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Abstract: In this paper, we introduce an ODE system to model the interaction between natural
resources and human exploitation in a rich consumeristic society. In this model, the rate of change
in population depends on wealth per capita, and the rate of consumption has a quadratic growth
with respect to population and wealth. We distinguish between renewable and non-renewable
resources, and we introduce a replenishment term for non-renewable resources. We first obtain
some information on the asymptotic behavior of wealth and population, then we compute all system
equilibria and study their stability when the resource exploitation parameter is low. Some numerical
simulations confirm the theoretical results and suggest directions for future research.
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1. Introduction

In this paper, we study a model of interactions between society and nature, whose
original inspiration goes back to the HANDY model introduced in [1] (see also [2,3]).
The original HANDY model is a set of four differential equations whose variables are
natural resources, wealth produced by human work, and population, split in the two
classes of Commoner and Elite. Using computer simulations, the paper [1] shows different
possibilities for the evolution of society, including collapse. It is a simple model that
seems to allow a rich panel of behavior, so it attracted attention, and several papers have
been devoted to its exploration, trying to generalize the original idea in several, different
directions. In [4], the HANDY model is studied using a Lyapunov-type analysis. The
authors give an interesting mathematical generalization of the original model, proving
that a set of qualitative hypotheses on the state variables implies collapse, even without
assuming that the functions involved are solutions of a system of differential equations.
In [5], the authors on one hand simplify the HANDY model, dropping the division of
population in two classes, and on the other hand use general nonlinear functions to
describe the equations involving the state variables, which are “population”, “resources”,
and “reserves”. Because of the generality of their model, they are able to treat different sets
of hypotheses on the interactions between the state variables. More recently, Tonnelier [6]
presented a clearer rewrite of the HANDY model and studied its dynamics using bifurcation
techniques and focusing on the influence of two parameters: the nature depletion rate and
the inequality factor. All these works, after the mathematical analysis, give several kinds of
numerical simulations, exploring the actual dynamics of the system for some fixed values
of the parameters. Computational techniques applied to the HANDY model are the main
subject of [7].

Our work is more directly linked to some ideas introduced in [8,9]. In [8], various
developments of the original model are introduced, including, among other aspects, the
division of natural resources into renewable and non-renewable categories. This idea
has been developed in the paper [9], where some general results are obtained and again
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numerical simulations show different possibilities for the evolution of society. In [9] the
dynamics of non-renewable resources is given by the following equation

dyn

dt
= −δnxcyn,

where yn is the variable for the non-renewable resources, xc is the Commoner population
and δn > 0 is a parameter. Clearly, this equation translates the idea of a given amount and
an irreversible depletion of yn. In our previous work [2], we have pursued this idea but
we have introduced a replenishment term for non-renewable resources. This is due to the
optimistic argument, which is often used in public debate on these subjects, that human
ingenuity and scientific progress can substitute depleted resources with new ones. The
term of replenishment that we have added is given by

k
xw

xw + 1
z.

This term depends on x w, where x represents the population, w represents wealth,
z is the level of non-renewable resources, and k is a constant. Hence, the dynamics of
non-renewable resources z in [2] is given by

z′ = k
xw

xw + 1
z − δzx,

The replenishment term is obtained from a function t
t+1 which, in population dynam-

ics, is a Holling II-type function (see [10], p. 25 and passim), used to model saturation effects.
The equation above states that the replenishment is possible but cannot be above a level k,
and we can call this an hypothesis of “moderate optimism”. Another characteristic of [2] is
that we dropped the distinction between Commoner and Elite, so we obtained a model
with four variables, which are population, renewable and non-renewable resources, wealth.
In [2], we obtained all the critical points of the system, and we studied their stability. In the
final section of [2], numerical simulations support the theoretical results and also suggest
the possibility, not yet treated in a rigorous way, of periodic orbits and chaotic dynamics.

The present paper originated from the attempt to adapt the HANDY model to contem-
porary, rich, consumeristic societies (like contemporary Western countries). Indeed, the
HANDY model seems to be a very nice and simple way to treat the interaction of nature
and society for a large class of historical societies, but, in our opinion, it has some serious
flaws when dealing with contemporary, rich, consumeristic societies. The main one is
probably the fact that in the original model, the birth rate is constant and the death rate
decays when wealth increases, leading to the conclusion that a wealthy society should have
a strong population growth. This is definitely not true in contemporary Western societies,
and the reason for this is due to the fact that birth rate is not constant, and indeed, in most
contemporary rich societies, it is falling. Hence, to study rich, contemporary societies, it
seems necessary to overcome the HANDY model used in the papers quoted above (includ-
ing our previous paper [2]) and to introduce new ideas. This is what we do in the present
paper. Firstly, we introduce an equation for population dynamics which is different from
that of HANDY model, and it is as follows

x′ = −cx + d
µxw

w2 + µ2x2 x.

Here, x is the population and w the wealth. In this equation we have a negative
term −cx, which is balanced by the term

d
µxw

w2 + µ2x2 x = d
w
µx(

w
µx

)2
+ 1

x,
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depending on the wealth per capita w/x via a constant µ. When w/µx is very small or
very large, the positive term is small and the population falls. In an intermediate region,
the population grows. This seems to better fit the recent history of rich countries.

Another difference compared to the HANDY model (and to [2]) is that in previous
works the depletion of natural resources depends on the population, while it seems reason-
able that in a consumeristic society it should depend more on wealth than on population.
Hence, a first idea should be to substitute population with wealth (x with w) in the depletion
terms, giving rise to quadratic terms w2. We will pursue this idea in a forthcoming paper. In
the present paper, however, we are interested in preserving some influence of population on
consumption of natural resources, so we introduce the function m = m(x, w) = max{x, w}
and we substitute x with m in the depletion terms. We notice also that the consumption
term in the equation for w′ in [2], which is given by s

[
x − 1

ρ (ρx − w)+
]
, has a linear growth,

while here, to model a consumeristic society, we use a quadratic term m(x, w)w, where the
consumption is led mostly by wealth.

Summing up all these ideas, and applying some standard rescaling, the model we are
going to study in the present paper is the following

x′ = −cx + d
µxw

w2 + µ2x2 x

y′ = γy(λ − y)− δym(x, w)

z′ = k
m(x, w)w

m(x, w)w + 1
z − δzm(x, w)

w′ = δym(x, w) + δzm(x, w)− σm(x, w)w.

(1)

where x is the population, y and z are the renewable and non-renewable resources, w is the
wealth. As we said above, m(x, w) = max{x, w} = 1

2 (x + w + |x − w|).
We underline that, because of the changes that have been explained above, the present

model can no longer be considered a HANDY-type model, as it was the model of our
previous work [2].

To start the work with (1) we need some assumptions on the parameters. Firstly, we
assume d > 2c, which is necessary to have a positive growth of x for some range of w

µx .
Indeed, if d ≤ 2c, then it is

−c + d
µxw

w2 + µ2x2 ≤ 0,

for any value of x, w, hence it is always x′ ≤ 0, making the model less interesting. We also
assume µ > 1, which means that the ratio w/µx becomes large only when w is larger than x,
and this implies that the negative effect on the population growth of the increasing wealth
becomes relevant only for large values of wealth per capita. We also assume µ ̸= d+

√
d2−4c2

2c ,
which is just a technical assumption that we will drop in a forthcoming paper. We remark
that in (1), the depletion rates for renewable and non-renewable resources are equal. This is
a simplifying assumption that we hope to drop in future research. In our previous paper [2],
numerical simulations seemed to suggest that the dynamics do not change too much taking
different values for the depletion rates. In Section 7, some simulations show a different
dependence of the dynamics on the two depletion rates (which are labeled δ1 and δ2), and
this seems an interesting topic for future research.

The present paper is organized as follows. After the introduction, in Section 2 we
obtain general results for the existence and positivity of the solutions, as well as results
on their asymptotic behavior. In particular, we prove that it cannot happen x → +∞ or
w → +∞ or z → +∞ as t → +∞.

In Sections 3–6, we compute all the equilibrium points of system (1), and we study
their stability properties. We distinguish the cases x < w, x > w, x = w = 0, while the
case x = w > 0 is excluded by our hypotheses. There is a rich variety of such equilibria.
We are able to give a complete description of the stability properties for some of them, but
it seems very difficult to do the same for all. So we decided to study the stability when
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δ → 0+, which is reasonable, in our opinion, because δ is a parameter depending on human
choices. Using standard linearization techniques and asymptotic developments, we are
able to describe the stability properties of all the equilibria when δ → 0+ (and the other
parameters are fixed).

In Section 7, we present some numerical simulations, both to corroborate the theoretical
results of the preceding sections and to have some hint on the cases for which we do not
have such results.

In Section 8 we highlight the main results of the paper, and give some hints on possible
future research work.

2. General Results on the Solutions

We set X = (x, y, z, w) ∈ R4 and F(X) = ( f1(X), f2(X), f3(X), f4(X)) where

f1(X) = −cx + d
µxw

w2 + µ2x2 x

f2(X) = γy(λ − y)− δym(x, w)

f3(X) = k
m(x, w)w

m(x, w)w + 1
z − δzm(x, w)

f4(X) = δym(x, w) + δzm(x, w)− σm(x, w)w.

We are interested in non-negative solutions, so we work the cone

C =
{
(x, y, z, w) ∈ R4 | x > 0, y > 0, z > 0, w > 0

}
,

or in the set

C0 =
{
(x, y, z, w) ∈ R4 | x > 0, y > 0, z > 0, w ≥ 0

}
,

or also in the closure of C

C =
{
(x, y, z, w) ∈ R4 | x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0

}
.

Let us first prove existence and uniqueness.

Proposition 1. For any (t0, X0) ∈ R× C0, there exists a unique maximal solution X(t) to the
Cauchy problem {

X′ = F(X)
X(t0) = X0,

(2)

defined in J = (a, b), with a < t0 < b.

Proof. The function m(x, w) is locally Lipschitz in all R4. As a consequence, for any X0 ∈ C0
the vector field F(X) is Lipschitz in a neighborhood of X0, hence the result follows from
standard ODE theory.

In the following, we will set t0 = 0 and X0 ∈ C0.
The first thing we prove is, if X0 is as above, the solution stays in C for any t > 0.

Proposition 2. Let
X(t) = (x(t), y(t), z(t), w(t))

be a solution to (2) with t0 = 0 and X(0) = X0 = (x0, y0, z0, w0) ∈ C0. Then X(t) ∈ C for every
t ∈ (0, b).

Proof. It follows that x(t), y(t), z(t) > 0 for any t ∈ J = (a, b), because the zero constant is a
solution in the three equations for x′(t), y′(t), z′(t), so it cannot be crossed, and x0, y0, z0 > 0.
As for w, we first observe that there exists ε > 0 such that w(t) > 0, ∀t ∈ (0, ε): this is
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obvious if w0 > 0, due to continuity, whereas if w0 = 0 we have w′(0) = δx0y0 + δx0z0 > 0,
and the result follows. Now let us define

t1 = sup{t > 0 | w(s) > 0 for every s ∈ (0, t)}.

If t1 = b, we easily conclude that w(t) > 0 in (0, b). If t1 < b, it is easy to see that
w(t1) = 0 and w(t) > 0 for any t ∈ (0, t1), so w′(t1) ≤ 0. But from the equation we obtain

w′(t1) = δx(t1)y(t1) + δx(t1)z(t1) > 0,

and the contradiction proves that t1 = b and thus w(t) > 0, ∀t ∈ (0, b).

Proposition 3. Under the same assumptions as in Proposition 2 it holds b = +∞.

Proof. We argue by contradiction, so we assume b < +∞. From the first equation, we
easily obtain x′ ≤ c1x for some c1 > 0, hence

x(t) ≤ x0ec1t ≤ x0ec1b := c2.

As for y(t), using the same argument of [2], we obtain that y is bounded in [0, b) and,
more precisely, we have 0 ≤ y(t) ≤ max{λ, y0}, ∀t ∈ [0, b). Notice that this also holds
when b = +∞.

From the equation for z(t) we obtain z′ ≤ kz, hence

z(t) ≤ z0ekt ≤ z0ekb := c3,

and thus,

w′ ≤ m(x, w)(δy + δz) ≤ c4(w + c2)

= c4w + c5.

From this it follows that w(t) ≤ c6 if b < +∞. Therefore, if b < +∞ we obtain
that X(t) is bounded in [0, b), which is impossible because of well-known ODE theorems.
Hence, b = +∞.

We now prove some asymptotic results on x and w.

Proposition 4. It cannot be limt→+∞ x(t) = +∞.

Proof. We argue by contradiction, so we assume limt→+∞ x(t) = +∞. For the sake of sim-
plicity, let us set m(t) = m(x(t), w(t)). As x(t) → +∞, of course we have also m(t) → +∞.
To obtain the result, we have to study the asymptotic behavior of y, z, w, in the hypothesis
x(t) → +∞.

Claim 1: limt→+∞ y(t) = 0. We have

y′ ≤ y(γλ − γy − m).

Given that y(t) is bounded and m(t) → +∞, y(t) is decreasing as t → +∞. Hence,
there exists a limit l+ = limt→+∞ y(t) ≥ 0. If l+ > 0, then y′(t) → −∞, which is a
contradiction with known theorems. Therefore l+ = 0.

Claim 2: limt→+∞ z(t) = 0. We have

z′ ≤ kz − δzm = z(k − δm) < 0,

as t → +∞. Thus, there exists a limit

l+ = lim
t→+∞

z(t) ≥ 0.



Mathematics 2024, 12, 1253 6 of 27

If l+ > 0, then limt→+∞ z′(t) = −∞, which is, as above, a contradiction.
Claim 3: w(t) is bounded on [0,+∞).
Let T > 0 be such that for all t ≥ T, δy(t)+δz(t)

σ < 1. We distinguish two cases:

1. Suppose w(t) ≥ δy(t)+δz(t)
σ for all t ≥ T. In this case, we have

w′ = m(x, w)(δy + δz − σw) ≤ 0,

which means that w(t) is decreasing on (T,+∞) and thus it is bounded in [0,+∞).

2. Suppose now that there exists t1 ≥ T such that w(t1) < δy(t1)+δz(t1)
σ . Let t > t1. If

w(t) ≤ δy(t)+δz(t)
σ , then w(t) < 1. Otherwise, if w(t) > δy(t)+δz(t)

σ , define

t2 = inf
{

τ ∈ (t1, t) | w(s) >
δy(s) + δz(s)

σ
, ∀s ∈ (τ, t)

}
.

We have that t2 > t1. Because of continuity we also have w(s) > δy(s)+δz(s)
σ ∀s ∈ (t2, t)

and w(t2) =
δy(t2)+δz(t2)

σ < 1. Hence we have w′(s) < 0 in (t2, t) implying that w(s)
is decreasing in (t2, t) and thus w(t) ≤ w(t2) < 1. In conclusion, w(t) < 1 for every
t ≥ t1, and therefore w is bounded on [0,+∞).

End of the proof: from the previous claims, we obtain, as w is bounded and x(t) → +∞,
that w

µx → 0 as t → +∞, and thus µxw
w2+µ2x2 → 0. This implies x′ < 0 on a half-line [t3,+∞),

and therefore we obtain a contradiction with the hypothesis that limt→+∞ x(t) = +∞.

Proposition 5. It cannot be limt→+∞ w(t) = +∞.

Proof. Since m = m(x, w) ≥ w we can repeat the previous arguments and obtain
limt→+∞ y(t) = limt→+∞ z(t) = 0. From this we deduce, again as above, that w(t) is
bounded, and this is a contradiction.

Proposition 6. It cannot be limt→+∞ z(t) = +∞.

Proof. Also in this case we argue by contradiction. We will show that, if limt→+∞ z(t) =
+∞, then it holds also limt→+∞ w(t) = +∞, and this impossible by Proposition 5. So, let us
assume limt→+∞ z(t) = +∞. As a consequence, for any γ > 0 we can fix Tγ > 0 such that
for all t ≥ Tγ, z(t) ≥ γ

(
1 + σ

δ

)
.

Claim: it cannot be w(t) ≤ δ
σ (y + z)(t) for all t ≥ Tγ. Indeed, in this case it would

be w′(t) ≥ 0 for all t ≥ Tγ, implying that w is increasing on [Tγ,+∞). Thus, there would
be a limit l+ = limt→+∞ w(t) > 0. By Proposition 5 it cannot be l+ = +∞, so it must be
l+ < +∞, hence δy + δz − σw would go to +∞, leading to w′ ≥ aw for some a > 0 in a half-
line (α,+∞). This of course implies limt→+∞ w(t) = +∞, contradicting the assumption
l+ < +∞. The contradiction proves the claim.

Thanks to the previous claim, we can state that there exists tγ ≥ Tγ such that

w(tγ) >
δ

σ
(y(tγ) + z(tγ)).

Let us now prove that w(t) > γ for all t ≥ tγ. Fix t > tγ. If w(t) ≥ δ
σ (y(t) + z(t)),

then w(t) ≥ δ
σ z(t) > γ (since t > tγ ≥ Tγ). Otherwise, if w(t) < δ

σ (y(t) + z(t)), define

τ1 = inf
{

τ ∈ (tγ, t) | w(s) <
δ

σ
(y(s) + z(s)), ∀s ∈ (τ, t)

}
.

By continuity, w(s) < δ
σ (y(s) + z(s)) for all s in (τ1, t). Hence, w is increasing in

(τ1, t), implying w(t) ≥ w(τ1). Furthermore, by standard continuity arguments, w(τ1) =
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δ
σ (y(τ1) + z(τ1)) ≥ γ. Thus, in any case we obtain w(t) ≥ γ for all t ≥ tγ. Since this
holds for any γ > 0, we conclude that limt→+∞ w(t) = +∞. However, Proposition 5 states
that this is not possible, and the contradiction proves that z(t) cannot tend to +∞ as t
tends to +∞.

3. Steady States If x ≤ w

We are now going to compute all the steady states of the system (1) in C, and to study
their stability. As we said in the introduction, in most cases, we will only be able to obtain
an answer about the stability for δ → 0+. In this section we deal with the case x ≤ w. In
this subset the equilibrium points are the solutions of the following system

x
[
−c + d

µxw
w2 + µ2x2

]
= 0, (3)

y(γλ − γy − δw) = 0, (4)

zw
[

k
w

w2 + 1
− δ

]
= 0, (5)

w[δy + δz − σw] = 0. (6)

We can consider the following cases:

(i) w = 0. In this case we obtain x = 0, and from (4) we have two possibilities: either
y = 0 or y = λ. There is no constraint on z, so we have two families of critical points:

{(0, 0, Z, 0), Z ≥ 0}. (7)

{(0, λ, Z, 0), Z ≥ 0}. (8)

We remark that the points (7) correspond to what is called “desert state” in [6], while
the points (8) correspond to what is called “nature state” in the same paper. We also
notice that these points are not in C0, and the vector field F is not defined on them.
However, it is interesting to study what we can improperly call their stability, that is
to know whether the trajectories starting close to them are attracted or repelled by
them, because this says to us if a society with declining population and wealth can
recover or not.

(ii) w ̸= 0. In this case we have

(3) ⇒ x = 0, or c = d
µxw

w2 + µ2x2 ,

(4) ⇒ y = 0, or γλ − γy − δw = 0,

(5) ⇒ z = 0, or δw2 − kw + δ = 0,

and we can count 8 different cases.
We note that, if x ̸= 0 from (3) we have

d
µxw

w2 + µ2x2 = c ⇒ d
w
µx(

w
µx

)2
+ 1

= c ⇒ d
t

t2 + 1
= c ⇒ ct2 − dt + c = 0,

with t =
w
µx

and so

t1 =
d −

√
d2 − 4c2

2c
∈ (0, 1),

t2 =
d +

√
d2 − 4c2

2c
> 1.

(9)

Notice that the hypothesis d > 2c rules out the case t1 = t2 = 1.
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We then obtain two possible values for x given by

x1 =
w

µt1
, x2 =

w
µt2

, (10)

with t1, t2 as in (9).
If y ̸= 0 then, from (4), γλ − γy − δw = 0, i.e.

y = λ − δ

γ
w. (11)

Finally, if z ̸= 0 then

w1 =
k −

√
k2 − 4δ2

2δ
, w2 =

k +
√

k2 − 4δ2

2δ
, with k ≥ 2δ. (12)

We can now write down a complete list of equilibrium points, in the half-space x ≤ w,
when w > 0.

(ii.1) First, we observe that if x = y = z = 0, then from (6) we obtain w = 0, hence
here we exclude this case, because we have already dealt with it (see above the
case w = 0).

(ii.2) If x = y = 0 and z ̸= 0 from (5) we have w = w1,2 and from (6) z1,2 =
σ

δ
w1,2.

Therefore, we have the two equilibrium points

Pi =
(

0, 0,
σ

δ
wi, wi

)
, i = 1, 2, k ≥ 2δ, (13)

where w1, w2 are given by (12).

(ii.3) If x = z = 0, y = λ − δ

γ
w, then from (6) we have w =

δ

σ
y so that

w =
γλδ

γσ + δ2 , y =
γλσ

γσ + δ2 , (14)

and we obtain the equilibrium point

P =

(
0,

γλσ

γσ + δ2 , 0,
γλδ

γσ + δ2

)
. (15)

(ii.4) If x = 0, y = λ − δ

γ
w, z ̸= 0, we obtain w = w1,2, hence from (6) we deduce

z = −λ +

(
δ

γ
+

σ

δ

)
w.

We then obtain two equilibrium points

Pi =

(
0, λ − δ

γ
wi, −λ +

(
δ

γ
+

σ

δ

)
wi, wi

)
, i = 1, 2, k ≥ 2δ. (16)

(ii.5) If x > 0 and y = z = 0, from (6) we obtain w = 0 and we exclude this case
because we are assuming x ≤ w.

(ii.6) If x > 0, y = 0 and z > 0, from (5) we obtain w = w1,2, with k ≥ 2δ. For x

we obtain (10) with d ≥ 2c, and from (6) z =
σw
δ

. We have then 4 equilibrium
points

Pi,j =

( wj

µti
, 0,

σwj

δ
, wj

)
, i, j = 1, 2, k ≥ 2δ, d ≥ 2c. (17)

with wj as in (12) and ti as in (9).
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(ii.7) If x > 0, y > 0, z = 0, from (6) we deduce for y and w the same values as in (14).
Also, x is as in (10), and we obtain the two equilibrium points

Pi =

(
δγλ

µti(γσ + δ2)
,

γλσ

γσ + δ2 , 0,
δγλ

γσ + δ2

)
, i = 1, 2, d ≥ 2c. (18)

(ii.8) If x > 0, y > 0, z > 0, then λ − δ
γ w and arguing as in [ii.7] we obtain 4

equilibrium points

Pi,j =

( wj

µti
, λ − δ

γ
wj,−λ +

(
δ

γ
+

σ

δ

)
wj, wj

)
, i, j = 1, 2, k ≥ 2δ, d ≥ 2c. (19)

with wj as in (12) and ti as in (9).

In the two next sections we are going to discuss the stability of these equilibrium
points. In the case w = 0, we will obtain a result independent of δ. For all the other
equilibria above, we will study the stability as δ → 0+.

4. Instability in the Case w = 0

In this section we study the stability of the two families of points (7) and (8). We will
obtain that they all are unstable. By this we mean that for each of these points there is a
neighborhood such that the trajectories starting in this neighborhood exit from it.

Proposition 7. Let Z ≥ 0 and P = (0, 0, Z, 0). Then there is ϵ > 0 such that the trajectories
starting in Bϵ(P) ∩ C0 exit from Bϵ(P).

Proof. Let ϵ = min
{

γλ
3δ , λ

3

}
and let Bϵ(P) be the ball with center P and radius ϵ. Let Q =

(xq, yq, zq, wq) be in Bϵ(P)∩C0, where C0 is defined above. Let u(t, Q) = (x(t), y(t), z(t), w(t))
be the trajectory starting from Q, so that u(0, Q) = Q. We want to prove that there exists
t > 0 such that u(t, Q) /∈ Bϵ(P). By contradiction, assume u(t, Q) ∈ Bϵ(P) for every
t ≥ 0. Then 0 < y(t) < λ

3 and m(x(t), w(t)) < γλ
3δ for every t ≥ 0, thus γy < γλ

3 and
δm(x, w) < γλ

3 , hence

γλ − γy − δm(x, w) > γλ − γλ

3
− γλ

3
=

γλ

3

in [0,+∞). From this, we obtain

y′ = y(λγ − γy − δm(x, w)) > y
γλ

3
,

and it easily follows that

y(t) ≥ y0e
γλ
3 t → +∞ for t → +∞.

This contradicts the assumption u(t, Q) ∈ Bϵ(P) and the contradiction proves our
thesis.

Proposition 8. Let Z ≥ 0 and P = (0, λ, Z, 0). Then there is ϵ > 0 such that the trajectories
starting in Bϵ(P) ∩ C0 exit from (Bϵ(P).

Proof. Let ϵ > 0 be such that ϵ < λδ
2(δ+σ)

. This implies

δ(λ − ϵ)− σϵ >
δλ

2
.

Let Bϵ(P) be the ball centered at P with radius ϵ and let Q = (xq, yq, zq, wq) ∈ Bϵ(P) ∩
C0. As in the previous proposition, we argue by contradiction. Let u(t, Q) be the trajectory
starting from Q. If it were u(t, Q) ∈ Bϵ(P) for any t ≥ 0 we would have y(t) > λ − ϵ and
w(t) < ϵ for every t ≥ 0, hence
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δy + δz − σw ≥ δ(λ − ϵ)− σϵ >
δλ

2
,

thus
w′ = m(x, w)(δy + δz − σw) ≥ m(x, w)

δλ

2
≥ w

δλ

2
.

Therefore, we obtain
w(t) ≥ w0e

δλ
2 t,

for every t ≥ 0 and thus w → +∞, contradicting the hypothesis u(t, Q) ∈ Bϵ(P) for every
t ≥ 0. The contradiction proves that there exists t > 0 such that u(t, Q) /∈ Bϵ(P) and since
this holds for every Q ∈ Bϵ(P) ∩ C0, our thesis is proven.

5. Stability of Equilibria in the Case w ̸= 0

In this section we study the stability of equilibrium points with x ≤ w and w ̸= 0.
These are the equilibria listed above from (ii.2)–(ii.8), recalling that we have ruled out the
cases (ii.1) and (ii.5). We will limit our study to what happens as δ → 0+, assuming that
the other parameters remain fixed. We will analyze the Jacobian matrix at equilibria, and
this is not possible if an equilibrium lies on the hyperplane x = w, because there the vector
field F is not differentiable. So let us prove, as first thing, the following proposition.

Proposition 9. If P = (x0, y0, z0, w0) ∈ C0 is an equilibrium point and w0 > 0, then x0 ̸= w0.

Proof. We argue by contradiction. If P is an equilibrium point and x0 = w0 > 0, then by (7)
we obtain

−c +
dµ

1 + µ2 = 0,

that is, µ = d+
√

d2−4c2

2c or µ = d−
√

d2−4c2

2c ≤ 1. Our hypotheses on µ rule out both these
possibilities.

To study the stability of the problem, we introduce the Jacobian matrix of the differ-
ential model (1). Recall that we are studying the case x ≤ w, w > 0, and by the previous
proposition we can assume x < w. We obtain

J(X) =



−c + 2dµ
xw3

(w2 + µ2x2)2 0 0
dµx2(µ2x2 − w2)

(w2 + µ2x2)2

0 γλ − 2γy − δw 0 −δy

0 0
kw2

w2 + 1
− δw

2kwz
(w2 + 1)2 − δz

0 δw δw δy + δz − 2σw


.

As we can see, ρ1 = −c + 2dµ xw3

(w2+µ2x2)2 is always an eigenvalue of the Jacobian
calculated at the critical points. In cases from (ii.2)–(ii.4), as x = 0, we obtain ρ1 = −c < 0.
In cases (ii.6)–(ii.8) we note that

µxw3

(w2 + µ2x2)2 =

(
w
µx

)3 1(
1 +

(
w
µx

)2
)2 =

t3

(1 + t2)2 ,

where t = w/µx, so

ρ1(t) = −c + 2dµ
xw3

(w2 + µ2x2)2 = −c + 2d
t3

(1 + t2)2 =
c
d
(2tc − d),
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since we are in the case in which d
t

1 + t2 = c. When t = t2 =
d +

√
d2 − 4c2

2c
we have

ρ1(t2) =
c
d

√
d2 − 4c2 > 0, (20)

and when t = t1 =
d −

√
d2 − 4c2

2c
we have

ρ1(t1) = − c
d

√
d2 − 4c2 < 0. (21)

Thus, in cases from (ii.6)–(ii.8), the points corresponding to t2 are always unstable, for
any value of the parameters, while for equilibrium points corresponding to t = t1 a more
detailed analysis will be carried on.

Let us now study the various cases previously determined.

(ii.2) As we just said, an eigenvalue of the Jacobian matrix J(Pi) is given by ρ1 = −c < 0.
So, we have to study the eigenvalues of the submatrix

γλ − δw 0 0

0
kw2

w2 + 1
− δw

2kwz
(w2 + 1)2 − δz

δw δw δz − 2σw

. (22)

We note that we have the eigenvalue ρ2 = γλ − δw and, for w1, w2 as in (12), with
k ≥ 2δ, δ → 0+, we obtain the following expansions

w1 =
δ

k
+O(δ3), (23)

w2 =
k
δ
− δ

k
+O(δ3). (24)

We need to distinguish the two cases P1 =
(

0, 0,
σ

δ
w1, w1

)
and P2 =

(
0, 0,

σ

δ
w2, w2

)
.

Because of the continuous dependence of the eigenvalues on the coefficients of the
matrix, we can conclude that the point P1 is unstable as δ → 0+, because J(P1)
has the eigenvalue ρ2 = γλ − δw1 > 0, as δw1 → 0+. We have then proved the
following proposition.

Proposition 10. The point P1 =
(

0, 0,
σ

δ
w1, w1

)
, with w1 as in (12), is an unstable

equilibrium point as δ → 0+.

As to P2 we notice that δw2 → k for δ → 0+, and therefore we must take in account
the sign of γλ − k. If γλ − k > 0 we have that the matrix J(P2) has an eigenvalue
ρ2 = ρ2(δ), which, by continuous dependence of the eigenvalues of a matrix on the
entries, tends to the value γλ − k > 0 as δ → 0+. We then obtain, in this case, the
instability for the point P2 as δ → 0+. Let us now assume γλ − k < 0. We consider
the submatrix Ĵ(P2), defined as follows

Ĵ(P2) =


kw2

2
w2

2 + 1
− δw2

2kw2z
(w2

2 + 1)2
− δz

δw2 δz − 2σw2

 =


O(δ2) − kσ

δ
+O(δ)

k +O(δ2) − kσ

δ
+O(δ)

. (25)
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We easily obtain that, as δ → 0+, the trace of the matrix Ĵ(P2) becomes negative and its
determinant positive. This implies that the eigenvalues of Ĵ(P2) have strictly negative real
parts. Now, the eigenvalues of the matrix J(P2) are given by ρ1 = −c < 0, ρ2 = γλ− k
and by the two eigenvalues of Ĵ(P2). Hence, we have proved the following proposition.

Proposition 11. As δ → 0+, the point P2 =
(

0, 0,
σ

δ
w2, w2

)
, with w2 as in (12), is an

unstable equilibrium point if γλ − k > 0, and it is an asymptotically stable equilibrium
point if γλ − k < 0.

(ii.3) We refer to P as (15). We consider J(P) for δ → 0+ and we obtain

J(P) =



−c 0 0 0

0 −γλ +O(δ2) 0 −λδ +O(δ3)

0 0
kλ − σ

σ2 λδ2 +O(δ4) 0

0
λ

σ
δ2 +O(δ4)

λ

σ
δ2 +O(δ4) −λδ +O(δ3)


.

With some lengthy but standard computations we obtain the following eigenvalues

ρ1 = −c < 0, ρ2 = −λδ +O(δ2) < 0,

ρ3 = −γλ +O(δ) < 0, ρ4 =
λ(kλ − σ)

σ2 δ2 +O(δ4).

As a consequence, we have the following result.

Proposition 12. The point P =

(
0,

γλσ

γσ + δ2 , 0,
γλδ

γσ + δ2

)
is an unstable equilibrium

point if kλ − σ > 0 and is an asymptotically stable equilibrium point if kλ − σ < 0 as
δ → 0+.

(ii.4) The Jacobian matrix calculated at the points Pi, i = 1, 2 is as follows

J(Pi) =



−c 0 0 0

0 −γλ + δw 0 −δy

0 0 0 δz
(

2δ

kw
− 1

)
0 δw δw −σw


, i = 1, 2.

We use the Routh–Hurwitz criterion (see [11]) . As ρ1 = −c is an eigenvalue, we can
write the characteristic polynomial of J(Pi), i = 1, 2, in the following form

p4(ρ) = (ρ + c)p3(ρ). (26)

with p3(ρ) = ρ3 + a1ρ2 + a2ρ + a3. According to the Routh–Hurwitz criterion. the
necessary and sufficient conditions for all roots of p3(ρ) to have a strictly negative
real part are the following

a1 > 0

a1a2 > a3 > 0.
(27)
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Let us study the stability of the point P1 obtained by setting w = w1 as in (12). After
some lengthy but standard computations, we obtain

a1 = γλ +O(δ) > 0

a2 =
γλσ

k
δ +O(δ3) > 0

a3 =
γλ(kλ − σ)

k2 δ3 +O(δ5)

a1 a2 − a3 =
γ2λ2σ

k
δ +O(δ2) > 0.

Hence, we obtain instability when kλ − σ < 0, stability when kλ − σ > 0. However,
the asymptotic development of the z component of P1 gives

z = −λ +

(
δ

γ
+

σ

δ

)
w1 = −1

k
(kλ − σ) +O(δ3),

hence, in the case of stability, the equilibrium P1 is not in C, as δ → 0. We conclude
that the following proposition holds true.

Proposition 13. The point P1 =

(
0, λ − δ

γ
w1, −λ +

(
δ

γ
+

σ

δ

)
w1, w1

)
, k ≥ 2δ, with

w1 as in (12), is an unstable equilibrium as δ → 0+ if kλ − σ < 0. If kλ − σ > 0 the
point P1 is an asymptotically stable equilibrium of the ODE system (1), but it is not in C, as
δ → 0+.

We now study the point P2 with w = w2 as in (12). After some computations, we
obtain the following results for the coefficients of p3:

a1 =
kσ

δ
+O(1) > 0

a2 =
kγλσ

δ
+O(δ) > 0

a3 =
k2σ(γλ − k)

δ
+O(δ)

a1 a2 − a3 =
γλσ2k2

δ2 +O(δ−1) > 0.

Hence, by applying the Routh–Hurwitz criterion again, we obtain that, as δ → 0+,
the critical point P2 is stable when γλ − k > 0, unstable when γλ − k < 0. But in P2
we have

y = λ − δ

γ
w2 = λ − k

γ
+O(δ2).

Hence, in the instability case γλ − k < 0, we have y < 0 as δ → 0+, and P2 is not in
C. We have then proved the following proposition.

Proposition 14. The point P2 =

(
0, λ − δ

γ
w2, −λ +

(
δ

γ
+

σ

δ

)
w2, w2

)
, k ≥ 2δ, with

w2 as in (12), is an asymptotically stable equilibrium point if γλ − k > 0 as δ → 0+. When
γλ − k < 0 P2 is an unstable equilibrium point of the ODE system (1), but it is not in C, as
δ → 0+.
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(ii.6) In this case we have 4 critical points Pi,j = P(ti, wj), i, j = 1, 2 as in (17) with ti, wj
given in (9) and (12), respectively. For sake of simplicity, we report the expression of
the Jacobian matrix calculated at these points.

J(Pi,j) =



−c + 2dµ
xw3

(w2 + µ2x2)2 0 0
dµx2(µ2x2 − w2)

(w2 + µ2x2)2

0 γλ − δw 0 0

0 0 0
2kwz

(w2 + 1)2 − δz

0 δw δw −σw


.

Based on what is established in (20), the following proposition holds.

Proposition 15. The points P2,j =

( wj

µt2
, 0,

σwj

δ
, wj

)
, j = 1, 2, k ≥ 2δ, d ≥ 2c, with t2

as in (9) and wj as in (12), are unstable equilibrium points.

Let us now begin the study in the case t = t1 =
d −

√
d2 − 4c2

2c
where ρ1(t1) < 0 as

seen in (21).
Let us then analyze the eigenvalue ρ2 = γλ − δw. We have

ρ2 = γλ − k +O(δ2) if w = w2

ρ2 = γλ +O(δ2) if w = w1.

Therefore, the Jacobian calculated at point P1,1 has a positive eigenvalue for δ → 0+

and thus the equilibrium P1,1 is unstable. As for point P1,2, we must distinguish
between two cases. If γλ− k > 0 then this equilibrium will also be unstable, so let us
see what happens if γλ − k < 0. In this case the eigenvalues of J(P1,2) are as follows.
A first one is given by ρ1(t1) as in (21), a second one is ρ2 = γλ − k +O(δ2) < 0.
The last two are the eigenvalues of the following matrix Ĵ(P1,2):

Ĵ(P1,2) =

 0
2kw2z

(w2
2 + 1)2

− δz

δw2 −σw2

 =


0 − kσ

δ
+O(δ)

k +O(δ2) − kσ

δ
+O(δ)

.

As δ → 0+, this matrix has strictly negative trace and strictly positive determinant,
so its eigenvalues have strictly negative real parts. Thus we have proved that, in
this case, the point P1,2 is a stable equilibrium. Let us summarize everything in the
following proposition.

Proposition 16. The point P1,1 =

(
w1

µt1
, 0,

σw1

δ
, w1

)
, k ≥ 2δ, d ≥ 2c, with t1 as in (9)

and w1 as in (12), is an unstable equilibrium. The point P1,2 =

(
w2

µt1
, 0,

σw2

δ
, w2

)
, k ≥

2δ, d > 2c, with t1 as in (9) and w2 as in (12), is an unstable equilibrium if γλ − k > 0
and is an asymptotically stable equilibrium if γλ − k < 0.

(ii.7) Based on what is established in (20), the following proposition holds.
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Proposition 17. The point P2 =

(
δγλ

µt2(γσ + δ2)
,

γλσ

γσ + δ2 , 0,
γλδ

γσ + δ2

)
is an unstable

equilibrium point.

Let us then analyze the behavior of the Jacobian matrix calculated at point P1 =(
δγλ

µt1(γσ + δ2)
,

γλσ

γσ + δ2 , 0,
δγλ

γσ + δ2

)
. In this case, the Jacobian matrix is almost the

same one computed at point P in case (ii.3). Indeed, the two points differ only for
their first entry, and the two Jacobian matrices only for the entries j1,1 (first row,
first column). Hence, the two matrices have different ρ1 eigenvalues (ρ1 = −c in
case (ii.3), ρ1 = − c

d

√
d2 − 4c2 in the present case), but both are negative, while the

other three eigenvalues are the same as in the case (ii.3). Using the results we have
obtained in that case, we obtain the following proposition

Proposition 18. The point P1 =

(
δγλ

µt1(γσ + δ2)
,

γλσ

γσ + δ2 , 0,
γλδ

γσ + δ2

)
is an unstable

equilibrium if kλ − σ > 0 and is an asymptotically stable equilibrium if kλ − σ < 0 as
δ → 0+.

(ii.8) In this case we have 4 critical points Pi,j = P(ti, wj), i, j = 1, 2 as in (19) with ti, wj
given in (9) and (12), respectively. Based on what is established in (20), the following
proposition holds.

Proposition 19. The points P2,j =

( wj

µt2
, λ − δ

γ
wj,−λ +

(
δ

γ
+

σ

δ

)
wj, wj

)
, j = 1, 2,

k ≥ 2δ, d > 2c with t2 as in (9) and wj as in (12), are unstable equilibria.

Regarding the points P1,j (j = 1, 2) we argue as we have just done for the previous
case (ii.7). Indeed, in this case, the Jacobian matrix is almost the same one computed
at point P2 in case (ii.4): the two points differ only for their first entry, and the two
Jacobian matrices only for the entries j1,1, hence the two matrices have different ρ1
eigenvalues, which are both negative, while the other three eigenvalues are the same
in the two cases. Using the arguments and the results of case (ii.4), we obtain the
following proposition

Proposition 20. The point P1,1 =
(

w1
µt1

, λ − δ
γ w1,−λ +

(
δ
γ + σ

δ

)
w1, w1

)
, with w1 as

in (12), is an unstable equilibrium as δ → 0+ if kλ − σ < 0. If kλ − σ > 0 the point P1,1
is an asymptotically stable equilibrium of the ODE system (1), but it is not in C, as δ → 0+.
The point P1,2 =

(
w2
µt1

, λ − δ
γ w2, −λ +

(
δ
γ + σ

δ

)
w2, w2

)
, k ≥ 2δ, with w2 as in (12) is

an asymptotically stable equilibrium if γλ − k > 0 as δ → 0+. When γλ − k < 0, P1,2 is
an unstable equilibrium of ODE system (1), but it is not in C, as δ → 0+.

6. Fixed Points and Stability If x > w

We are now going to look for the equilibria, and their stability, in the case x > w. To
compute the equilibria, we need to consider the system given by Equation (3) and by the
following equations

y(γλ − γy − δx) = 0, (28)

xz
[

k
w

xw + 1
− δ

]
= 0, (29)

x[δy + δz − σw] = 0. (30)

We note that x cannot be zero since x > w ≥ 0. Therefore, we will always have
the relation

w = tiµx, i = 1, 2, (31)
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with ti given by (9). Moreover, it cannot be y = z = 0 because this would lead, from (30), to
w = 0 and, as just stated, x = 0.

We distinguish the following cases:

(iii.1) y = 0 and z ̸= 0. From (30) we obtain z =
σ

δ
w. From (29), we obtain

w1(t) =
kµt −

√
k2µ2t2 − 4δ2tµ

2δ
,

w2(t) =
kµt +

√
k2µ2t2 − 4δ2tµ

2δ
, k2µt − 4δ2 ≥ 0.

(32)

Let us set wi,j = wj(ti), with i, j = 1, 2, and ti as in (9). We have the expression for
x from (31). Hence, we obtain the following equilibria

Pi,j =

(wi,j

µti
, 0,

σ

δ
wi,j, wi,j

)
i, j = 1, 2. (33)

(iii.2) z = 0 and y ̸= 0. From (30) and (31), we have y = σ
δ w = σtiµx/δ and, substituting

in (28), this gives us the expression for x

x =
δγλ

δ2 + γµσti
, i = 1, 2. (34)

Then we have two equilibrium points

Pi =

(
δγλ

δ2 + γµσti
,

γλµσti
δ2 + γµσti

, 0,
δγλµti

δ2 + γµσti

)
, i = 1, 2. (35)

(iii.3) y ̸= 0, z ̸= 0. From (29) we obtain the expression (32) for w and from (31) the
expression for x. Then, (28) gives us the expression for y and finally (30) the value
of z. So we have four equilibrium points

Pi,j =

(wi,j

µti
, λ − δ

γµti
wi,j, −λ +

(
δ

γµti
+

σ

δ

)
wi,j, wi,j

)
, i, j = 1, 2. (36)

with k2µti − 4δ2 ≥ 0.
Next, we will study the stability of these equilibria. For this, we compute the

Jacobian matrix of the differential model (1) with x > w. Recalling that c = d
t

t2 + 1
and considering (31) we obtain

J(X) =



dt(t2 − 1)
(t2 + 1)2 0 0 − d(t2 − 1)

µ(t2 + 1)2

−δy γλ − 2γy − δx 0 0

kwz
(xw + 1)2 − δz 0

kxw
xw + 1

− δx
kxz

(xw + 1)2

δy + δz − σw δx δx −σx


,

so that j1,4 = − j1,1

µt
. Since t1 ∈ (0, 1) and t2 > 1 we have that if t = t2 then j1,1 > 0,

j1,4 < 0 and vice versa for t = t1.
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(iii.1) As y = 0, in this case the entry j2,2 = γλ − δx is an eigenvalue, with x = xi,j =
wi,j/µti. Let us call ρ1 this eigenvalue. Considering the asymptotic for δ → 0+

we obtain
w1(t) =

1
k

δ +O(δ3)

w2(t) =
kµt
δ

+O(δ),
(37)

and we can state

ρ1 = γλ +O(δ2) if w = wi,1, i = 1, 2,

ρ1 = γλ − k +O(δ2) if w = wi,2, i = 1, 2.
(38)

Therefore, the Jacobian matrix calculated at the points Pi,1 for δ → 0+ has at least
one positive eigenvalue, and therefore the equilibria Pi,1 are unstable. We thus state
the following proposition.

Proposition 21. The critical points Pi,1 =

(
wi,1

µti
, 0,

σ

δ
wi,1, wi,1

)
, i = 1, 2 with wi,1

given in (32) and ti given in (9), are unstable equilibria for δ → 0+.

The behavior of the points Pi,2 depends instead on the sign of γλ − k. If γλ − k > 0
these equilibria are unstable. We then study the behavior of such points under the
assumption γλ − k < 0. We examine the asymptotic behavior for δ → 0+. The
asymptotic of the Jacobian matrix J(Pi,2) becomes

J(Pi,2) =



dt(t2 − 1)
(t2 + 1)2 0 0 − d(t2 − 1)

µ(t2 + 1)2

0 γλ − k +O(δ2) 0 0

− kµσt
δ

+O(δ) 0 0
σ

kµt
δ +O(δ3)

0 k +O(δ2) k +O(δ2) − kσ

δ
+O(δ)


.

We use the Routh–Hurwitz criterion. We introduce the characteristic polynomial
of J(Pi,2)

p4(ρ) = (ρ − γλ + k +O(δ2))(ρ3 + a1ρ2 + a2ρ + a3). (39)

Through some lengthy but standard computations we obtain

a1 =
kσ

δ
+O(1)

a2 =
kσdt(1 − t2)

(t2 + 1)2δ
+O(δ)

a3 =
(1 − t2)dk2σt
(t2 + 1)2δ

+O(δ).

Let us recall that the necessary and sufficient condition for the roots of the poly-
nomial p3(ρ) = ρ3 + a1ρ2 + a2ρ + a3 to have strictly negative real parts is that
a1, a3 > 0 e a1a2 − a3 > 0. We recall that t1 ∈ (0, 1) and t2 > 1 as given in (9).
Therefore, a2 < 0 and a3 < 0 if t = t2 making P2,2 unstable. Conversely, a2 > 0 and
a3 > 0 if t = t1 with

a1a2 − a3 =
k2σ2dt(1 − t2)

(t2 + 1)2δ2 +O(δ−1) > 0.
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We can therefore summarize in the following proposition.

Proposition 22. The equilibrium point P2,2 =

(
w2,2

µt2
, 0,

σ

δ
w2,2, w2,2

)
, with w2,2 given

in (32) and t2 given in (9), is unstable for δ → 0+. The equilibrium point P1,2 =(
w1,2

µt1
, 0,

σ

δ
w1,2, w1,2

)
, with w1,2 given in (32) and t1 given in (9), is unstable for δ → 0+

if γλ − k > 0. The equilibrium P1,2 is asymptotically stable for δ → 0+ if γλ − k < 0.

(iii.2) In this case, we have two critical points Pi, i = 1, 2 as in (35). Computing the
asymptotic expansions for δ → 0+ we obtain

xi =
δγλ

δ2 + γµσti
=

λ

µσti
δ +O(δ3)

yi =
γλµσti

δ2 + γµσti
= λ +O(δ2)

zi = 0

wi =
δγλµti

δ2 + γµσti
=

λ

σ
δ +O(δ3),

(40)

and the Jacobian matrix calculated at these points becomes

J(Pi) =



dt(t2 − 1)
(t2 + 1)2 0 0 − d(t2 − 1)

µ(t2 + 1)2

−λδ +O(δ3) −γλ +O(δ2) 0 0

0 0
λ(kλ − σ)

µσ2t
δ2 +O(δ4) 0

0
λ

µσt
δ2 +O(δ4)

λ

µσt
δ2 +O(δ4) − λ

µt
δ +O(δ3)


,

for t = t1 and t = t2. When δ = 0+, this matrix reduces to a diagonal matrix with
an eigenvalue given by

ρ1 =
dt(t2 − 1)
(t2 + 1)2 .

We have repeatedly noted that ρ1 > 0 if t = t2 and ρ1 < 0 if t = t1. Due to
the continuity of eigenvalues with respect to the elements of the matrix, in the
case t = t2 for δ → 0+, there is an eigenvalue of the Jacobian matrix that tends
to a positive value, and therefore the critical point P2 is unstable. If t = t1, we
obtain instead ρ1 < 0, hence we must apply the Routh–Hurwitz criterion to the
characteristic polynomial p4(ρ). The criterion states, in this case, that the necessary
and sufficient conditions for all roots of characteristic polynomial p4(ρ) = ρ4 +
a1ρ3 + a2ρ2 + a3ρ + a4 to have a strictly negative real part are the following:

ai > 0 i = 0, · · · , 4

a1a2 − a3 > 0

a1a2a3 − a2
1a4 − a2

3 > 0.

(41)
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After lengthy computations we obtain the following asymptotic developments of
the coefficients of the polynomial p4(ρ) as δ → 0+

a4 = − (kλ − σ)γλ3(1 − t2)d
µ2σ2t(t2 + 1)2 δ3 +O(δ5)

a3 =
γλ2d(1 − t2)

µ(t2 + 1)2 δ +O(δ2)

a2 =
γλ(1 − t2)dt
(t2 + 1)2 +O(δ)

a1 = γλ +
dt(1 − t2)

(t2 + 1)2 +O(δ)

a1a2 − a3 = a1a2 +O(δ)

a1a2a3 − a2
1a4 − a2

3 = a1a2a3 +O(δ2).

(42)

Recalling that 1 − t2
1 > 0, we have that a1, a2, a3 > 0 for t = t1. Also, we have

a4 > 0 if kλ − σ < 0. Analyzing the orders of magnitude of the coefficients, the last
two conditions are definitely met when the leading terms of the coefficients of the
characteristic polynomial are positive. On the other hand, p4(ρ) obviously has a
positive root if a4 < 0. We can therefore conclude with the following proposition

Proposition 23. The point P2 =

(
δγλ

δ2 + γµσt2
,

γλµσt2

δ2 + γµσt2
, 0,

δγλµt2

δ2 + γµσt2

)
, for t2 de-

fined in (9), is an unstable equilibrium point. The point

P1 =

(
δγλ

δ2 + γµσt1
,

γλµσt1

δ2 + γµσt1
, 0,

δγλµt1

δ2 + γµσt1

)
, for t1 defined in (9), is an asymp-

totically stable equilibrium point if kλ − σ < 0 and is unstable if kλ − σ > 0.

(iii.3) In this case, we have four equilibrium points varying with the values of wi,j see (32)
and ti, see (9). We start with wi,1 for i = 1, 2. Considering the asymptotic expansions
of the variables for δ → 0+, we obtain

xi,1 =
wi,1

µti
=

δ

kµti
+O(δ3)

yi,1 = λ − δ

γ
xi,1 = λ +O(δ2)

zi,1 = −yi,1 +
σ

δ
wi,1 =

σ

k
− λ +O(δ2)

wi,1 =
kµti −

√
k2µ2t2

i − 4δ2tiµ

2δ
=

δ

k
+O(δ3).

(43)

Notice that, when λk − σ > 0, we obtain zi,1 < 0 as δ → 0+, hence in this case the
points Pi,1 are not in C.
The developments above, when substituted into the Jacobian matrix, lead to

J(Pi,1) =



dt(t2 − 1)
(t2 + 1)2 0 0 − d(t2 − 1)

µ(t2 + 1)2

−λδ +O(δ3) −γλ +O(δ2) 0 0

O(δ3) 0 0
σ − kλ

kµt
δ +O(δ3)

0
δ2

ktµ
+O(δ4)

δ2

ktµ
+O(δ4) − σ

ktµ
δ +O(δ3)


.
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We now argue as in the previous case, noticing that, when δ = 0, this matrix reduces
to a diagonal matrix with an eigenvalue

ρ1 =
dt(t2 − 1)
(t2 + 1)2 .

As we know, this value satisfies ρ1 > 0 if t = t2 > 1 and ρ1 < 0 if t = t1 ∈ (0, 1).
Therefore, when t = t2, due to the continuity of eigenvalues with respect to the
entries of the matrix, there exists at least one positive eigenvalue as δ → 0+, and
thus the equilibrium point P2,1 is unstable.
We now proceed by studying the stability of the point P1,1. We apply again the
Routh–Hurwitz criterion, and we study the characteristic polynomial p4(ρ) of the
matrix and its coefficients ai, i = 1, .., 4. We want to study what happens for δ → 0+,
so we look at the asymptotic behavior of the ais. We start noticing that

a4 =
(kλ − σ)γλ(1 − t2)d

k2µ2t(t2 + 1)2 δ3 +O(δ5)

a3 =
γλσ(1 − t2)dt
kµt(t2 + 1)2 δ +O(δ3)

a2 =
γλ(1 − t2)dt
(t2 + 1)2 +O(δ)

a1 =
γλ(1 + t2)2 + dt(1 − t2)

(t2 + 1)2 +O(δ)

a1a2 − a3 = a1a2 +O(δ)

a1a2a3 − a2
1a4 − a2

3 = a1a2a3 +O(δ2).

(44)

We have that a1, a2, a3 > 0 for t = t1 and a4 > 0 for t = t1 and kλ − σ > 0. Under
these conditions, the a1a2 − a3 and a1a2a3 − a2

1a4 − a2
3 are also positive, as δ → 0+.

We recall that the equilibria Pi,1 are not in C when kλ − σ > 0. We collect our results
in the following proposition:

Proposition 24. P2,1 is an unstable equilibrium. If kλ − σ > 0 the equilibrium P1,1 is
asymptotically stable but is not in C, together with P2,1, as δ → 0+. If kλ − σ < 0 the two
equilibria are in C and are unstable, as δ → 0+.

We now proceed with the study of the stability of the points Pi,2. The asymptotic
developments in this case are

xi,2 =
wi,2

µti
=

k
δ
+O(δ)

yi,2 = λ − δ

γ
xi,2 = λ − k

γ
+O(δ2)

zi,2 = −yi,2 +
σ

δ
wi,2 =

σkµti
δ2 +O(1)

wi,2 =
kµti +

√
k2µ2t2

i − 4δ2tiµ

2δ
=

kµti
δ

+O(δ),

(45)
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which lead to the Jacobian matrix calculated at Pi,2

J(Pi,2) =



dt(t2 − 1)
(t2 + 1)2 0 0 − d(t2 − 1)

µ(t2 + 1)2(
−λ +

k
γ

)
δ +O(δ3) −γλ + k +O(δ2) 0 0

−σkµt
δ

+O(δ) 0 O(δ6)
σδ

kµt
+O(δ3)

0 k +O(δ2) k +O(δ2) −σk
δ

+O(δ)


.

We now apply the Routh–Hurwitz criterion to the characteristic polynomial p4(ρ) =
ρ4 + a1ρ3 + a2ρ2 + a3ρ + a1 with

a4 =
(γλ − k)(1 − t2)dk2σt

(t2 + 1)2δ
+O(δ)

a3 =
γλσk(1 − t2)dt

(t2 + 1)2δ
+O(δ)

a2 = kσ

[
(γλ − k) +

dt(1 − t2)

(t2 + 1)2

]
1
δ
+O(1)

a1 =
σk
δ

+O(1).

(46)

If we assume γλ − k < 0 and t = t1 ∈ (0, 1), we have a4 < 0, while if t = t2 > 1 it
holds a2, a3 < 0, and in both cases we obtain that there is an eigenvalue with strictly
positive real part. Hence, in this case, the two equilibrium points we are dealing
with are unstable. Notice also that from γλ − k < 0, we derive yi,2 < 0 as δ → 0+,
so in this case the two points are not in the positive cone.
Let us now assume γλ − k > 0. If t = t2 > 1 we obtain a4 < 0 and the equilibrium
is unstable. If t = t1 ∈ (0, 1), all the coefficients ai are positive. For the stability we
have then to verify that, at least for δ → 0+, it holds

a1a2 > a3, a1a2a3 > a1
2a4 + a3

2.

We have that a1a2 is led by a term of the type c/δ2, with c > 0, while a3 = O(δ−1), so
the first inequality above is verified for small δs. Regarding the last condition, that
is a1a2a3 − a2

1a4 − a2
3 > 0, we notice that a2

3 = O(δ−2) while a1a2a3 = O(δ−3) and
a2

1a4 = O(δ−3). Therefore, the last condition is simplified by requiring a2a3 − a1a4 > 0.
With simple calculations, we obtain

a2a3 − a1a4 =
σ2k2dt(1− t2)

(t2 + 1)2

[
(γλ − k)2 + γλ

dt(1− t2)

(t2 + 1)2

]
1
δ2 +O(δ−1),

so the second condition is verified for t = t1 and δ → 0+. We summarize in the
following proposition

Proposition 25. If γλ − k < 0 the two points Pi,2 are both unstable equilibria of the
system (1), but are not in C, as δ → 0+. If γλ − k > 0 and δ → 0+, the point P2,2 is an
unstable equilibrium, while the point P1,2 is an asymptotically stable equilibrium (and both
are in C).
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7. Simulation Results

We present the results from simulations conducted with Matlab’s ode45 solver, an
explicit adaptive Runge–Kutta method known for its broad applicability in solving ordinary
differential equations (ODEs). While our study utilizes ode45 for its efficiency and general
applicability, it is worth acknowledging the existence of specialized methods for particular
types of nonlinear ODEs, see for example [12], with an iterative finite difference method
for nonlinear ODEs.

In all depicted graphs, the evolution of variables is illustrated using distinct colors: the
population in magenta, renewable resources in green, non-renewable resources in black, and
accumulated wealth in blue. Dashed lines indicate the coordinates of the equilibrium point
under consideration, with matching colors for corresponding components (i.e., magenta
for the population, and so forth).

In these simulations, we aimed to test our theoretical analyses by depicting in each
chart a dashed line that represents the equilibrium point and a curve that results from
uniformly perturbing the initial value relative to the equilibrium point. Alongside these
verifications, we analyzed the behavior of the solution curves as the depletion coefficient
δ of both renewable and non-renewable resources increases, sometimes obtaining results
different from those achieved for a small δ (in the literature small δs are usually considered).
We also analyzed the behavior of the solutions obtained by considering different depletion
factors between renewable and non-renewable resources. Finally, we tested the stability
of some equilibrium points supporting positive values for all the variables. On the x-axis,
we use a generic unit of time that does not correspond to specific intervals such as days,
months, or years, and does not necessarily span long periods. Indeed, we suspend our
simulation once the expected behavior becomes clear. On the y-axis, the label "resources"
refers to both renewable and non-renewable resources. This simplification was dictated by
space constraints.

In these experiments, we kept certain parameter values constant, setting them to the
values generally found in the literature (see [6,9]). However, we deliberately altered other
parameters to study their behavior. In particular, if not stated otherwise in the comment
of the individual figure, we consider the nature carrying capacity λ = 100, the nature
regeneration factor γ = 0.01, the wealth consumption σ = 5, the factor that regulates the
possible increase of non-renewable resources k = 1, and, finally, the factors that govern the
dynamics of populations c = 1, d = 3, µ = 2. Our simulations, on the other hand, were
conducted by varying the parameter δ.

In analyzing the correctness of our theoretical studies, we started from the case x ≤ w,
that is, when wealth is greater than the current population. When w = 0 the critical points
are given by two families of points that we have denoted by Q and R, representing the
desert state and the nature state, respectively. These are two families of unstable points
that in Figure 1 we have represented in the case of δ = 3, Z = 1. To achieve better chart
readability with variable values of the same order of magnitude, we set λ = 10, γ = 0.5.

(a) (b)

Figure 1. Case (i). Scenario around the unstable critical points. (a) Q = (0, 0, 1, 0). (b) R = (0, 10, 1, 0).
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We then analyzed the situation near the critical points of case (ii.2) both to verify the cor-
rectness of our analysis and to observe the potential scenarios around such points. The the-
oretical results obtained for small δ predict instability at point P1, whereas for point P2, we
observe instability when γλ − k > 0 and stability otherwise. We have depicted in Figure 2a
the scenario that emerges from a situation close to point P1 = (0, 0, 9.4054, 0.9387) with
δ = 0.49 < k/2. The eigenvalues of J(P1) are ρk = 0.0294,−4.7227,−1.0, 0.5316, indicating
an unstable situation according to theory. This behavior was confirmed by various numeri-
cal simulations for both a small δ and a potentially large δ value. In Figure 2b, we present the
expected situation following a perturbation of point P2 when γλ − k = −0.9 < 0 with λ = 10,
that is, in a situation of stability. Thus, we identify the critical point P2 = (0, 0, 10.6748, 1.0653)
with eigenvalues of J(P2) as ρk = − 0.0338,−5.2929,−1.0000,−0.4316, stable accord-
ing to the theory. We also examined the behavior of P2 with a large δ value. For ex-
ample, in the case δ = 5, by setting k = 2δ + 0.5 = 10.5, and thus γλ − k = −9.5,
we obtained P2 = (0, 0, 1.3702, 1.3702) and the following eigenvalues for J(P2): ρk =
−3.4254 ± 1.6053i,−1.0000,−5.8508. The numerical results align with our predictions both
when γλ − k < 0 and γλ − k > 0.

(a) (b)

Figure 2. Case (ii.2), analysis of the points P1 and P2, with δ → 0+. (a) P1 = (0, 0, 9.4054, 0.9387).
(b) P2 = (0, 0, 10.6748, 1.0653).

We have now included an example of our simulation for large values of δ. This is just
one among many tests we conducted without complete theoretical support. Because of
this, we are eager to explore this area further in future research. In Figure 3, we present
the analysis of point P in case (ii.3) for large values of δ. We recall that in case (ii.3), there
exists a single stable critical point when kλ − σ < 0 and it becomes unstable if the condition
is reversed. This analysis has been validated through numerous simulations with small
δ. It should be noted that, in the case of stability, the basin of attraction of the point is
very small and the perturbation applied to P had to be minimized to ensure convergence
to this equilibrium point. With the standard perturbation ϵ = 10−1, the system tends to
converge towards point P1 of case (ii.7), which only differs from P in the population values.
In Figure 3, we detail the analysis of point P = (0, 0.0500, 0, 0.1000) for δ = 10. In Figure 3a,
the outcomes for kλ − σ > 0, specifically kλ − σ = 95, are shown. Here, P is established
as a stable point, irrespective of kλ − σ values. However, it is crucial to highlight that the
attraction basin of this point is exceedingly narrow. Similar to the previously mentioned
scenario for small δ, it was necessary to reduce the standard perturbation to ϵ = 10−3 to
ensure convergence to point P instead of point P1 = (0.1308, 0.00500, 0, 0.01000) of case
(ii.7), which remains stable under identical convergence conditions for δ → 0+. Given that
P’s components are near zero, a perturbation on the order of 10−3 is deemed reasonable.
The eigenvalues of matrix J(P) are ρk = −0.2501 ± 0.6612i,−1.0000,−0.9896. Figure 3b
explores the scenario with kλ − σ = −2, achieved with k = 0.3, λ = 10. The eigenvalues of
J(P) are −0.0250 ± 0.0661i,−1.0000,−0.0999. Stability is observed over very long intervals.
Similar to the previous cases, the stable point exhibits a notably small basin of attraction. In
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Figure 3b, we illustrate the scenario achieved with a perturbation ϵ = 10−2 that leads us to
convergence towards the point P1 = (0.0131, 0.00500, 0, 0.01000) of case (ii.7).

(a) (b)

Figure 3. Case (ii.3), analysis of the point P with δ = 10. (a) kλ − σ = 95. (b) kλ − σ = −2.

We now report some experiments conducted in the case x > w.
Specifically, in Figure 4, we analyze, as δ varies, the behavior of solutions starting

near the equilibrium point indicated as P12 in the scenario (iii.1), predicted to be unstable if
γλ − k > 0. In our case, we set γ = 0.1 so that γλ − k = 9 > 0.

In Figure 4a, we show the behavior near P12 = (9.8673, 0, 376.8988, 7.5380) obtained
with δ = 0.1. The eigenvalues of J(P12) are ρk = −0.3587 ± 0.7661i,−49.3647, 9.0133.

In Figure 4b, we present the situation near the point P12 = (1.2243, 0, 10.7251, 0.9353)
obtained with δ = k

√
µt1/2 − 0.001 = 0.4360, a value of δ that we consider large, given

that we intend to keep the value of k = 1 fixed while respecting the required constraints.
The eigenvalues of J(P12) are ρk = −0.0631,−0.4081,−6.3956, 9.4662.

In the case of γλ − k < 0, for which we have stability for small values of δ, we
observed a situation of instability by pushing δ to the maximum value allowed while
keeping k = 1 fixed.

(a) (b)

Figure 4. Case (iii.1) analysis of the point P12 with γλ − k > 0. (a) δ = 0.1. (b) δ = 0.4360.

In Figure 5, we show two examples from our work on how solutions behave when the
depletion rates, δ1 and δ2 for renewable and non-renewable resources, are different. This
part of our study adds an interesting twist, showing that these different rates can change
how the system behaves. We think this is a good area to explore more in future research.
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(a) (b)

Figure 5. Analysis for δ1 ̸= δ2. (a) Case (ii.3). (b) Case (iii.2)

Specifically, in Figure 5a, we analyzed a situation similar to the one observed in Figure 3a,
for the case (ii.3) with kλ − σ = 95 being unstable according to theoretical results for δ → 0+,
but exhibiting behavior that contradicts this for large δ. The point P under consideration
depends only on δ1, but it would seem that the behavior of the solutions is dictated by δ2.
Indeed, in Figure 5a, we report the situation obtained by setting δ1 = 10, resulting in point
P = (0, 0.0500, 0, 0.1000), and δ2 = 0.01 . The simulation provides a scenario of unstability
with eigenvalues given by ρk = −0.2501± 0.6612i,−1.0000, 0.0089. We have also analyzed the
situation with δ1 = 0.01, δ2 = 10 in a scenario of stability, with the eigenvalues of the Jacobian
matrix in P = (0, 99.8004, 0, 0.1996) given by ρk = − 0.9980 ± 0.0446i,−1.0000,−1.9577.
Therefore, the point is stable, in accordance with the behavior observed for large values of
δ. The chart is not significant as it shows a rapid convergence to the indicated point and is
therefore not included here.

In Figure 5b, we instead report the scenario obtained for point P1 in case (iii.2), again
with δ1 ̸= δ2 when kλ − σ = 95 > 0. It is recalled that the theoretical analysis conducted for
δ1 = δ2 = δ predicts a situation of instability for small δ. However, numerical experiments
have revealed a behavior of stability for large δ. Returning to δ1 ̸= δ2, even in this case, P1
depends only on the value of δ1. In the Figure 5b we have reported the result obtained with
δ1 = 3 leading to P1 = (0.3319, 0.4226, 0, 0.2536) and δ2 = 0.1. This is a situation of instabil-
ity, and the eigenvalues of the Jacobian matrix are ρk = −0.1567 ± 0.7521i,−2.0957, 0.0444.
The presence of a small δ2 thus leads us to achieve what is predicted by the theory for
δ → 0+. We do not report the graph of the result obtained by inverting the values of δ1
and δ2, that is, by setting δ1 = 0.1 leading to P1 = (2.0748, 79.2516, 0, 1.5850) and δ2 = 3. In
this case, we achieved a situation of stability with the eigenvalues of the Jacobian matrix
given by ρk = −0.7603 ± 0.4076i,−10.3915,−5.4577. The graph turned out to be of little
significance as the stability situation was reached quickly. We therefore conclude by saying
that even in the case (iii.2), as in the case of (ii.3), it would seem that δ2 controls the behavior
of the equilibrium point whose coordinates depend only on δ1.

We would have liked to further analyze the scenario presented in (ii.4), because the
critical point depends on both δ1 and δ2, but studies for significantly different values of the
two parameters are not possible because, as they increase, the point exits the cone.

A state of stability with a positive population is depicted in Figure 6. We have an-
alyzed the scenario described in cases (ii.8) and (iii.3) under the predicted conditions
of stability as δ → 0+. In both instances, we set δ = 0.3. Figure 6a illustrates case
ii.8) where P12 = (2.3138, 4.6972, 24.7626, 1.7676) is stable and falls within the cone for
γλ − k = 0.3 > 0, achieved with k = 0.7, λ = 10, and γ = 0.1. The eigenvalues
of J(P12) are ρk = −0.7454,−8.5064,−0.6207,−0.1805. Figure 6b shows case (iii.3) with
P12 = (2.4700, 25.8987, 5.5504, 1.8869), stable and within the cone for γλ − k = 0.1 > 0, ob-
tained with k = 0.9. The eigenvalues of J(P12) are ρk = −12.4196,−0.4555± 0.6858i,−0.0239.
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(a) (b)
Figure 6. Stable critical points with positive population. (a) case (ii.8). (b) case (iii.3).

8. Conclusions: Main Results and Future Steps

Let us summarize the main results obtained in this paper. In Section 2, we obtained
that it cannot be x(t) → +∞ or w(t) → +∞ or z(t) → +∞ as t → +∞. This does not mean
that x, w, z are bounded, but that, if they exceed a critical level, they will begin to oscillate.
In a real society, such oscillations of population and wealth of course are not a positive thing.
Hence, our results seem to suggest that, even assuming an optimistic hypothesis on the
replenishment of non-renewable resources, indefinite growth in wealth (and population) is
not possible, and any attempt to achieve it may have undesirable consequences. We remark
that we obtained a similar result in [2]. As the model introduced in [2] is different in many
respects from the present one, these asymptotic results seem to be robust.

The analysis of equilibrium points shows a much greater variety of such equilibria
than the original HANDY model. This seems to indicate that the use of non-renewable
resources allows human society greater freedom to choose between possible paths. We
have also shown that most equilibrium points are unstable as δ → 0+. However, for some
ranges of the parameters, there are asymptotically stable equilibrium points, and also some
that exhibit positive values for both population and wealth. These are cases (ii8) and (iii3)
in Sections 3, 5, and 6 (see also Figure 6 in Section 7). This suggests a possibility for a
rich, consumeristic society to avoid collapse or dangerous oscillations in population and
wealth. However, this requires abandoning the idea of indefinite growth in favor of seeking
a steady state for the relevant variables.

Most of these results are obtained in the hypothesis of δ → 0+, which means a small
rate of depletion of resources. An interesting topic for future research would be to study
if these results are still valid for large δs. Some simulations (which we have not reported
in this paper) seem to indicate that this is not always the case, and it would be interesting
to obtain some theoretical results. Another interesting topic would be to understand if
there are changes in the dynamics assuming different depletion rates for renewable and
non-renewable resources. See Figure 5 of Section 7 for some simulations. An interesting
direction for future research would be to change the model to take into account the major
importance of the non-renewable resources in our society. This will be the argument of a
forthcoming paper.
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