on flights outside
the US, see, e.g., [27–33]. However, it is the research conducted in Ref. [26] that stands
out for its detailed quantitative analysis. They conservatively estimate a high per-minute
transmission rate of 0.018 for infected passengers and a low rate of 0.0045 for infected crew
members. However, they caution that we must be careful when extrapolating these findings
to other scenarios, such as different flight type and duration. These factors can influence
the movement of passengers and crew, potentially affecting the number of additional close
contacts, and consequently, the transmission dynamics.

To account for the uncertainty in estimating τ0, we use a gamma probability distribu-
tion in terms of its shape and rate parameters,

τ0 ∼ G(ατ , βτ),

which is flexible enough to accommodate a wide range of possible values for τ0 and to
reflect the observed number of onboard infections. Should we assign the values 0.018
and 0.0045 from Ref. [26] to some extreme quantiles, e.g., 0.1 and 0.9, we could obtain the
distribution parameters, ατ = 8.13 and βτ = 662.72.

Estimation of λ

In their influential paper, Ref. [23] estimated that viral transmission risk declines
exponentially with greater distance from the contagious person. Their point estimate
indicated that risk declined by a factor of 2.02 for each additional meter of separation, with
a 95% CI (1.08, 3.76). This interval, spanning roughly from half the point estimate to double
it, strongly suggests a lognormal distribution:

log(λ) ∼ N (µλ, σ2
λ),

where µλ and σλ are the mean and standard deviation of the normal distribution, respectively.
Inference under the log-normal assumption for the data is straightforward, as the pa-

rameters can be estimated by taking the log-transform and then working with the normality
of the transformed data. For Bayesian (and non-Bayesian) methods for estimating parame-
ters of the log-normal distribution, see [34]. In this case, if we use the values estimated in
Ref. [23], since log(1/2.02) = −0.703, log(1/1.08) = −0.077, and log(1/3.76) = −1.324,
we obtain the distribution parameters µλ = −0.703 and σλ = 0.318.

With the typical values for the separation between rows and between passengers
sitting on the same row on commercial flights, the exponential decay of risk with distance
and the growing number of seatback-barriers mean that the risk to passengers more than
two rows from the contagious traveler is considered a second-order effect. Additionally,
we assume that short interactions among passengers during boarding, deplaning, en route,
or while consuming drinks or food are also second-order effects in the risk estimates.

Estimation of ϕ

A recent study in [35] used a cough simulator to determine the number of particles
that migrated around a transparent barrier for both sitting and standing scenarios. The
results showed that physical barriers had better efficiency (up to 93%) when their top was
9 to 39 cm above cough height and their width was at least 91 cm. Barriers that extended
91 cm above table height for both scenarios blocked 71% or more of the particles between
0.35 to 0.725 µm and 68% for particles between 1 to 3 µm. A barrier that blocked an initial
cough was effective at reducing particle counts.

As a means to prevent the spread of infectious diseases, seatbacks in an airplane
are less effective than transparent barriers. Seatbacks cannot completely prevent a viral
emission from passing above or below them. However, the seatback directly ahead of a
disease sufferer can block some forward transmission, and that person’s own seatback
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can somewhat protect the passengers one row behind. Lacking literature about the health
benefits of seatbacks, we model their effectiveness using a beta distribution

ϕ ∼ Be(µϕ, κϕ).

Then, 1− ϕ is the failure rate of seatbacks, which is equal to zero in the case of a perfect
floor-to-ceiling barrier. Based on expert opinion, we believe that the mean value of ϕ is
somewhat lower than that of transparent barriers, i.e., µϕ = 0.5, and we assign a relatively
large value for κϕ = 0.01 to account for the inherent uncertainty in ϕ.

3.2.2. Estimation of the Effectiveness of Masks, ϵm

There is a substantial body of literature about the effectiveness of face masks, particu-
larly in the context of the COVID-19 pandemic.

In a meta-analysis conducted in Ref. [23], which considered 216 studies, the effective-
ness of masks against viral infections and the relationship between infection risk and the
distance between contagious and uninfected individuals were estimated. They found that
wearing cloth or surgical masks—the two most commonly used—reduced the chance of
successfully transmitting a viral infection by an estimated 0.67, with a 95% CI of (0.39, 0.83).
Another study by [36] assessed the risk reduction associated with cloth masks, both for
outward transmission by the mask wearer and inward transmission to the wearer. They
estimated a 0.5 reduction in both cases. Treating these benefits as independent implied that
universal cloth mask-wearing would reduce transmissions by 0.75 compared to no mask
usage. For surgical masks, the corresponding reduction was appraised at 0.94. A more
recent analysis in Ref. [37] found that wearing a mask was associated with a significant
reduction in the risk of COVID-19 infection, estimated at 0.62, with a 95% CI of (0.31, 0.79).

These results highlight the considerable uncertainty surrounding the effectiveness
of masks. In the ideal case, where masks are 100% effective, ϵm would be equal to one.
However, this is not a realistic assumption, so we treat ϵm as a random variable, assuming
it follows a mixture of beta distributions

ϵm = πc · ϵc + (1 − πc) · ϵs,

where ϵc ∼ Be(µϵc , κϵc) and ϵs ∼ Be(µϵs , κϵs) are the effectiveness of cloth and surgical
masks, respectively, and πc ∼ Be(µπc , κπc) accounts for the proportion of travelers wearing
a cloth mask.

Obtaining the parameters of the distributions involved is straightforward through
expert elicitation. Experts can provide a measure of centrality and an estimate of the
dispersion for each distribution. Alternatively, if available, we could use information about
extreme values in the form of percentiles.

3.2.3. Estimation of the Effectiveness of Vaccines, ϵv

Since the outbreak of the COVID-19 pandemic, numerous studies have attempted to
assess the effectiveness of vaccines, see, e.g., [38–41]. For instance, the latter study tested
the effectiveness of one or two doses of two different vaccines against symptomatic disease
caused by the Delta or Alpha variants. The 95% CI intervals obtained for the Delta variant
ranged from (25.2, 35.7) for one dose (with similar values for both vaccines) to (85.3, 90.1)
for the most effective of the vaccines. Higher values were observed for those infected with
the Alpha variant.

Considering this, we model the effectiveness of vaccines through a finite mixture of
beta distributions. The number of mixture terms is variable, reflecting the vaccination
status of the different passengers boarding an aircraft (not vaccinated or vaccinated with
one or more doses of one of the approved vaccines). Therefore, we have

ϵv = πv1 ϵv1 + πv2 ϵv2 + . . . ,
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where the πvi s are the mixture weights, and the ϵvi s are the effectiveness of the various
combinations of vaccine type and the number of doses. More sophisticated models could
also account for the time elapsed since the last dose, as it is well-known that vaccines lose
effectiveness over time. In the general setting, the πvi s would follow a Dirichlet distribution
with parameters Dir(δv1 , δv2 , . . .) (which would turn into a beta distribution when only two
mixture terms are considered), whereas the ϵvi s could be modeled as beta distributions
with parameters Be(µvi , κvi ), for i = 1, 2, . . . All the above parameters should be elicited
either using the data available (if any) or through expert elicitation.

So far, we have established sampling procedures for the relevant parameters in (13),
which enable us to obtain samples from µtrans,ℓ,m. Assuming a relatively large precision,
such as κtrans,ℓ,m = 0.01, to account for limited knowledge about the underlying processes,
we could, therefore, sample from ρtrans,ℓ,m in (12) and, finally, from Ĩk(mk) in (9) using the
method of composition, whose sampling scheme is summarized in Figure 3.

Ik(mk) = Ik(0) + Ĩk(mk)

Ĩk(mk) ∼
∑

ℓ∈Sk(0)
Ber(ptrans,ℓ)

ptrans,ℓ = 1−∏
m∈Ik(0)

(1− ptrans,ℓ,m)

ptrans,ℓ,m = ρtrans,ℓ,m · (1− ϵm) · (1− ϵv)

ρtrans,ℓ,m ∼ Be(µtrans,ℓ,m, κtrans,ℓ,m)

µtrans,ℓ,m = 1− (1− ϱtrans,ℓ,m)mk

ϱtrans,ℓ,m = τ0e
−λd(1− ϕ)r

τ0 ∼ G(ατ , βτ )

log(λ) ∼ N (µλ, σ
2
λ)

ϕ ∼ Be(µϕ, κϕ)

ϵm = πc · ϵc + (1− πc) · ϵs

πc ∼ Be(µπc , κπc)

ϵc ∼ Be(µϵc , κϵc)

ϵs ∼ Be(µϵs , κϵs)

ϵv = πv1ϵv1
+ πv2

ϵv2 + . . .

(πv1 , πv2 , . . .) ∼ Dir(δ1, δ2, . . .)

ϵvi ∼ Be(µvi , κvi)

Figure 3. Composition scheme to sample the final epidemiological status Ik(mk).

3.3. Relationship with the SIR Model and Its Variants

The classical susceptible, infected, recovered (SIR) model for a population of size N
can be expressed by the following set of ordinary differential equations [42]:

dS
dt

= −βIS/N,
dI
dt

= βIS/N − γI,
dR
dt

= γI,

where S(t), I(t), and R(t) are the numbers in these classes, so that S(t)+ I(t)+ R(t) = N, β is
the disease transmission rate, and γ is the recovery rate (1/γ is the average infectious period).

The SI model is a simplified version that only allows for two possible states, susceptible
or infectious [25]. In the SI model, there is no immunity, and once individuals are infected,
they remain infected and, thus, are infectious until, sooner or later, everyone is infected [43].
However, trying to apply the SI model directly to the propagation of an infectious disease
inside a flight cabin is unrealistic due to the limited duration of commercial flights (The
longest commercial flights currently last less than 18 h). Within this time frame, it is not
sufficient for an infected passenger to become infectious and, as a result, infect others.
Therefore, in our probabilistic model, there are only two possible states for passengers:
susceptible or infected (but not infectious). The SI model would only be appropriate if we
defined a transmission rate β for the length of the flight and solved the differential equation
just once.

4. Estimating Imported Risks Using DES

Once we have specified probability models for the number of infected passengers
at departure and arrival, we now use them to assess the propagation of such infectious
disease across an ATN during a given time period.

For each day considered in our study, we monitor inbound flights departing from an
airport I ∈ Go that arrive at an airport D ∈ Gd between 00:00 h and 23:59 h coordinated
universal time (UCT) of the current day and that will eventually connect to one of the target
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airports T ⊂ D ∈ Gd after a maximum of two stopovers. We aim to evaluate the influx of
infected passengers arriving at the target airports by the end of any given day.

In Section 3.1, we introduced the incidence rate Iitd, which refers to the newly diag-
nosed cases of an infectious disease occurring or being recorded in the catchment area of
the origin airport i over a specified period of time. Incidence has an impact on the airsides
of the different airports that form the network nodes, influencing the number of infected
passengers Ik(0) boarding flight k, as described by (1) and (2). In Section 3.2, we also
defined the flight’s final epidemiological status, Ik(mk), for which we provided a sampling
procedure in (8).

For each connection, we assume now that a proportion πt of the arriving passengers
(either infected or non-infected) leave the terminal, while the remaining passengers make
a connection to another airport in the network. We model πt as a beta random variable
with mean µt and precision κt. Based on expert opinion and the available data, we assess
µt ≡ E[πt] = 0.7 and a relatively high precision κt = 0.01. Based on that, we define the
individual imported risk

yk ∼ Bin(Ik(mk), πt) (14)

as the number of infected passengers who stay in the catchment area. Similarly, we define
the individual exported risk

xk = Ik(mk)− yk (15)

as the number of infected passengers who make a connection to another flight. Another
relevant quantity, which we need later on, is

zk ∼ Bin(nk − Ik(mk), 1 − πt), (16)

representing the number of non-infected passengers who make a connection to another flight.
To determine the daily imported risk ri for each airport i in the ATN, we simply add the

individual imported risks yk of all the flights arriving at that airport on the incumbent day.
By assessing ri, we are able to compare its relative contribution to the current incidence at
the corresponding catchment area.

Once we have defined the relevant quantities, we initialize our ATN from a suitable
“starting point”, considering that the infectious disease is only present in those airports
I ∈ Go where the virus/variant originated. Therefore, we can assume that the initial
incidence of the catchment areas around the destination airports D ∈ Gd is zero. In this
hypothetical “absolute first flight” scenario, passengers coming from the catchment area of
any airport D ∈ Gd would not have been affected by imported risks from other airports yet.

One further assumption of our model is that an incoming flight only impacts the
airside of the destination airport in the first three hours after its arrival time. From a purely
theoretical standpoint, the effect of an arriving flight, in terms of potentially spreading an
infectious disease through the ATN, could extend for much longer than that. However,
for the purpose of our model, we must set an upper bound on the maximum time a flight
can affect the airport airside after arrival, and we believe three hours is a well-grounded
choice. After that period, we assume that all passengers will have either left the airport or
connected to another flight departing within one to three hours of their arrival time (We set
one hour as the minimum time needed to make a connection in an international airport).
As for the possible destinations when connecting to another flight, we explicitly rule out
the possibility of flying back to the origin airport for domestic flights (and, additionally,
back to the country of origin for international flights) since such connections would be
highly unlikely.

As mentioned in Section 2, we model the ATN performance using DES, which assumes
that the system remains idle unless a new arrival or a new departure occurs. We keep
track of those flights that are part of a suitable route connecting one of the origin airports
I ∈ Go to one of the target airports T ∈ Gd. We assume that the probability of two events
(departure and/or arrival) occurring at the exact same time is zero. If, due to the time
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discretization (in minutes), two or more events are assigned the same timestamp in the
database, we sort them in an arbitrary manner.

We now specify the main events we must consider in our simulation for a given day.
For all the events in our database, we sort their departure and arrival times (in UTC) and
address them in chronological order.

1. The initial daily imported risk ri at any airport i is 0.
2. The first event must be a so-called initial departure, i.e., a flight k departing from airport

i ∈ I and arriving at airport j ∈ D between 00:00 h and 23:59 h UTC of the incumbent
day, with nk passengers onboard. Since this is the first event of the day at airport i, all
passengers must come from its catchment area, out of which Ik(0) are expected to be
infected, as given by (1).

3. The next event could be either another initial departure (which would be dealt with
as in Step 2) or an arrival at airport j at time ta ∈ (t, t + ∆t). For the latter, the initial
number of infected passengers Ik(0) might have increased during the flight time to
Ik(mk) = Ik(0) + Ĩk(mk), with Ĩk(mk) given by (9).

(a) If the arrival is the last event of the day at airport j, we assume that all its
passengers will leave the airport. Then, yk = Ik(mk).

(b) Else, we determine yk as given by (14).
(c) In any case, we update the corresponding daily imported risk rj = rj + yk.
(d) For flights with feasible connections, we determine the number of infected and

non-infected connecting passengers, xk and zk, given by (15) and (16), respectively.
(e) Next, we need to distribute those connecting passengers among all the feasible

flights that depart between one and three hours after the incumbent flight’s
arrival. Let us assume that there are n such flights k1, . . . , kn departing from
airport j, connecting with new destinations j1, . . . , jn, and departing at times
td1 , td2 , . . . , tdn , such that ⌊ta⌋ + 1 < td1 < td2 . . . < tdn < ⌊ta⌋ + 3 (times in
hours). Therefore, we allocate the passengers in xk and zk by means of two
multinomial distributions, with weights w1, . . . , wn representing the relative
nominal capacity of the corresponding aircraft compared to the other possible
connecting flights, i.e.,

(
x̃k1 , x̃k2 , . . . , x̃kn

)
∼ Mult(xk; w1, . . . , wn), (17)(

z̃k1 , z̃k2 , . . . , z̃kn

)
∼ Mult(zk; w1, . . . , wn), (18)

where x̃kℓ (resp. z̃kℓ ) is the share of the xk (resp. zk) infected (resp. non-infected)
passengers connecting to flight kℓ, ℓ = 1, . . . , n.

(f) Under this scheme, it is possible that some flights could receive more passen-
gers—either infected or non-infected—from connecting flights than what their
actual nominal capacity allows. To prevent this, we implement an explicit
safeguard when sampling from (17) and (18).

(g) If there is more than one arriving flight whose passengers could potentially
embark on the same connecting flight, we would need to keep track and update
the count variables in (17) and (18) accordingly.

4. The next event could be either an initial departure (Step 2), an arrival (Step 3) or a non-
initial departure. For the latter, we must first accommodate infected and non-infected
passengers connecting from other flights, given by x̃k and z̃k in (17) and (18), respec-
tively. The rest of the passengers are drawn from the corresponding catchment area.

5. We alternate steps 2–4 until there are no more flights in the database. The last event
must be an arrival.

Algorithm 1 outlines the pseudocode we use in our simulations. Given that we are
examining those routes R that connect one airport in I with one airport in T within the
same day after, at most, two stopovers, this entails approximately O(n2) operations, where
n represents the number of airports within the ATN.
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Algorithm 1: DES for the ATN performance.
Data: Flights connecting airports in I and D plus internal connections in D
Result: Daily imported risk at the network nodes’ airsides rj

Initialization: rj = 0
for all flights in the database do

if departure then
if flights arrived between 1 and 3 hours before then

Fill partially aircraft with passengers connecting from other flights
Fill rest of aircraft from catchment area

else
Fill aircraft from catchment area

else
if arrival not final event then

Prop. πt of passengers leave airport, of which yk are infected
The rest (xk and zk) connect with other flights

else
100% passengers leave airport, of which yk = Ik(mk) are infected

Update rj = rj + yk

5. The Impact of the Indian Outbreak in Europe

Our case study aims to investigate the spread of infectious diseases across the Eu-
ropean ATN under various hypothetical scenarios. Given its undeniable impact in the
recent past, and the fact that it still remains a global threat, we focus our analysis on
the transmission of the Delta variant of COVID-19, a particularly contagious strain that
originated in India around March 2021 [44], a year and a half after the global pandemic
sprang up in Wuhan, China, From that date, Indian authorities began reporting a highly
aggressive outbreak in several regions across the country. According to data from the Johns
Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/map.html (accessed
on 28 February 2024), the epidemic reached its peak on 6 May 2021, reporting a total of
414,000 new cases. This incident sparked international tension, as many countries feared a
swift increase in the number of infected and deceased individuals. Given that air travel is
the fastest mode of transportation, capable of quickly moving large numbers of passengers
from India to other parts of the world in just a few hours, such an outbreak led to renewed
restrictions on air travel worldwide, similar to those imposed during the initial months of
the pandemic.

Our focus is on analyzing the extent to which the ATN may have facilitated the spread
of the Delta variant to different European countries through their airport connections with
India. By comparing our results with actual data recorded by European health authorities,
we are confident that our network propagation model could adequately predict the effects
of similar events in the future, thereby enabling governments to implement appropriate
mitigation measures in advance. Considering our aim is to assess the impact of the new
Delta variant in India, distinguishing its effects from other potential sources of infection,
we regard the remaining incidences in Europe as negligible. This approach allows us to
track the spread of the disease as if it originated exclusively from passengers boarding at
Indian airports and traveling to Europe.

To achieve this, we simulate the propagation of such a variant across European soil,
aiming to reproduce “when the Delta variant is first detected” in each European city after
its appearance in India. Specifically, we are interested in assessing the impact of the Delta
variant on the two main Spanish airports: Adolfo Suárez Madrid-Barajas (MAD) and Josep
Tarradellas Barcelona-El Prat (BCN). These airports faced significant criticism during the first
stages of the pandemic due to the controversial measures implemented around them, which
potentially facilitated the entry of new virus strains or sizable groups of infected individuals.
Once we have captured the propagation dynamics with our model, addressing both imported

https://coronavirus.jhu.edu/map.html
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and onboard cases, we are able to identify the ’hotspots’ (either airports or routes) in the ATN
that affect MAD/BCN the most. This enables us to incorporate mitigation measures—such as
reducing occupancy in aircraft or conducting PCR tests—based on the extent of the variant
spread and document strategies for containing it, by intervening at the riskiest airports/routes.

For this purpose, we have access to a publicly available database from Eurocontrol
https://www.eurocontrol.int/ (accessed on 28 February 2024), comprising over 340,000 op-
erations conducted between 1 March and 30 April 2021. These operations include direct
flights originating in India and landing at European airports, along with all intra-European
connections. We selected the period between March and April 2021 because it was during
this time that the first reports about the new Delta variant in India emerged. We also gather
disease information about cumulative incidences within the catchment areas associated
with the considered airports in India from the Johns Hopkins database. These datasets
serve as inputs for the probability and simulation models detailed in Sections 3 and 4,
respectively, facilitating the computation of the daily imported risks ri.

The information contained in the flight database included the origin and destination
airports, departure and arrival dates and times, and the aircraft capacity. Departure
and arrival times were recorded in local times, as is standard practice. Therefore, to
calculate flight duration, we needed to convert these local times into UTC. This necessitated
augmenting the database with additional pertinent geographical details about the origin
and destination countries, locations, and most importantly, time zones.

Managing local and UTC times, together with time zones, is not a trivial task, especially
considering that the period analyzed included the forward daylight-savings time in many
European countries, during the night of 27 to 28 March 2021. Despite our careful efforts in
handling departure and arrival times, we encountered errors and inconsistencies in several
routes—primarily involving operations to/from Turkey, Russia, and Ukraine—that could
not be rectified and were, therefore, removed from the database.

Once the database was sanitized, we were interested in monitoring flights originally
coming from India and arriving at MAD or BCN after one or two connections on European
soil, as illustrated in Figure 4. As mentioned in Section 4, we assume that for each of
these connections, the time difference between arrival and departure must fall within
one to three hours. Subsequently, for each day within the March–April 2021 period,
we identify flights directly connecting an Indian airport Ii, i = 1, . . . , ℓ to a European
destination Fj, j = 1, . . . , m. These “seed flights” Ii–Fj are the origin for disease spread
across the European network. We then monitor each of these seed flights, selecting only
those that eventually lead to MAD or BCN, either directly or after a second stopover
at another European airport Sk, k = 1, . . . , n. We refer to these sequences of flights
Ii − Fj − MAD/BCN or Ii − Fj − Sk − MAD/BCN as the set of suitable routes R.

India 1st connection 2nd connection Final destination

I1

F1

I1

F2

I1

Fm

I2 F1I2
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I2
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Iℓ
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S1

S2
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Figure 4. Flights considered.
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In total, there were 665 flights in our database directly connecting a total of 10 Indian
airports to another 11 European airports, as illustrated in Tables 1 and 2.

Table 1. Indian origin airports directly connecting to Europe.

AMD ATQ BLR BOM CCU COK DEL GOI HYD MAA

1 13 103 167 2 1 342 5 26 5

Table 2. European airports receiving direct flights from India.

AMS BHX CDG FCO FRA KBP LGW LHR MAN STN SVO

57 1 112 10 174 3 1 274 2 3 28

Regarding the incidence database, we have access to data on the 7-day cumulative
incidence in India from 1 March to 30 April 2021. These data allow us to estimate the
expected number of infected passengers boarding each flight departing from the airports
listed in Table 1 using (1). Then, employing our propagation model (8), we can estimate
the expected number of infected passengers upon the landing of these flights in European
territory, assuming zero cumulative incidence of the Delta variant in all European countries
on 1 March 2021.

Next, we consider all suitable routes R. For instance, for the first day in the database,
1 March 2021, a total of 8 direct flights departed from India to a European destination, and
a further 140 intra-European flights served as 1- or 2-connection routes to MAD or BCN,
where 13 and 3 flights arrived throughout the day, respectively, see Figure 5. At the end of
each day, we calculate the total expected number of infected passengers arriving in either
MAD or BCN. This provides us with a rolling estimation of the evolution of the cumulative
incidence between 1 March and 30 April 2021 that could help health authorities in their
decision-making.

Figure 5. Flights arriving at MAD or BCN on 1 March 2021. Blue dots represent those airports
connected by the suitable routes R.

In a subsequent stage, we will analyze on which airports or routes might be advisable
to establish control access considering their COVID-19 impact and potential passenger
losses. We will also evaluate the effectiveness of several mitigation measures.
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In a subsequent stage, we will analyze which airports or routes might be advisable to
restrict, considering their impact from COVID-19 and potential passenger losses. Addition-
ally, we will evaluate the effectiveness of certain mitigation measures.

5.1. Simulations of the Baseline Scenario

We run our simulations for the period spanning from 1 March to 30 April 2021 when
all suitable routes in R are considered. We replicate our experiment M = 100 times
to account for inherent uncertainty. Executing our algorithm took several minutes on a
standard laptop running Windows. Figure 6 shows the cumulative number of infected
people who arrived at MAD/BCN airport after the 2-month period. As we can observe,
there is a significant—and increasing, as days pass by—variance around the expected
value, reflecting the great volatility of this scenario. As we can see, the initial infections
are anticipated to reach MAD/BCN approximately one week after the first flights carrying
infected passengers departed from India. This aligns with the information published
regarding the detection of the first cases of the Delta variant in those cities.
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Figure 6. Cumulative number of infected passengers arriving at MAD/BCN.

The previous calculation only accounts for imported cases at MAD or BCN airports.
However, to assess the true impact of the spread of the Delta variant in the catchment
areas of both airports, we should also consider community transmission. Although a
detailed estimation of such a phenomenon is beyond the scope of this paper, we use a
straightforward propagation mechanism in which the number of infected people in a given
catchment area increases by 5% from one day to the next. While we are well aware that
this is a very rudimentary and unrealistic model for high numbers of infections and/or
when applied over many consecutive days, it works reasonably well for our data. If we
consider the augmented cases, where infected passengers arriving at MAD/BCN could
potentially infect other inhabitants within the corresponding catchment area, the total
number of infected people could potentially get out of control, as shown in Figure 7.
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Figure 7. Cumulative augmented number of infected passengers at MAD/BCN.

5.2. Influence of High Occupancy

Our database contains information about the aircraft capacity. However, we lack
details about the number of seats occupied. In the baseline scenario, and based on expert
opinion, we assume an occupancy rate of 80–85% and apply a rule of thumb to determine
the aircraft capacity and distribution: (i) two rows of two seats each (2-2) for capacities
smaller than 100; (ii) 3-3 for capacities between 100 and 220; (iii) 3-3-3 for capacities between
220 and 300; and (iv) 3-4-3 for capacities bigger than 300.

We aim to compare the disease impact when authorities implement a policy where
1 out of 2 seats is required to remain empty in small aircraft (with capacities less than 100),
and 1 out of 3 seats in larger aircraft. To achieve this, we rerun our simulations, reducing
the number of passengers to half (two-thirds) of their actual value in the database for short-
(long-) haul flights. We then distribute them according to the corresponding safety rules
related to interpersonal distance. Focusing on the last day of the two-month period, the
results obtained show an average reduction of 18% and 25% in the cumulative number of
infected passengers compared to the baseline scenario in MAD and BCN, respectively. Such
accomplishment brings to light the potential benefits of implementing a middle-row-empty
policy in aircraft during a pandemic, particularly in terms of a reduced risk of infection.
This is crucial for the airlines and their public image. By proving that flying with empty
middle seats is no more dangerous than other day-to-day activities, airlines may gain
public trust and encourage more people to fly even during uncertain times. Furthermore,
implementing such policies contributes to overall efforts in managing pandemics and
protecting public health.

5.3. Closing Airports/Routes

We aim to assess the impact of restricting access to the ATN for infected passengers
from areas with a high incidence. Our goal is to evaluate the relative impact of each
European airport/route on the spread of the delta variant. This allows us to observe how
certain airports/routes contribute more significantly to its transmission, possibly due to
a higher number of connections or more frequent flights, among other secondary factors.
The most efficient way to implement such a policy would be by conducting PCR tests prior
to boarding and denying access to those who test positive. While other measures such as
masks and vaccines could be investigated (see Section 3.2), for brevity reasons, we limit our
study to the realization of PCR tests. For the purpose of our analysis—which is to provide
a rough estimate of the benefit of implementing such a restrictive measure—we assume
100% effectiveness of the PCR test. With this configuration, we will rerun our simulations,
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setting to zero the values Ik(0) in (1) and x̃k in (18) for airports that are either identified as
high-risk themselves or are part of a high-risk route.

We now identify those airports/routes with the most infected passengers in the
previous simulation in Section 5.1. Apart from MAD and BCN, the airports receiving the
largest numbers of infected passengers during the 2-month period are displayed in Figure 8,
where we show boxplots for the different airports, ordered in decreasing order of their
mean value (indicated with a black circle). As we can observe, some of the most important
European airports act as major distribution centers in the sense that they receive/send
significant numbers of infected passengers from/to other airports in the network.
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Figure 8. Airports receiving the highest number of infected passengers.

As for the routes, Figure 9 presents boxplots for those routes transporting the highest
number of infected passengers at the end of the 2-month period. The boxplots are ordered
in descending order of their mean value. As we can observe, route ARN-BCN stands out
as the one with the highest traffic of infected passengers. Several other routes arriving at
MAD or BCN serve also as conveying vectors on the propagation of the virus. As is already
apparent from Figure 8, most routes have one of the main European hubs as their origin or
destination.

0

30

60

90

ARN−B
CN

AM
S−B

CN

BRU−M
AD

ARN−M
AD

AM
S−V

CE

BOM
−L

HR

AM
S−Z

RH

AM
S−L

UX

AM
S−C

LJ

AM
S−C

DG

CDG−A
M

S

AT
H−M

AD

CDG−L
IS

AM
S−F

RA

AM
S−S

VQ

AM
S−P

RG

CDG−F
CO

AM
S−B

RU

AM
S−M

AD

ALC
−B

CN

Route

In
fe

ct
ed

Figure 9. Routes transporting the highest number of infected passengers.
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We now analyze the impact of restricting access to certain airports or routes for pas-
sengers testing positive. Specifically, we compare the total number of infected passengers
arriving at MAD/BCN by the end of the period from 1 March to 30 April 2021, with the
results obtained in the baseline situation analyzed in Section 5.1.

For instance, let us assume that the Spanish authorities have decided to restrict flights
departing from the five airports posing the highest risk of importing infected passengers:
FRA, LHR, CDG, AMS, and FCO. The expected impact of banning flights from those
airports results in a notable reduction of approximately 37% and 43% in the expected
numbers of infected individuals arriving at MAD or BCN, respectively. With this measure,
the impact of a country’s high incidence could be mitigated while allowing the free move-
ment of non-infected passengers from that country. However, we still need to address the
uncertainty that some passengers making a connection may not have been asked for a PCR
test at the origin airport.

Similarly, the Spanish authorities could consider banning certain routes because they
are known to be particularly hazardous in terms of their contagious potential. The number
of infected individuals arriving in a country can be influenced by various factors. Thus, it is
important to acknowledge that a higher count of infected individuals might not solely stem
from epidemiological concerns but could also be associated with an extensive network of
connections between destinations. Hence, we calculate the average number of infected
passengers for all flights along a specific route. This approach provides a more accurate
assessment of the most potentially hazardous routes, irrespective of the volume of flights
on that particular route. This approach would provide decision-makers with more targeted
options, aiming to disrupt air traffic as minimally as possible.

Figure 9 highlights that ARN-BCN stands out as a particularly risky route, even
though ARN airport does not appear in the top-ten list of dangerous airports. This situation
may arise due to a particularly intricate network of connections between major European
hubs and BCN airport, with ARN airport serving as an intermediate stopover. Restricting
access to the ARN-BCN route for passengers testing positive prior to boarding would
result in a reduction of 5% and 7% in the expected numbers of infected individuals arriving
at MAD and BCN, respectively. These results emphasize the importance of considering
specific routes in addition to individual airports when implementing preventive measures.
If each European country were to adopt similar measures, a dynamic network would be
created. This network would remain operational but with a controlled percentage of routes.
Thanks to these targeted interventions upon arrival, the overall ATN would be significantly
safer while still operational.

5.4. Limitations of Our Model

Some data related to the virus’ virulence or mortality could be only gathered after
the outbreak of a certain viral disease. Furthermore, it is typically not easy to access these
data, which may limit the implication of the findings. It is also important to note that due
to inadequate reporting, reporting delays, or limitations in the accuracy of data collection,
any available data may only offer indicative insights, consequently impacting the forecasts
obtained. Currently, our model lacks the ability to estimate the potential inaccuracies in
the forecasts.

As we have mentioned throughout our paper, there might be instances where the data
are unavailable for any of the proposed inference methods. Should that be the case, expert
judgment could be used to determine the appropriate parameter values. Expert elicitation
is notoriously challenging and subject to inaccuracies, as well as cognitive and motivational
biases [11]. In cases where expert elicitation is used to determine certain parameter values,
the resultant forecasts may be sensitive to any inaccuracies in these elicitation processes.

While it is true that inaccuracies in data and expert elicitation can impact the accuracy
of forecasts, the Bayesian approach we have opted for provides two crucial avenues to tackle
this issue. First, as additional information regarding a new outbreak of a virus/variant
becomes available, we can readily integrate this into our model, enabling updated results
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and enhanced decision-making. Second, the established state-of-the-art methodologies for
examining the sensitivity of the model forecasts to inaccuracies in both prior elicitation and
data uncertainty can be employed to gauge the potential variation in forecasts. We briefly
discuss this in Section 6.

Finally, although our study has been conducted retrospectively, we could also feed
our algorithm with the new incidence data emerging daily to ’simulate’ what is expected
to happen in the next days and draw valuable conclusions that could eventually help
decision-makers in their tasks.

6. Conclusions and Future Work

The impact of a pandemic extends beyond mere medical consequences and signifi-
cantly affects various economic aspects, including the commercial aviation sector. There-
fore, it is crucial to identify the epicenters of disease spread within ATNs to enable ef-
fective control measures, rather than relying solely on industry-wide shutdowns as the
primary solution.

The European airspace is not uniform, as not all connections and destinations carry
equal weight in passenger transportation. Even if a route is significant in terms of its impact,
decision-making can be swayed by its effect on the destination’s epidemiological situation.
Our interest was to explore the influence of individual routes and airports on potential
disease transmission on a real crisis scenario.

In this paper, we enhance the understanding of ATNs by leveraging dynamic network
modeling and discrete event simulation, identifying critical factors that affect network
performance and implementable strategies to improve overall efficiency and safety. Using
Bayesian methodology enables probabilistic forecasts of the number of passengers who may
be infected during commercial flights. Using a stochastic approach that is validated using
empirical data, we are able to account for the various sources of uncertainty. Thus, our work
contributes to public health efforts by assessing the transmission risk of infectious diseases
during air travel and supporting decision-making for pandemic preparedness. Through
our innovative approach, we hope to pave the way for a more resilient and adaptive air
transport system.

We first simulated the ATN performance in the baseline scenario without any mit-
igation measures. Then, we considered two alternative scenarios, reducing the aircraft
occupancy or restricting access to those passengers testing positive on a PCR test. The
results obtained demonstrate a significant reduction in the number of infected individuals
moving through the ATN. Since these measures are neither expensive nor difficult to imple-
ment, they could be applied not only at the main hub airports but also, potentially, at every
airport in the network. Our results show that by doing so, the risk of disease propagation
could be minimized without restricting the people’s ability to travel to the same extent and
duration that it was during the pandemic.

A sensitivity analysis was conducted on our model parameters, and it showed that
the obtained results were not overly dependent on specific assumptions. However, it is
inevitable that significant inaccuracies in expert elicitation could lead to inaccurate forecasts.
The further research could consider performing a prior robustness analysis to quantify
the effects that imprecisely defined prior distributions could have on the findings of our
model. This analysis can be efficiently and relatively straightforwardly conducted using
the distorted band class of priors [45]. Recently, a novel approach using the ABC class
of priors was proposed to explore the sensitivity of Bayesian posterior inference to data
uncertainty [46]. The further research could also investigate the applicability of the ABC
class of priors to our model for analyzing the effects of data inaccuracy. This analysis can
yield both the most optimistic and the most pessimistic forecasts, thereby enhancing the
utility of our model.

The further research could also investigate risk assessment models that consider not
only the spread of infectious diseases but also economic and operational risks. Such models
should develop strategies to mitigate the impact of future pandemics on the aviation indus-
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try and explore adaptive risk management approaches that can be quickly implemented
during crises to minimize losses.

Finally, our approach is ideally suited to be incorporated in methods such as the
approximate Bayesian computation (ABC, [47]), which enables a more accurate inference
on parameters using the reported incidence data. Furthermore, this process can be imple-
mented daily (if need be) to produce the most accurate inference using the latest data to
ensure the most up-to-date and accurate forecasts possible.
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