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Abstract: The focus of this research was on building a decision support system for a model that
characterizes the conflict interaction of n-dimensional complex systems with non-trivial internal
structures. The interpretation of the new model was focused on information warfare as the impact
of rare events that quickly change certain perceptions of a large number of people. Consequently,
the support for various ideas experiences stochastic jumps, a phenomenon observable through
a non-classical Levy approximation scheme. The essence of our decision support system lies in
its ability to navigate the complex dynamics of conflict interaction among multifaceted systems.
Through the utilization of advanced modeling techniques, our aim is to illuminate the complicated
interplay of factors influencing information warfare and its cascading effects on societal perceptions
and behaviors. Key components of our decision support system encompass model development,
simulation capabilities, data integration, and visualization tools. The significance of our work lies
in its potential to inform policy formulation, conflict resolution strategies, and societal resilience
in the face of information warfare. By providing decision-makers with actionable intelligence and
foresight into emerging threats and opportunities, our decision support system serves as a valuable
tool for navigating the complexities of modern conflict dynamics. In conclusion, developing a
decision support system for modeling conflict interaction in complex systems represents an essential
step toward enhancing our understanding of information warfare and its consequences. Through
interdisciplinary collaboration and innovative modeling techniques, we aim to provide stakeholders
with the insights and capabilities needed to navigate the developing landscape of conflict and ensure
the stability and resilience of society.

Keywords: simulation and optimization; control of dynamic systems; integrator systems; dynamic
system forecast; random evolution; Levy approximation; multidimensional model

MSC: 37M25

1. Introduction

The objective of an information threat is to compromise the integrity, confidential-
ity, or availability of information, thereby causing harm to individuals, organizations, or
states [1]. It is evident that these threats require effective mitigation strategies. In the
context of information warfare, adversaries may exploit information threats to discredit
opponents, undermine public trust in specific entities, or even manipulate election pro-
cesses. Information threats manifest in various forms within the realm of information
warfare. In order to counter information threats effectively, it is imperative to develop
robust security measures [2]. Primarily, this involves the construction of mathematical
models that consider a multitude of factors capable of influencing the evolving situation.
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The Lotka-Volterra model, which describes predator-prey interactions, is one of the
main types of models of many processes in applied mathematics, social sciences, and
economics [1,3–6]. The classical Lotka-Volterra model, well-known for its applications in
predator-prey interactions, encounters significant limitations when applied to the dynamics
of information dissemination. One of the primary drawbacks of this model lies in its
inability to accommodate the dynamic nature of information influence. Specifically, the
model assumes constancy in the characteristics (intensities) of information impact, failing
to account for sudden and unpredictable events that profoundly affect the perceptions of
information consumers Other approaches to modeling the spread of information are models
of population dynamics, in particular, Gompertz dynamics, which are exponential at small
moments of time and pass to some asymptotic level at large moments of time [7–9], game
models [10] or models described by linear partial equations derivatives [11]. However, in
real-world scenarios, the dissemination of information is characterized by volatility and
unpredictability, influenced by a myriad of factors such as breaking news, viral content,
and social media trends. The model’s static nature precludes it from capturing the nuanced
dynamics of information dissemination in contemporary society [12–14].

Considering this gap, the construction and analysis of a new model of information
warfare take into account both frequent events that occur with high probabilities and
rare ones that quickly change some beliefs of a large number of people. As a result, the
quantities of adherents of different ideas make stochastic jumps that we may see applying
the Levy approximation scheme. We suppose that such a model could be essential as soon
as now breaking news produces quick and astonishing influence on the audience through
social media and the Internet or TV channels. The behavior of the model could not be
analyzed obviously for any fixed moment of time as it was done in a classical case. But,
as it is usual for stochastic models, we may obtain functional limit theorems that present
the behavior at large time intervals [14–19]. In order to streamline the decision-making
process and facilitate result visualization, a software implementation was developed for the
described process. JetBrains PyCharm Community Edition 2023.3 software, along with the
Matplotlib 3.6.2 library calculation visualization package, was selected as the programming
language for this purpose. Additionally, it was decided not to utilize off-the-shelf solutions
for the primary calculations, thus ensuring complete control over the construction of the
numerical solution.

Hence, this study introduces several innovative contributions. Primarily, it presents a
multi-dimensional model of information warfare that incorporates the influence of random
factors, offering a more comprehensive understanding of the dynamics of information
conflicts. Secondly, a software decision support system was developed based on the
analyzed stochastic system. This system enables real-time construction, analysis, and
management of various information scenarios, providing decision-makers with valuable
insights for effective response strategies.

2. Model of Information Warfare

The application of this approach to the model of information warfare was initially
proposed in [1]. The authors conceptualize a specific social community characterized by a
constant population size denoted as N0, which faces potential exposure to various types
of information threats. The values N1(t), N2(t), . . . , Nn(t) are the number of “supporters”
depending on time t who have perceived new information, ideas, norms, etc. of type
1, 2, . . . , n respectively.

In the “classical” version, the model is described by the Lotka-Volterra equations:
dN1
dt = (α1 + β1N1(t))(N0 − N1(t)− N2(t)− · · · − Nn(t)), N1(t0 = 0) = N1(0) ≥ 0

dN2
dt = (α2 + β2N2(t))(N0 − N1(t)− N2(t)− · · · − Nn(t)), N2(t0 = 0) = N2(0) ≥ 0

. . .
dNn
dt = (αn + βnNn(t))(N0 − N1(t)− N2(t)− · · · − Nn(t)), Nn(t0 = 0) = Nn(0) ≥ 0

(1)

Key assumptions about the model (1):
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1. There are multiple concepts and n ideas that are disseminated among the community
through 2 information channels:

• the first is “external” to the community, for example, an advertising media
campaign. Its intensity is characterized by the parameters α1 > 0, . . . αn > 0,
respectively, and the parameters αi, i = 1, . . . , n are considered independent of
time and environment;

• the second “internal” channel is the interpersonal communication between mem-
bers of the social community (its intensity, i.e., the number of equivalent informa-
tion contacts characterized by the parameters β1 > 0, . . . , βn > 0, respectively,
which also do not depend on time and environment). As a result, supporters
of the first idea who have already been “recruited” (their number is equal to
N1(t)) make their contribution to the process of spreading the idea among the
community by influencing its “unrecruited” members (their number is equal to
N0 − N1(t)− N2(t)− · · · − Nn(t)). The same applies to supporters of other ideas.

2. The rate of change of the number of supporters N1(t), . . . Nn(t) (i.e., the number of
supporters of the respective idea “recruited” per unit of time) consists of:

• the external recruitment rate (proportional to the product of intensities α1, . . . ,αn by
the number of individuals not yet recruited N0 − N1(t)− N2(t)− · · · − Nn(t)), i.e.,

α1(N0 − N1(t)− N2(t)− · · · − Nn(t))
α2(N0 − N1(t)− N2(t)− · · · − Nn(t))

· · ·
αn(N0 − N1(t)− N2(t)− · · · − Nn(t))

accordingly; internal rate of recruitment (it is proportional to the product of inten-
sities β1, β2, . . . , βn by the corresponding number of active supporters N1(t),
N2(t), . . . , Nn(t) and the number of unrecruited N0 − N1(t) − N2(t) − · · · −
Nn(t), i.e.,

β1N1(t)(N0 − N1(t)− N2(t)− · · · − Nn(t))
β2N2(t)(N0 − N1(t)− N2(t)− · · · − Nn(t)),

· · ·
βnNn(t)(N0 − N1(t)− N2(t)− · · · − Nn(t)),

accordingly; thus, the model can be described by equations (1) of the Lotka-
Volterra type (for more details on possible solutions and characteristics of the
dynamic system, see [5]).

3. Model of Information Warfare with Impulse Influence and Markov Switches

We extend the approach to building an information warfare model proposed in [1] to
the multidimensional case:

dNε(t) = C
(

Nε(t), x
(

t/ε2
))

dt + dηε(t) (2)

where,

C
(

Nε(t), x
(

t
ε2

))
=

=


−α1(x) + β1(x)N0 − β1(x)Nε

1(t) −α1(x)− β1(x)Nε
1(t)

−α2(x)− β2(x)Nε
2(t) −α2(x) + β2(x)N0 − β2(x)Nε

2(t)
. . . . . .

−αn(x)− βn(x)Nε
n(t) −αn(x)− βn(x)Nε

n(t)

−α1(x)− β1(x)Nε
1(t) −α1(x)− β1(x)Nε

1(t)
−α2(x)− β2(x)Nε

2(t) −α2(x)− β2(x)Nε
2(t)

. . . . . .
−αn(x)− βn(x)Nε

n(t) −αn(x) + βn(x)N0 − βn(x)Nε
n(t)


×


Nε

1(t)
Nε

2(t)
. . .

Nε
n(t)

+


α1N0
α2N0

. . .
αnN0

,

where
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(A) Nε(t) is an n-dimensional vector of solutions, the components of which are the num-
bers of supporters of different ideas;

(B) x
(
t/ε2) is a uniformly ergodic Markov process that models the influence of the en-

vironment on the intensity of information dissemination. This means that in the
period between the moments of resumption of such a Markov process, the values of
α1(x), α2(x), . . . , αn(x), β1(x), β2(x), . . . , βn(x) are constant, as in the classical model,
while at the moments of resumption the values change instantly. This models ran-
dom events that occur independently of society and have a significant impact on
people’s views.

The Markov random process x
(
t/ε2) is defined in the standard phase space (X, X),

which is given by the generator [14–17].

Qφ(x) = q(x)
∫

X
P(x, dy)[φ(y)− φ(x)]

on the Banach space B(X) of bounded functions with real values and a supremum norm∣∣∣∣φ(x)
∣∣∣∣ = sup

x∈X

∣∣φ(x)
∣∣

The stochastic kernel P(x, B), x ∈ X, B ∈ X defines a uniformly ergodic nested Markov
chain xn = x(τn), n ≥ 0, where τn are the jump moments of the nested chain, which has a
stationary distribution ρ(B), x ∈ X, B ∈ X. The stationary distribution Π(B), B ∈ X, of the
Markov process x(t), t ≥ 0 can be determined from the relation [18]

Π(dx)q(x) = qρ(dx)

where
q =

∫
X

Π(dx)q(x)

Let us define the potential operator R0 for the generator Q using the relation

R0 = Π −
(

Π + Q)−1

in which Πφ(x) =
∫

X Π(dy)φ(y) is a projector onto the subspace NQ = φ : Qφ = 0 of the
zeros of the operator Q.

The impulsive perturbation process (IPP) [14,16,18,20,21] ηε(t), t ≥ 0, which compo-
nents under the Levy approximation scheme is given by

ηε
i (t) =

∫ t

0
ηε

i

(
ds, xε

( s
ε2

))
, i = 1, . . . , n.

where the set of processes with independent increments ηε
i (t, x), t ≥ 0, x ∈ X, is determined

by the generators

Γε(x)φ(w) = ε−2
∫

R
(φ(w + v)− φ(w))Γε(dv, x), x ∈ X

and satisfy the conditions of the Levy approximation.
L1: Approximation of averages:∫

R
vΓε(dv, x) = εa1(x) + ε2(a2(x) + θa(x)), θa(x) → 0, ε → 0

and ∫
R

v2Γε(dv, x) = ε2(b(x) + θb(x)), θb(x) → 0, ε → 0



Mathematics 2024, 12, 1263 5 of 12

L2: Condition on the distribution function:∫
R

g(v)Γε(dv, x) = ε2(Γg(x) + θg(x)
)
, θg(x) → 0, ε → 0

for all g(v) ∈ C3(R). Here, the measure Γg(x) is bounded for all g(v) ∈ C3(R) and is
defined by the relation

Γg(x) =
∫

R
g(v)Γ0(dv, x), g(v) ∈ C3(R)

where C3(R) is a class of functions that define a measure and contains bounded functions
with real values such that g(v)/|v|2 → 0 when v → 0 .

L3: Uniform quadratic integrability:

lim
c→∞

sup
x∈X

∫
|v|>c

v2Γ0(dv, x)

4. Asymptotic Model Analysis

Let’s assume that the balance condition is met

â1 :=
∫

X
Π(dx)a1(x) = 0 (3)

We present the asymptotic properties of the impulsive perturbation process obtained
in [18].

Theorem 1. If the balance condition (3) and the Levy approximation conditions L1–L3 are satisfied,
then there is a weak convergence

ηε(t) → η0(t), ε → 0

The limit process η0(t) is determined by the generator

Γφ(w) = â2 φ′(w) +
1
2

σ2 φ′′(w) +
∫

R
[φ(w + v)− φ(v)]Γ̂0(dv)

where
â2 =

∫
X

Π(dx)(a2(x)− a0(x))

σ2 =
∫

X
Π(dx)(b(x)− b0(x)) + 2

∫
X

Π(dx)a1(x)R0a1(x)

a0(x) =
∫

R
vΓ0(dv, x), b0(x) =

∫
R

v2Γ0(dv, x), Γ̂0(v) =
∫

X
Π(dx)Γ0(v, x)

Thus, in the limit, we have obtained a Levy process with three components: a deter-
ministic shift, a diffusion component, and a Poisson jump part.

Proof. Since more general statements were already proved by us earlier [18], for our model
(2), we will present the main stages of the proof with more detailed explanations in the
proof of Theorem 2 for the entire dynamic system.

As we know [14], generators of processes with independent increments ηε(t, x), t ≥
0, x ∈ X, on test functions φ(ω) ∈ C3(R) under conditions L1–L3 admit the asymptotic
representation

Γε(x)φ(ω) = ε−1Γ1(x)φ(ω) + Γ2(x)φ(ω),

where
Γ1(x)φ(ω) = a1(x)φ′(ω),

Γ2(x)φ(ω) = (a2(x)− a0(x))φ′(ω) + 1
2 (b(x)− b0(x))φ′′(ω)+

+
∫

R[φ(ω + v)− φ(v)]Γ0(dv,x) .
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It is also a well-known fact [14] that the generator of the two-component Markov
process

(
ηε, x

(
t/ε2)), t ≥ 0 has the form

Γ̂ε(x)φ(ω, x) = ε−2Qφ(ω, x) + ε−1Γ1(x)φ(ω, x)+
+Γ2(x)φ(ω, x) + Γε(x)φ(ω, x),

where the remainder term ∥Γε(x)φ(ω, x)∥ → 0 at ε → 0, φ(ω, ·) ∈ C3(R).
Let us consider the so-called truncated generator:

Γε
0 (x)φ(ω) = ε−2Qφ(ω, x) + ε−1Γ1(x)φ(ω, x) + Γ2(x)φ(ω, x).

When the balance condition (3) is fulfilled, the solution of the singular perturbation
problem for the truncated operator Γε

0 (x) on the test functions

φε(ω, x) = φ(ω) + εφ1(ω, x) + ε2 φ2(ω, x)

is realized by the relation [14]

Γε
0 (x)φε(ω, x) = Γφ(ω) + εθε

η(x)φ(ω),

where the residual term θε
η(x)φ(ω) is uniformly bounded at x.

The limit operator is determined by the formula

Γ = ΠΓ1(x)R0Γ1(x)Π + ΠΓ2(x)Π.

and applying Theorem 6.3 from [14], we obtain the necessary convergence of processes,
i.e., the statement of the Theorem 1. □

Next, we are ready to study the asymptotic properties of the dynamical system, in
particular, using the approaches proposed in [14,18].

Theorem 2. When the balance condition (3) and Levy approximation conditions L1–L3 are satisfied,
weak convergence in the sense of generator convergence is valid

(uε(t), ηε(t)) →
(

u0(t), η0(t)
)

, ε → 0

The limit process is determined by the generator

Lφ(w, v) = Ĉ(u)φ′(w,) + Γφ(x) (4)

The averaged function has the form

Ĉ(u) =
∫

X
Π(dx)C(u, x)

Proof. As it was established in the monograph [14], the generator of the two-component
Markov process

(
uε(t), x

(
t/ε2)), t ≥ 0, can be written in the form

Lε(x)φ(ω, x) = ε−2Qφ(ω, x) + Γε(x)φ(ω, x)+
+C(x)φ(ω, x) + θε

ω φ(ω, x)

where
C(x)φ(ω, x) = C(u, x)φ′

ω(ω, x)

and ∥θεω(x)φ(ω, x)∥ → 0 at ε → 0 .
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The generator Lε(x) in the case of an impulse perturbation process of admits an
asymptotic representation [14]

Lε(x)φ(ω, x) = ε−2Qφ(ω, x) + ε−1Γ1(x)φ(ω, x)+
+Γ2(x)φ(ω, x) + C(x)φ(ω, x) + θ̂ε

ω φ(ω, x)

where
θ̂ε

ω(x) = Γε + θε
ω(x),

Γ1(x)φ(ω) = a1(x)φ′(ω),

Γ2(x)φ(ω) = (a2(x)− a0(x))φ′(ω) + 1
2 (b(x)− b0(x))φ′′(ω)+

+
∫

R[φ(ω + v)− φ(v)]Γ0(dv,x) .

Remainder term
∥∥θ̂ε

ω(x)φ(ω, x)
∥∥ → 0 at ε → 0 .

We apply the truncated operator of the form:

Lε
0(x)φ = ε−2Qφ + ε−1Γ1(x)φ + Γ2(x)φ + C(x)φ (5)

Taking into account the fulfillment of the balance condition (3), we will solve the
singular perturbation problem for the truncated operator (5) on the test functions

φε(ω, x) = φ(ω) + εφ1(ω, x) + ε2 φ2(ω, x)

using relation
Lε

0(x)φε(ω, x) = Lφ(ω) + ε2θε
ω(x)φ(ω) (6)

where remainder term θεω(x) is uniformly bounded at x.
The limit operator L is given by the formula

L = Π[C(x) + Γ1(x)R0Γ1(x) + Γ2(x)]Π (7)

Indeed, in order to fulfill equality (6), it is necessary that the coefficients with the same
powers of ε on the left and right sides are equal. For this purpose, we calculate:

Lε
0(x)φε(ω, x) = ε−2Q(x)φ(ω)+

+ε−1[Qφ1(ω, x) + Γ1(x)φ(ω)]+
+[Qφ2(ω, x) + Γ1(x)φ1(ω, x)+

+Γ2(x)φ + C(x)φ(ω)]+
+ε[Γ1(x)φ2(ω, x) + Γ2(x)φ1(ω, x) + C(x)φ1(ω, x)]+

+ε2[Γ2(x)φ2(ω, x) + C(x)φ2(ω, x)]

Since
Qφ(ω) = 0 ⇔ φ(ω) ∈ NQ,

Then φ(ω) not depends from x.
The balance condition (3) is a condition for the solvability of the equation

Qφ1(ω, x) + Γ1(x)φ(ω) = 0

Then,
φ1(ω, x) = R0Γ1(x)φ(ω),

and
Qφ2(ω, x) + Γ1(x)φ1(ω, x)+

+Γ2(x)φ(ω) + C(x)φ(ω) = Lφ(ω).

or
Qφ2(ω, x) = [L − Γ1(x)R0Γ1(x)− Γ2(x)− C(x)]φ(ω)
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The solvability condition of the last equation gives the limit operator L in the form (7).
Applying Theorem 6.3 from [14], we finally obtain the statement of the Theorem 2. □

5. Modeling and Software Implementation

In our formulation, the average marginal model of information warfare is outlined as
follows: this model serves as a comprehensive framework for analyzing various facets of
information warfare, encompassing a wide array of factors and dynamics. By examining
the average marginal effects across different dimensions, we gain insights into the nuanced
interplay between variables and their impact on the broader landscape of information
threats. This model offers a structured approach to dissecting the complexities inher-
ent in information warfare scenarios, enabling a deeper understanding of its underlying
mechanisms and potential mitigation strategies. The proposed model formulation can be
presented by Equation (4) with the matrix in the form (2) appearing and the assumptions
described during the construction of the model, in particular (A) and (B), are fulfilled.

For the software implementation, the decision was made to utilize the Python language
due to its versatility and extensive libraries. The visualization aspect was executed using the
Matplotlib 3.6.2 library package, known for its effectiveness in creating clear and insightful
graphical representations. Opting against pre-existing solutions for calculations provided
us with greater flexibility in obtaining precise numerical solutions tailored to our specific
requirements. Despite eschewing off-the-shelf solutions for fundamental calculations,
Python (JetBrains PyCharm Community Edition 2023.3) offers a wealth of libraries that
expedite the coding process for tasks such as generating numerical series according to the
normal distribution law or handling operations with arrays and tabular data. Leveraging
these libraries not only streamlines development but also ensures reliability and efficiency
in our implementation.

Consider an example for six types of information threats. This scenario can apply to
situations where some propaganda is distributed across different, for example, TV channels.
Input parameters:

N0 = 500000, N1(0) = 0, N2(0) = 0, N3(0) = 0, N4(0) = 0, N5(0) = 0, N6(0) = 0,
α1 = 0.000012, α2 = 0.000014, α3 = 0.000011, α4 = 0.000015, α5 = 0.000013, α6 = 0.000011,

β1 = 0.00000001, β2 = 0.00000002, β3 = 0.000000009, β4 = 0.00000002, β5 = 0.00000002, β6 = 0.00000001.

Also, the following parameters were used to characterize the diffusion process: θ = 1,
σ = 5. These values are used to calculate asymptotic standard deviation as part of the
Euler-Maruyama method to get a numerical solution. By changing those values, we can
increase or decrease the diffusion process’s deviation.

The characteristics of the jumps process are following λ = 5, σ = 5. Here, we are
using a discrete jumps process, so λ is intensity of jumps and σ used to describe variability.

In this case, input parameters for the outer channel rely on TV channel ratings or the
amount of auditory.

As depicted in Figure 1, the fourth type of information threat emerges as the predomi-
nant leader, attributed to its notably higher initial coefficients. However, it is noteworthy
that during the initial stages, the leadership position was transiently held by other types of
information threats, primarily due to the influence of random shifts. In real-world scenarios,
such shifts may manifest as unexpected downtime or the dissemination of compromising
information by certain TV channels.

It is pertinent to highlight that the magnitude of random disturbances, often referred to
as “strength,” can be manipulated for experimental purposes. For instance, by augmenting
parameters such as θ and σ to values of 4 and 8 respectively, the ensuing results are
markedly affected. Notably (Figure 2), deviations exhibit a substantial increase under these
augmented conditions.
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Figure 2. Visualization of information warfare at higher random deviations.

As depicted in the graph (Figure 1), it is evident that the fourth type of information
threat no longer maintains its status as the predominant contender. This observation
underscores a critical insight: even when the combined significance of the αn and βn
coefficients appears substantial, it may not guarantee decisive influence under certain
conditions. The emergence of this outcome highlights the potential impact of robust random
processes. These processes, characterized by their unpredictability and strength, possess
the capacity to exert substantial influence on the dynamics of information dissemination.
Consequently, even factors traditionally perceived as influential may be overshadowed or
mitigated by the effects of these potent random processes. This realization underscores the
importance of accounting for stochastic elements in modeling and analyzing information
dissemination dynamics, as they can significantly alter expected outcomes and challenge
conventional interpretations of influence and dominance.

In addition, we also consider the case where the same input parameters apply to all
types of information threats.

N0 = 500000, N1(0) = 0, N2(0) = 0, N3(0) = 0, N4(0) = 0, N5(0) = 0, N6(0) = 0,
α1 = 0.000012, α2 = 0.000012, α3 = 0.000012, α4 = 0.000012, α5 = 0.000012, α6 = 0.000012,

β1 = 0.00000001, β2 = 0.00000001, β3 = 0.00000001, β4 = 0.00000001, β5 = 0.00000001, β6 = 0.00000001

Upon reflection of the scenario outlined above, it becomes evident that one might an-
ticipate an equal distribution of adherents across each type of information threat. However,
due to the interplay of diffusion processes and sudden jumps, the resulting output becomes
inherently unpredictable. The diffusion process, characterized by the gradual spread of
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information over time, interacts with stochastic jumps, which represent sudden, significant
shifts in the number of adherents for specific ideas. As a result of these dynamic forces,
the distribution of adherents among different types of information threats deviates from a
uniform pattern, leading to unpredictable outcomes. This unpredictability is illustrated in
Figure 3, where the fluctuating nature of the distribution highlights the complex dynamics
at play in information dissemination.
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Figure 3. Displaying a case with the same input parameters for each information threat.

Given the stochastic nature of the process, it is anticipated that subsequent simulations
will yield varying results, even in the absence of alterations to the input parameters. This
randomness stems from the inherent unpredictability of certain factors influencing the sim-
ulation, such as initial conditions or external variables. As a consequence, each simulation
run may produce distinct outcomes, reflecting the inherent variability of the system being
modeled. Therefore, the expectation of observing different results in successive simulations,
even when input parameters remain unchanged, is a natural consequence of the inherent
randomness inherent in the simulation process (Figure 4).
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6. Conclusions

This article presents a comprehensive examination of the complexities involved in
developing a model to address n-types of information threats while considering envi-
ronmental variability. The primary aim is to assess the velocity of information threat
dissemination and integrate it into the development of countermeasure strategies. By
employing the Poisson approximation scheme, the model can differentiate between deter-
ministic shifts and jumps in the limit process, thereby accommodating real-world nuances
in information propagation.
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Key findings from this study include the proposal of a multidimensional model that
surpasses the classical approach in terms of generality and accuracy [22–24]. Moreover,
explicit constructions of the limit generators of the impulse process and the dynamical
system were achieved, facilitating a deeper understanding of the model’s behavior. Fur-
thermore, the developed software solution streamlines calculations, enhancing the model’s
practical applicability.

The proposed model offers significant advantages, notably in conducting precise and
comprehensive analyses of information threat spread. Enabling accurate measurement of
spread rates it empowers decision-makers to formulate more effective response strategies.
Additionally, the model’s ability to analyze temporal changes in information threat spread
facilitates trend identification and prediction of future threats.

In conclusion, the developed model represents a significant advancement in under-
standing and mitigating information threats. Its ability to account for environmental
variability and accurately analyze information spread dynamics makes it a valuable tool
for policymakers and security practitioners in devising proactive and effective response
strategies. Further research and experimentation will continue to refine and validate the
model’s performance in diverse contexts and scenarios.
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