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Abstract: Network disintegration is a fundamental issue in the field of complex networks, with its core
in identifying critical nodes or sets and removing them to weaken network functionality. The research
on this problem has significant strategic value and has increasingly attracted attention, including in
controlling the spread of diseases and dismantling terrorist organizations. In this paper, we focus
on the problem of network disintegration with discrete entity resources from the attack view, that
is, optimizing resource allocation to maximize the effect of network disintegration. Specifically, we
model the network disintegration problem with limited entity resources as a nonlinear optimization
problem and prove its NP-hardness. Then, we design a method based on deep reinforcement learning
(DRL), Net-Cracker, which transforms the two-stage entity resource and network node selection task
into a single-stage object selection problem. Extensive experiments demonstrate that compared with
the benchmark algorithm, Net-Cracker can improve the solution quality by about 8∼62%, while
enabling a 30-to-160-fold speed up. Net-Cracker also exhibits strong generalization ability and can
find better results in a near real-time manner even when the network scale is much larger than that in
training data.

Keywords: network disintegration; discrete resource allocation; deep reinforcement learning;
combinatorial optimization

MSC: 90-10

1. Introduction

With the rapid development of network science, complex networks have been widely
applied to describe the connections and interactions among complex systems in daily
life [1,2], such as transportation networks, biological networks and terrorist networks.
These networks mostly benefit human society, and many studies focus on how to defend
and protect their robustness and integrity [3–5]. However, there exists many harmful
networks in modern society, such as disease spreading networks [6], terrorist networks [7],
rumor spreading networks [8], etc. Such harmful networks should be destroyed and
disintegrated to minimize their societal threat, which has attracted growing attention.

The essence of network disintegration lies in removing a set of the most crucial nodes
of the network to achieve an optimal disintegration effect [9]. At present, many studies are
being conducted to determine crucial nodes and devise corresponding disintegration strate-
gies from the view of analyzing the network structure, such as homogeneous single-layer
network, homogeneous multi-layer network, heterogeneous network, and so on [10–13].
However, in real-life applications, dismantling certain networks requires not only focus-
ing on the structure of the network itself but also considers the discrete entity resources
possessed by the attacker that can destroy the opponent’s network. For example, when
disrupting terrorist networks, it is necessary to take full account of the operational range
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and destructive capabilities of the weapon entities possessed by attackers [14]. How the
attackers allocate discrete weapons to strike members of terrorist networks will impact
the efficacy of terrorist network disintegration. Similarly, in suppressing the spread of the
COVID-19 virus network, it is essential to take into account the treatment capacity and
scope of care provided by cabin hospital entities for infected individuals [15]. The strategy
of allocating appropriate cabin hospitals to treat the correlated infected individuals will
have an impact on interrupting the spread of disease networks. The above entity resources,
including weapons and cabin hospitals, are typically distributed discretely in different
locations, exerting a decisive influence on the disintegration effect of the network. Thus,
incorporating the entity resource possessed by the attacker into the problem of network
disintegration holds great theoretical and realistic significance.

Figure 1 gives an illustrative scenario example of network disintegration with entity
allocation. In Figure 1, there are thirteen nodes in the network, and node v6 has the highest
degree, which usually means it is a crucial node. The attacker has deployed four entities
{w1, w2, w3, w4}, and each entity has its attack range represented by a light pink part. It
is easy to find that the node v6 cannot be destroyed by the attacker. The above example
illustrates that network disintegration should consider not only the network structure itself
but also the attack effect of entities. In fact, the removal difficulty of nodes in the network
is not equal. For example, removing a hub node may require more entities than the other
nodes. In addition, each entity can produce limited damage. We will give an example
with some detailed values in Figure 2 to illustrate that the resource allocation strategy has
important impacts on network disintegration.
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Figure 1. A simple example to show network disintegration with limited entities.

In this paper, we study the problem of optimizing resource allocation to maximize
the effect of network disintegration. There are three main challenges in solving the above
problem: (i) How can we accurately allocate the limited entities to maximize the disintegration
effect? There are many factors in producing the final solution, including the heterogeneity
of the removal difficulty of nodes, the attack range of entities, the attack ability values of
different entities, and so on. Furthermore, as the entities can only be used in a discretized
way, there must exist a resource fragmentation problem. (ii) How can we dynamically generate
the disintegration strategy? For example, when destroying terrorist networks, weapon entities
and terrorists will dynamically join or exit the war on demand, which makes the designed
disintegration strategy variable. It is challenging to generate a disintegration strategy with
adaptability. (iii) How can we quickly determine the resource allocation solution in large-scale cases?
The network disintegration is an NP-hard problem [16]. Traditional research on network
disintegration mainly adopts approximation and metaheuristic algorithms, which often
struggle to strike a satisfactory balance between solution speed and quality [17–19].The less
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computer running time it takes to search for a satisfactory solution from many alternative
disintegration strategies, the faster it can make decisions and take action, and the greater
the opportunity to eliminate terrorist networks and virus networks.
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Figure 2. Two different disintegration strategies. (a) Three entities attack three network nodes, only
two of which can be removed. The network performance after disintegration is 2.12. (b) Three entities
attack and remove two network nodes. The network performance after disintegration is 1.77.

To tackle the above challenges, we propose a deep reinforcement learning-based
approach for the network disintegration problem. DRL has achieved a satisfactory bal-
ance between effectiveness and efficiency in solving combinatorial optimization problems
over the past decade [20–22]. To sum up, the main contributions of this paper include
the following:

• We model the network disintegration problem with discrete entity allocation using
nonlinear optimization programming. By looking into the characteristics of limited
entity resources and the heterogeneity of the removal difficulty of different nodes, we
reveal that existing solutions cannot balance effectiveness and efficiency well.

• We propose Net-Cracker, a deep reinforcement learning method to solve the network
disintegration problem. This approach transforms the two-stage entity and network
node selection task in the solution process into a new object selection form so as to
simplify the solving process.

• We conduct extensive experiments in multiple settings. The results demonstrate that
our method has significant advantages regarding solution quality, computation time
and scalability compared to the traditional method.

The rest of the paper is organized as follows. In Section 2, we present the related
work on network disintegration and deep reinforcement learning. In Section 3, we give
the problem of network disintegration and the mathematical model. Then, we describe the
Net-Cracker model in detail in Section 4. Our evaluation method and experimental results
are shown in Section 5. In Section 6, we discuss the proposed Net-Cracker method. Finally,
this paper is concluded in Section 7.

2. Related Work
2.1. Network Disintegration

As an active topic in the research of complex networks, network disintegration has
garnered widespread attention from numerous scholars over the past decade. Different
studies use different methods to identify the key node set for specific networks, though the
results are mixed.
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There are two categories of network disintegration research: One is network disintegra-
tion without resource limitations. In this case, many scholars have proposed disintegration
strategies based on the special structural properties of nodes, including degree-based strat-
egy [23], betweenness-based strategy [24], and clustering coefficient-based strategy [25],
in which the declining order of node properties remove nodes. Furthermore, disintegra-
tion methods have been designed based on the structural characteristics of the network.
Deng et al. [13] present a multiplex network disintegration strategy based on Tabu search,
in which the disintegration effect is superior to typical disintegration strategies. Li et al. [11]
put forward an operational capability disintegration method of combat networks under
incomplete information. However, network disintegration without resource constraints is
often ideal in the real world. For different scenarios, the concretization of resources required
to disintegrate a network varies, such as the cost required to eliminate the virus network
and the weapon entities required to destroy the terrorist network. Subsequently, another
research introduces a network disintegration model with resource limitations [26–28],
wherein the authors proposed a network disintegration model with limited cost, which
assumes that removing different nodes requires different costs. These problems are es-
sentially resource allocation problems [29], that is, how can we allocate cost resources to
network nodes so that the disintegration effect is the best.

Nevertheless, a crucial issue is that although existing research incorporates cost re-
source constraints into network disintegration, this cost is a continuous resource. But em-
pirically, the resources required for some network disintegration are concrete entities, tools
or services that have discrete attributes. The current disintegration method cannot solve
the network disintegration problem with discrete resources. Furthermore, most existing
research focuses on the structural characteristics of networks to design a disintegration
strategy, with little consideration of this situation of destroying harmful networks with
limited entity resources from an attack view.

2.2. Deep Reinforcement Learning in Combinatorial Optimization Problems

Combinatorial optimization problems (COPs) are widely used in national defense,
transportation, product manufacturing and other fields [30]. Common COPs, such as the
traveling salesman problem (TSP) [31], vehicle routing problem (VRP) [32], and minimum
vertex cover problem (MVC) [33], aim to find the optimal solution from a set of finite
objects and are NP-hard. The traditional method for solving COPs mainly adopts exact
approaches [34] and approximate approaches [35]. However, as the scale of practical prob-
lems and the need for real-time solutions increase, it is difficult for traditional methods to
generate optimal COP solutions quickly. Moreover, traditional methods use iterative search
and lack the ability to learn from historical data. As soon as the data for the same problem
changes, it has to be searched and solved again, resulting in higher computational costs.

To tackle the above issue, the researchers proposed an end-to-end DRL method [36]:
the trained deep neural network is used to directly output the solution to the problem,
in which the parameters of the neural network are generally trained by a set of problem
instances of the same type.

Hopfield et al. [37] first attempted to use neural networks to solve a COP and verified
it on a small-scale TSP. However, for a newly given TSP, it has to be trained again from
scratch, which has no advantage over the traditional algorithm. To effectively solve COPs,
based on the sequence-to-sequence (Seq2Seq) model in the field of machine translation [38],
Vinyals et al. [39] proposed a pointer network model for a TSP. It achieved satisfactory
results, which triggered a wave of using deep neural networks to solve COPs. Subsequently,
to alleviate the challenge of the difficulty in obtaining labels for supervised learning
methods, Bello et al. [40] used the reinforcement learning method to train the pointer
network model and introduced the critic network as a baseline to reduce the training
variance. This approach is more scalable than traditional algorithms on the TSP and
KnapSack problem. On the other hand, to solve COPs with graph structure, such as the
MVC problem, Dai first proposed a graph neural network named structure2vec to solve
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COPs [41]. In addition, Li used graph convolutional networks and guided tree search
techniques for MVC and maximal independent set (MIS) problems [42]. This approach
effectively solves the situation where multiple optimal solutions exist.

2.3. Deep Reinforcement Learning Method in Network Disintegration

DRL has been applied to solve the network disintegration problem because it can
effectively find the key node set of the network. Fan et al. proposed a graph neural network
(GNN) and DRL to find an optimal set of nodes in networks, which outperformed existing
methods in terms of solution quality [43]. Chen et al. also combined DRL and GNN
to search high-value edge attack sequences, and proved that the proposed method has
strong applicability across various scenarios [44]. Furthermore, various disintegration
methods for different networks have also been proposed in current research. Zeng et al.
used a combination of graph neural networks and reinforcement learning to address
the disintegration problem of heterogeneous combat networks [45]. A DRL algorithm is
used to identify the set of key nodes in directed networks [46]. Zeng et al. proposed a
solution to the disintegration problem in multiplex networks based on the deep network
representation learning model (MINER) [47]. The wide application of the above method
shows the potential of using the DRL algorithm to solve network disintegration problems.

3. Network Disintegration Model with Discrete Entity Resources

In this section, we present the mathematical model of network disintegration under
the condition that the entity resources are used in a discrete way. For clarity, the main
symbols involved in this article are illustrated in Table 1.

Table 1. Summary of notations.

Notation Description

G complex network
V network node set
E network edge set
vj jth node
ej jth edge

A(G) the adjacency matrix of G
aij whether node i is connected with node j
kj degree of node vj
W entity set
wi ith entity
ci attack ability of entity wi
ri attack range of entity wi
qj the removal threshold of node vj
dij the distance between ith entity and jth node
xij whether ith entity attacks jth node
uj the sum of damage value to jth node
yj whether jth node can be removed
Y disintegration strategy
Ĝ the network after removing nodes

3.1. Problem Illustration

As shown in Figure 2, there is a complex network composed of thirteen nodes. The at-
tacker has deployed four entities {w1, w2, w3, w4} around the network. Each entity has
its attack range, which is illustrated by the light blue circle. It is easy to find that node
v1 can be attacked by w1, v3 can be attacked by w3, and v4 can be attacked by w3, w4.
Additionally, each entity has different abilities to produce harm, and each node in the
network has different removal thresholds. Without loss of generality, the attack abilities of
{w1, w2, w3, w4} are {5, 8, 5, 2}, respectively. The removal thresholds of {v1, v2, v3, v4} are
{5, 9, 5, 6}, respectively.
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There are different resource allocation strategies to destroy the network. In strategy 1,
w1 attacks v1 (5 ≥ 5), w3 attacks v3 (5 ≥ 5), and w4 attacks v4 (2 ≤ 6), which means that
{v1, v3} can be successfully removed from the network. In strategy 2, w1 attacks v1 (5 ≥ 5)
and {w3, w4} attack v4 (5 + 2 ≥ 6), which means that {v1, v4} can be successfully removed
from the network.

Currently, many researchers have used natural connectivity to measure the effect of
network disintegration [27,48], which describes the number of closed loops with different
path lengths for all nodes in the network. Let G represent the network topology, and A
represent the adjacency matrix of G. The natural connectivity of G, i.e., Γ(G) can be
calculated as follows:

Γ(G) = ln

(
1
N

N

∑
i=1

eλi

)
(1)

in which λi is the ith largest eigenvalue of the adjacency matrix A(G).
With Equation (1), we can easily calculate the network connectivity after executing

strategy 1 and strategy 2. As shown in Figure 2, the network connectivity in strategy 1 is
2.12, while it is 1.77 in strategy 2.

From the above example, we can formally define the network disintegration problem
with discrete entity resources.

Definition 1. Given a network, which can be represented by G = (V, E), and multiple entities
W = {w1, w2, . . . , wM}, each node in V has location information and removal threshold, and each
entity in W has location information, attack range and attack ability value. Then, the network
disintegration problem distributes the entities to proper nodes so that the network connectivity of G
is minimized.

3.2. Problem Model

The complex network can be abstracted as an undirected graph, denoted as G = (V, E),
where V = {v1, v2, · · · , vN} is a node set and E = {e1, e2, · · · , eT} is the interactions be-
tween nodes. Here, let N and T represent the number of nodes and edges, respectively.
The adjacency matrix A(G) = (aij)N×N of G is defined as follows: if vi and vj are con-
nected, then aij = 1; otherwise, aij = 0. Furthermore, the node vj can be described as
vj := ⟨xj, yj, zj, k j⟩, where (xj, yj, zj) represents the location coordinates of the node vj, and
k j represents the degree of node vj, in which the value of k j is equal to the number of
adjacent edges of node vj.

We assume that the attacker has M entity resources, which can be denoted by a set
W = {w1, w2, · · · , wM}. The state of the entity wi can be described by a tuple
wi := ⟨xi, yi, zi, ci, ri⟩. Specifically, (i) (xi, yi, zi) represents the location coordinates of the
entity wi, (ii) ci represents the attack ability of the entity, and (iii) ri indicates the attack
range of the entity.

The damaging effect of entities on nodes depends on two aspects: the attack ability
value of the entity and the removal threshold of the node. The higher the attack ability value
of the entity, the stronger the damage to the node. In addition, the difficulty of removing
nodes will escalate as the removal threshold of the node increases. Ren et al. [49] assumed
that the cost of removing nodes is proportional to the degree of nodes. Similarly, we define
the node removal threshold qj as the entity attack ability value required to remove the node
vj and assume that qj is a function of the degree k j of node vj, as follows:

qj = αjk j, j = 1, · · · , N, α > 0 (2)

where αj is a random disturbance value, indicating that external factors, such as electro-
magnetic interference, affect the node removal threshold.

Obviously, only when the node is within the attack range of the entity can the entity
be used to attack the node. Here, we use the Euclidean distance dij to define the distance
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between the entity wi and the node vj, and we use an indicator function F(dij) to indicate
whether wi can be used to attack vj, as shown in Equations (3) and (4):

dij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

F(dij) =

{
1 , if dij ≤ ri
0 , otherwise

(4)

We use the binary variable xij to determine whether wi can attack vj. If wi attacks vj,
then xij = 1; otherwise xij = 0. To ensure that each entity can only be assigned to attack
one node, we have

N

∑
j=1

xij ≤ 1, ∀i (5)

And to ensure that the entity can only be used to attack nodes within its attack range,
we have

xij ≤ F(dij), ∀i, ∀j (6)

The node can be removed only when the damage effects of the entities exceed its
removal threshold. In this paper, we assume that the damage effect of multiple entities on
the same node is a linear sum of their respective damage values. Let uj denote the sum of
the damage value of the entity to the node vj, then

uj =
M

∑
i=1

xijci (7)

We use binary variable yj to represent whether node vj can be removed. If node vj can
be removed, then yj is 1; otherwise, yj is 0, which can be represented by

yj =

{
1 , if uj ≥ qj
0 , otherwise

(8)

Let V̂ ⊆ V represent the removed node set, and the network after removing nodes as
Ĝ = (V − V̂, Ê). Then, the disintegration strategy can be represented by Y = [y1, · · · , yN ],
where vj ∈ V̂ if yj = 1. As introduced in Section 3.1, the effect of the disintegration strategy
can be depicted by Φ(Y) = Γ(Ĝ). The objective of network disintegration is to find a set of
disintegration strategies Y∗ that can minimize the network connectivity.

To sum up, the problem defined in Definition 1 can be represented as follows:

min Φ(Y = [y1, · · · , yN ]) (9a)

s.t. (1) ∼ (8). (9b)

The existing literature [50] has proven that the natural connectivity will strictly de-
crease once the nodes are removed. Therefore, a lower Φ value implies a more destructive
disintegration strategy.

3.3. Complexity Analysis

To prove that the network disintegration problem characterized by Model (9) is NP-
hard, we first give the definition of a classic NPC problem, i.e., the subset sum problem [51].

Definition 2. Given a set of integers C = {c1, c2, . . . , cm}, the subset sum problem is to decide
whether there exists a subset A ⫋ C such that ∑ A = ∑ C

2 .

Theorem 1. The network disintegration problem formulated in Model (9) is NP-hard.
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Proof of Theorem 1. Assuming that there is a subset sum instance, e.g., C = {c1, c2, . . . , cm},
we could construct an instance of the network disintegration problem from this subset
sum problem instance. As shown in Figure 3, there is a network with two crucial nodes
{v1, v2}. There are also m entities deployed near {v1, v2}, and their attack abilities are
{c1, c2, . . . , cm}, respectively. Additionally, we assume that the removal thresholds of both
v1 and v2 are ∑ C

2 . Without loss of generality, we assume that only v1 and v2 lie in the attack
range of all entities.

𝑤1

𝑤2 𝑤𝑚

𝑣1
𝑣2

Figure 3. A simple example to show the network disintegration problem is NP-hard. Only v1 and v2

lie in the attack range of all entities.

Obviously, if we could optimally solve the network disintegration problem in the
constructed example, then we could solve the subset sum problem. If both v1 and v2 are
removed, then the answer to the subset problem is “yes”; otherwise, “not”. However,
the subset problem is NPC, which shows that the network disintegration problem is also
NP-hard. Thus, Theorem 1 is proved.

4. The Design of Net-Cracker

In this section, we propose an approach named Net-Cracker, which uses the deep
reinforcement learning method to find the optimal solution for the network disintegra-
tion problem. Firstly, we introduce the framework overview of Net-Cracker, including
several key processes. Then, we focus on an encoder–decoder neural network structure
with an attention mechanism and explain how Net-Cracker effectively accomplishes the
model training.

4.1. Framework Overview

DRL is an agent modeling method that combines the feature extraction capability of
deep learning and the sequential decision-making capability of reinforcement learning.
For a complex network disintegration problem, we can view it as a Markov Decision Process
(MDP) [52]. In each iteration, the agent chooses one object as an action based on the current
state and subsequently updates the state. Therefore, solving the network disintegration
problem with the DRL method is appropriate. Recent work has shown that AutoML in
the field of machine learning lacks transparency and interpretability when dealing with
high-risk medical issues [53], which prompted us to opt for an appropriate deep neural
network to circumvent these issues. Specifically, in this paper, we primarily employ the
actor–critic (AC) method in DRL [54,55]. The AC method entails the actor’s responsibility
of generating policies to maximize cumulative returns. Meanwhile, the critic evaluates
the policy generated by the actor and provides a value function to guide policy updates.
The overall framework of Net-Cracker is shown in Figure 4, and its solving process is
divided into three stages: combine, selection, and mapping.
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Figure 4. The framework of Net-Cracker. In the combination stage, the entity set and node set are
combined to form a new object set through the Cartesian product. In the selection stage, we select the
object based on the neural network until a complete solution is constructed. The parameters of the
neural network can be trained by actor and critic networks. In the mapping phase, by mapping the
objects into the entity–node pairs, we can calculate the natural connectivity of the destroyed network.

4.1.1. Stage I: Combine

In the combination stage, we combine the current M entities and N nodes distributed
on the battlefield through a Cartesian product, resulting in the generation of M× N objects.
As shown in Figure 5, each object is the combination of one entity and one node, indicating
one selected action candidate. Specifically, the object ok can be denoted as ok := ⟨wi, vj⟩,
which means that the entity i is used to attack the node j.

Object 1

W1

V1

Object 2

W1

V2

Object MN

WM

VN

Entity

Attribute

Node

Attribute

Figure 5. Combine entities and nodes into new objects. Each object has the attributes of entities
and nodes.

4.1.2. Stage II: Selection

In the selection stage, we use an encoder–decoder neural network with an attention
mechanism to output the optimal solution. Specifically, we initially employ the encoder to
extract features from all objects and generate their embeddings (high-dimensional vectors).
Subsequently, these embeddings are fed into the decoding neural network for decoding
purposes. The decoding process primarily involves selecting an optimal subset of objects
from a pool of candidate objects. At each decoding step, we use the decoding neural
network in combination with the attention computation method to calculate the attention
value of all unselected objects. The agent then greedily selects the object with the highest
attention value. Once an object is chosen, it is removed from the candidate object set.
This aforementioned decoding process is iteratively repeated until either the maximum
constraint on entity attack ability is reached or until the maximum number of steps is
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exhausted. The structure of the neural network will be illustrated in detail in Section 4.2,
and the training process of the neural network parameters will be described in Section 4.3.

4.1.3. Stage III: Mapping

Based on the previous two stages, we can obtain the optimal object set. By mapping
the objects into the entity–node pairs, we can derive a selection of entities and removed
nodes, subsequently calculating the target value through the objective function Φ.

The design of state, action and reward function is crucial when using reinforcement
learning. Specifically, we define the state S as a set of selected objects. At time t, if the
agent has already selected t− 1 objects, then the state information can be expressed as
st = {o1, o2, . . . , ot−1}, where st ∈ S. The action space is a set that includes all possible
actions that an agent can perform in a specific state. In our problem, selecting an object is
considered an action, and thus, the dimension of the action space is M× N. The reward for
each solution is defined to be equivalent to its objective function, which measures network
performance after nodes are removed.

In this way, we can obtain the solution of the network disintegration problem. Dur-
ing the training phase, we compute the reward value of the solution based on the designed
reward function and subsequently employ it for backpropagation and the adjustment of
network parameters. Once the loss value of these parameters stabilizes and meets our
desired reward criteria, a well-trained network model is obtained. During the testing phase,
we can utilize this trained network model to rapidly achieve high-quality disintegration
outcomes by inputting entities and nodes in network information.

4.2. Detailed Design of the Neural Network Architecture

In this section, we mainly introduce the detailed design of the neural network ar-
chitecture of an actor network in an AC framework that includes encoding, decoding
and attention modules, aiming to address the following problems: (i) How can we effi-
ciently extract the multidimensional static information of input objects during the encoding
process? (ii) How can we output the probability distribution of selecting each object based
on the current state and available action space during the decoding process? (iii) How can
we handle the situation where the output objects form an ordered sequence and the length
of the output sequence is different from the length of the input sequence? Figure 6 shows
the detailed design of the neural network architecture.

Embedding

o1 o2
oMN

e1 e2
eMN

dt

yt-1

dt-1 dt+1

Attention

Query

P(yt | y1 , y2 ,…, yt-1)

SoftmaxMask

Output

Input

Encoder Decoder

Attention

Figure 6. The proposed neural network architecture in AC framework. The encoder extracts the
features of the input object through the embedding layer. The decoder is used to store the decoded
sequence information. The attention module uses the attention mechanism to output the probability
distribution of the following input according to the embedded information and the hidden layer state
of the decoding network.
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4.2.1. The Encoder

The encoder is designed to map the state information of the input sequence, enabling
the agent to comprehend the representation of each object. As the order of input object
encoding does not affect the choice of subsequent actions, we adopt a one-dimensional
convolutional neural network (CNN) as the encoding network to reduce model complexity.
Each input object oi is encoded into an embedding vector ei, forming an encoding matrix
E = {e1, e2, . . . , eMN} with dimensions (M ∗ N)× dh, where dh represents the dimensional-
ity of the target vector.

4.2.2. The Decoder

Using the encoding vector generated by the encoder as input, the decoder sequentially
decodes the current state into high-dimensional hidden states. Contrary to the encoding
network, the decoding process needs to consider the information of the decoded sequence,
so we use the recurrent neural network (RNN) with a memory storage function as the
decoding network. In this way, we can obtain the hidden layer state dt by RNN, where dt
contains the output sequence information {y0, y1, . . . , yt−1} of the decoder output before
step t and serves as the query for the attention layer.

4.2.3. The Attention

As the output dimension is dynamically determined based on the input vector’s dimen-
sion, it is necessary to adjust the dimensions of the output accordingly. The conventional
Seq2Seq model lacks flexibility and cannot address this dynamic output dimension problem.
Fortunately, Vinyals et al. [39] introduced the attention mechanism into the Seq2Seq model,
yielding promising results. Therefore, we also incorporate the attention mechanism into
our neural network architecture to tackle this problem. As depicted in Equation (10), at step
t, we compute a weighted sum of the decoded hidden layer state dt and the embedding
vector ej, which is subsequently passed through the tanh activation function.

ut
j = vTtanh(Waej + Wbdt), j = 1, · · · , MN (10)

where v, Wa, and Wb are trainable parameters.
To enhance algorithm efficiency and reduce the action space, we propose incorporating

a masking mechanism into the neural network output. For each candidate object, once an
object is selected, it will no longer appear in the candidate object set. Specifically, a binary
mask is employed to determine the validity of object oj at time t, as follows:

maskt
j =

{
1 , if oj is valid at time t
0 , otherwise

(11)

Finally, we can derive the conditional probability distribution of selecting the next
action, which can be represented as follows:

p(yt | y0, y1, . . . , yt−1, st) = so f tmax(ut + maskt) (12)

During the training stage, we employ importance sampling to select the next action,
ensuring that even actions with low probabilities are considered. However, during the
test stage, we adopt the greedy policy to select the action with the highest probability.
The detailed solution process of our proposed model is illustrated in Algorithm 1.
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Algorithm 1: Solution Process of the Net-Cracker Model
Input: All object information O = {o1, o2, · · · , oMN}
Output: Total output sequence Y = {y(t)}T

1
1 Calculate the embedding vector of E = {e1, e2, · · · , eMN} by Encoder
2 Initialize current position y(0)← 0
3 for t = 1 : T do
4 Update hidden layer state dt by Decoder
5 Compute the attention value ut

j for j ∈ {1, 2, . . . , MN}
6 Update the mask value maskt

j for j ∈ {1, 2, . . . , MN}
7 Compute the probability of each object p(yt | y0, y1, . . . , yt−1, st) = so f tmax(ut + maskt)
8 y(t) = Greedy(p(yt | y0, y1, . . . , yt−1, st)) if choose greedy way
9 end

4.3. Training Procedure

The AC framework primarily comprises two networks: The actor network, which
consists of an encoder, a decoder and an attention module, is designed to generate the
probability distribution for action selection in the current state, as previously discussed.
On the other hand, the critic network estimates the state value for a given problem instance
and shares structural similarities with the encoder of the actor network. During the training
process, our main goal is to obtain the optimal network parameters so as to output the best
results in the test phase.

For the input problem instance s, the network parameters are set to θ, and the training
objective of the network is defined as follows:

J(θ | s) = EY∼pθ(· | s)Φ(Y | s) (13)

where Φ(Y | s) denotes the objective value Φ of the solution sequence Y under a given
instance s.

We use the policy gradient [56] to optimize the following parameters:

∇θ J(θ | s) = EY∼pθ(· | s)[(Φ(Y | s)− b(s))∇θ log(pθ(Y | s))] (14)

where b(s) represents the baseline, which is utilized to estimate the expected value of the
solution for a given instance and aids in reducing the variance of the gradient.

In practice, problem instances s1, s2, . . . , sB ∼ S are sampled by the Monte Carlo
method, and the average value of these samples is calculated to replace the expected value:

∇θ J(θ) ≈ 1
B

B

∑
i=1

(Φ(Yi | si)− b(si))∇θ log(pθ(Yi | si)) (15)

To improve the learning efficiency of actor networks, it is common practice to introduce
a parameterized baseline for estimating the expected objective value EY∼pθ(· | s)Φ(Y | s).
Therefore, we introduce a critic network parameterized by φ to learn the expected objective
value found by the current policy pθ given the input instance s. The parameters of the critic
network are trained through the mean-squared error between the sampled actual objective
value and the estimated value bφ(si):

φ =
1
B

B

∑
i=1
∇φ(Φ(Yi | si)− bφ(si))

2 (16)

where bφ(si) represents the output baseline of the critic.
In our training procedure, the parameters of the critic and actor are updated sequen-

tially simultaneously. The actor parameters θ are updated by the output of the critic,
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ensuring that the actor parameters are updated in a positive direction. The detailed training
process is depicted in Algorithm 2.

Algorithm 2: Training Algorithm Based on Actor–Critic.
Input: Training set S, batch size B,training epoch E, initialize actor network parameter θ

and critic network parameter φ

Output: Trained parameters θ∗, φ∗

1 for epoch = 1, 2, . . . , E do
2 Sampling B instances from S
3 for i = 1, 2, . . . , B do
4 Set step counter t← 0
5 repeat
6 Choose yi

t+1 according to the distribution p(yi
t | yi

0, yi
1, . . . , yi

t, si
t)

7 Update state si
t+1 ← (si

t, yi
t+1)

8 t← t + 1
9 until meet termination condition;

10 Compute objective value Φ(Yi | si)
11 Compute estimated value bφ(si)

12 end
13 dθ ← 1

B ∑B
i=1(Φ(Yi | si)− b(si))∇θ log(pθ(Yi | si))

14 dφ← 1
B ∑B

i=1∇φ(Φ(Yi | si)− bφ(si))
2

15 Update θ with dθ and adjust φ with dφ

16 end

5. Performance Evaluation

In this section, we first describe our experimental settings and comparative methods.
Then, we present the results of the extensive computational experiment to evaluate the
proposed Net-Cracker method.

5.1. Experimental Settings
5.1.1. Dataset

Since the constrained network disintegration problem formulated by Model (9) is
being studied for the first time, there are no public datasets. Therefore, we generate the
dataset independently as follows.

Two classical synthetic network structures, i.e., scale-free (SF) network and Erdős–Rényi
(ER) random network, are selected to construct the architecture of the network. The ER
network is a random network, where the connections between nodes follow a Poisson distri-
bution, while the SF network refers to a network in which the node degrees follow a power-law
distribution. We set a square area with size 2× 2 to represent the battlefield and then randomly
distribute the network nodes and entities on it. The attack ranges of the entities are sampled
from a uniform distribution [0, 2], and the attack abilities of the entities are sampled from a
uniform distribution [0, 10]. The αj value is randomly generated in [0, 1], which is used to
indicate the influence of other factors on the node removal threshold.

We have trained two different Net-Cracker agents and named them DRL-25 and DRL-
40, respectively. The DRL-25 model was trained with 10 entities and 15 network nodes,
while the DRL-40 model was trained with 15 entities and 25 network nodes. Each model
instance was trained using 1 million data points.

5.1.2. Hyperparameter Setting

For each Net-Cracker agent, the encoder of the actor network embeds object informa-
tion into a 128-dimensional vector by a 1D convolutional network with one layer, while
the decoder is a GRU recurrent neural network with 128 hidden units, where Dropout is
0.1. The critic network consists of multiple 1D convolutional networks, where the output
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of the last layer is set to 1. The model uses the Adam optimizer for gradient optimization.
The batch size is 128, and the learning rate is 10−4.

5.1.3. Device Configuration

We conducted simulation experiments on a computer with the following specifications:
CPU: Intel i9-12900K 3.2 GHz; GPU: NVIDIA RTX3090; RAM: 64 GB; OS: 64-bit Ubuntu
16.04. All algorithms are developed using Python 3.7.

5.2. Benchmarks

The network disintegration problem defined in this paper has two decision spaces,
i.e., selecting several nodes from the network and assigning appropriate entities to the
selected nodes. However, classical disintegration strategies based on node centrality only
decide which nodes should be destroyed, but never figure out the resource allocation
solution. Therefore, in this paper, we use two classical heuristic algorithms, i.e., genetic
algorithms and differential evolution algorithms as the benchmarks.

• Genetic Algorithm (GA): Genetic algorithms search for optimal solutions by simulat-
ing the processes of natural selection, inheritance and evolution, and are characterized
by simplicity, robustness and strong global search capabilities. By simulating genetic
processes such as selection, crossover and mutation, it gradually evolves solutions
that better adapt to the given problem. We first encode the entities and nodes in the
network, and set the maximum number of iterations, and define the crossover and
mutation operations of the GA. Next, we use the natural connectivity of the disinte-
grated network as the fitness function of the GA for individual evaluation. Finally,
the optimal solution to the problem is output based on the fitness function.

• Differential Evolutionary Algorithm (DE): The differential evolution algorithm is
an intelligent optimization search algorithm that emerges through cooperation and
competition among individuals within a population. It has strengths such as strong
adaptability, few control parameters, simple settings and robust optimization results.
The solution process of DE is the same as that of GA, but the setting of the mutation
scale factor and crossover probability of DE is different from that of GA.

The main parameters of the GA and DE algorithms are depicted in Table 2, where
Dim represents the dimension of the decision variables. We set the maximum number
of iterations for the GA algorithm to be 200 and 500, denoted as GA-200 and GA-500,
respectively. At the same time, the maximum number of iterations for the DE algorithm is
set to 200 and 500, referred to as DE-200 and DE-500, respectively.

Table 2. The main parameters of the GA and DE.

Algorithm Parameter Value

GA

Population size 100
Maximum number of

iterations 200 and 500

Selection operator Tournament selection
Crossover operator Two-point crossover
Mutation operator Breeder-GA mutation

Crossover probability 0.5
Mutation probability 1/Dim

DE

Population size 100
Maximum number of

iterations 200 and 500

Crossover probability 0.5
Mutation scaling factor 0.5
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5.3. Performance Results

In this part, we will demonstrate the performance of Net-Cracker and the benchmarks
on solving speed, solving time and generalization ability through the evaluation results.

5.3.1. Solving Quality

To systematically compare the solving quality of the solutions generated by Net-
Cracker and other benchmarks, we conducted experiments with different settings on the
number of synthesis network nodes from 40 to 160. Ten problem instances are randomly
generated, and the average disintegration effect is calculated for each type of network at
a given size. The disintegration effect of two synthetic networks is plotted in Figure 7.
The smaller the objective value Φ, the better the solution quality of the algorithm.
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(b) SF Network

Figure 7. The average disintegration effect in two synthetic networks by different algorithms.

As shown in Figure 7, the quality of the solutions generated by the Net-Cracker is
superior to those generated by the benchmark method in both the ER and SF networks.
Specifically, for the ER network, regardless of the size of the problem instance, the aver-
age disintegration effect of the DRL-25 algorithm is slightly better than that of the other
algorithms. Compared to the heuristic algorithms, the accuracy of the Net-Cracker can be
increased by about 8∼10%. For the SF network, when the problem size is 40, 80 and 160,
the disintegration performance of DRL-40 is significantly better than GA and DE. At the
same time, when the problem size is 120, the solution quality of the DRL-25 algorithm
is also superior to GA and DE. The accuracy of the Net-Cracker can be improved by
about 50∼62%, indicating that the Net-Cracker is more aggressive in disintegrating the
SF network.

5.3.2. Solving Speed

The solution time is crucial for the network disintegration problem. How to quickly
generate a disintegration method based on entities and network data is of great significance
for seizing the initiative of war. Since the Net-Cracker model used in this paper is end-
to-end, only the test time in the application phase is considered when compared with the
benchmark algorithm, and the training time is not considered.

We draw the box plots of the solution times of different algorithms when faced with
instances of disintegration problems in ER and SF networks, as presented in Figures 8 and 9,
respectively. We can see that Net-Cracker can find the solution faster than other benchmark
methods, regardless of the problem size of the synthetic network instance. In addition,
to further analyze the correlation between the solving speed of the algorithm and the scale
of network disintegration problems, we draw a heat map of the average solution time,
as shown in Figure 10. As the problem size increases, we can see that the solution time of
GA and DE algorithms significantly increases. In particular, GA-500 and DE-500, when
dealing with the same problem instances, have significantly better solution quality than
GA-200 and DE-200, respectively, but the solution time is more than twice that of GA-200
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and DE-200. In contrast, the DRL algorithm can find the solution within 2 s when facing
different scale problems, and the solution time fluctuates less.
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Figure 8. The solution time of various algorithms for the ER network disintegration problem at the
same scale.
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Figure 9. The solution time of various algorithms for the SF network disintegration problem at the
same scale.
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Figure 10. The correlation between the solving speed of the algorithm and problem scale and
the number in each lattice represents the average solution time of the algorithm under a given
problem scale.

5.3.3. Generalization Ability

A strong generalization ability enables the model to adapt to new environments,
extending beyond its performance on training data alone. During the training phase, we
use data with fixed entity capabilities and attack ranges to train the Net-Cracker model.
However, in real scenarios, changes in the external environment, such as electromagnetic
interference from the enemy and terrain changes, will have an impact on the attack ability
and attack range of the entity. When the state of the entity changes, e.g., attack ability and
attack range, we need to immediately adjust the resource allocation strategy to maximize
the disintegration effect. From the above two subsections of solving speed and solving
quality, Net-Cracker can quickly generate high-quality solutions without retraining in
the face of problems of different sizes. Next, we will evaluate the performance of the
Net-Cracker under changing entity ability and attack ranges.

We also generate problem instances with {40, 80, 120, 160} nodes and then adjust the
attack ability and attack range of the entity randomly. It can be seen from Table 3 that the
solution quality and speed of Net-Cracker are better than those of the benchmark algorithm
on two synthetic networks.
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Table 3. Comparison of the generalization ability of the algorithm.

Node Number
GA-200 GA-500 DE-200 DE-500 DRL-25 DRL-40

Φ Time Φ Time Φ Time Φ Time Φ Time Φ Time

ER Network

40 7.84 8.05 5.30 22.32 10.54 8.41 5.94 24.06 4.09 0.31 4.33 0.30
80 31.41 13.21 28.97 31.91 34.07 13.97 28.83 32.60 26.75 0.61 27.40 0.59

120 56.24 26.30 53.81 62.17 58.77 27.38 53.97 63.06 51.61 0.87 51.73 0.94
160 77.20 88.89 75.10 203.67 78.61 91.10 73.33 208.94 70.22 1.18 70.26 1.21

SF Network

40 1.17 7.97 0.62 19.72 2.80 8.38 0.75 20.07 0.38 0.30 0.32 0.30
80 3.83 13.04 3.02 32.65 5.27 13.52 3.65 31.99 1.47 0.63 1.46 0.59

120 5.96 24.52 5.34 60.33 6.65 25.39 5.54 61.12 2.56 0.89 4.09 0.86
160 5.12 84.06 3.36 191.37 6.26 87.00 3.74 193.36 1.56 1.18 1.53 1.19

6. Discussion

The Net-Cracker is able to quickly find efficient solutions to address the challenge
of low search efficiency faced by traditional methods in eliminating large-scale terrorist
networks and blocking the spread of large-scale disease networks. Additionally, because of
the powerful generalization ability of the Net-Cracker, even if there are changes in terrorist
network members or variations in disease-infected networks, we do not need to spend a lot
of time searching for strategies to destroy terrorist networks or block the spread of disease
networks. Instead, we can find appropriate solutions quickly. However, there are still
several limitations in this study. For example, the types of discrete entity resources used to
address network problems are relatively limited. In addition, some complex networks in
the real world have heterogeneous edges and nodes and how to reasonably model them is
also an important challenge in the future.

7. Conclusions

The disintegration of networks with discrete entity allocations holds significant im-
portance in many areas, for example, eliminating terrorist networks by allocating weapon
entity resources, and eliminating disease transmission networks by allocating cabin hospital
resources. Figuring out the optimal dissolution solution in many alternative strategies for
network disintegration with discrete entity resource allocation is a challenging problem.
In this paper, the effect of disintegration is evaluated by the natural connectivity of the
network. To maximize this effect, we have designed a DRL-based method, Net-Cracker,
which allocates the limited entity resources carefully to achieve the optimization goal.
The customized design of Net-Cracker promises that it has good solution quality, solu-
tion speed and generalization ability. The results of extensive experiments illustrate that
compared with the metaheuristic algorithm, Net-Cracker improves the solution quality by
about 8∼62%, while enabling a 30-to-160-fold speed up.
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