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Abstract: In real-world scenarios, obtaining the relationships between nodes is often challenging,
resulting in incomplete network topology. This limitation significantly reduces the applicability of
community detection methods, particularly neighborhood aggregation-based approaches, on struc-
turally incomplete networks. Therefore, in this situation, it is crucial to obtain meaningful community
information from the limited network structure. To address this challenge, the LPGSE algorithm
was designed and implemented, which includes four parts: link prediction, structure observation,
network estimation, and community partitioning. LPGSE demonstrated its performance in com-
munity detection in structurally incomplete networks with 10% missing edges on multiple datasets.
Compared with traditional community detection algorithms, LPGSE achieved improvements in
NMI and ARI metrics of 1.5781% to 29.0780% and 0.4332% to 31.9820%, respectively. Compared
with similar community detection algorithms for structurally incomplete networks, LPGSE also
outperformed other algorithms on all datasets. In addition, different edge-missing ratio settings were
also attempted, and the performance of different algorithms in these situations was compared and
analyzed. The results showed that the algorithm can still maintain high accuracy and stability in
community detection across different edge-missing ratios.

Keywords: community detection; incomplete structure; edge-missing; link prediction; graph
structure estimation

MSC: 05C82

1. Introduction

With the continuous development of computer technology and the rapid growth of
the amount of data, the network has become an important and ubiquitous structure in
the real world. It can describe the relationship between entities and the entity itself by
edges and nodes, respectively. In order to detect the community structure in the network,
many community detection algorithms have been proposed, including those based on
modular optimization [1,2], based on deep learning [3–5], and based on random block
model (SBM) [6–9]. Related experimental results show that these community detection
methods have achieved good results in different datasets.

However, the vast majority of community detection algorithms are based on the
assumption that the network is fully observed. But, in reality, many networks are hard
to fully observe. This assumption is often violated because graphs are typically extracted
from complex interactive systems. This is often due to the uncertainty or errors inherent in
these interactive systems [10]. For example, in the protein interaction map, the inaccurate
experimental error in the laboratory is the main source of errors, which causes the protein
interaction network to be incomplete or introduces some noise. Additionally, privacy
protection may also result in incomplete data collection. For example, some users on
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Twitter may hide part of their friends list, making the edges between the corresponding
user pairs not visible in the network, which will lead to an incompletely built network [11].

In the case of incomplete network structure, in recent years, researchers have proposed
some two-stage methods or unified framework that combines link prediction and com-
munity detection to solve this problem [12,13]. However, the goal of link prediction is to
predict as many correct edges as possible, which is not consistent with the requirement of
predicting important edges to identify associations in the edge-missing network. Therefore,
directly combining link prediction and community detection does not effectively detect the
community structure of marginal missing networks.

In view of the above problems, this paper proposes an algorithm framework called
LPGSE (Link Prediction and Graph Structure Estimation for Community Detection). The
goal is to estimate an optimal graph by using a combination of link prediction, graph
representation learning, and probability estimation, and, finally, to conduct a community
detection task on the optimal graph. The main contributions of this study are as follows:

1. We conducted an in-depth analysis of the current situation and problems of the
existing research, considered the generation process of the graph, comprehensively
used various information, and proposed a new method for community detection on
incomplete networks.

2. LPGSE was designed and implemented in the algorithm, which realized efficient com-
munity detection on the incomplete structure network through the steps of link pre-
diction, structure observation, probability estimation, and optimal graph generation.

3. We performed experimental validation of the proposed LPGSE algorithm using mul-
tiple open source datasets. Experimental results showed that LPGSE outperforms com-
munity detection on poorly structured networks compared to other contrast algorithms.

2. Related Work

An incomplete information network refers to the missing or incomplete graph data in
terms of network structure or attribute information. In the real world, such networks are
very common because complete information is often difficult to obtain during many data
acquisition processes. For example, in data collection, due to limited resources, individuals
or organizations may only obtain a subset of data in a specific geographic query area,
resulting in incomplete data; in addition, due to user-specified privacy settings, individuals
may partially or completely hide some of their activity trajectory or friendship relationships,
which further aggravate the problem of incomplete information [14]. A typical example
is that about 52.6% of New York City Facebook users hide their friend list [15], based on
statistics from June 2011. Some users on Twitter may hide part of their friend list, making
the edges between the corresponding user pairs not visible in the network [11]. In the
network of terrorist organizations, each node represents terrorist activities, and the edge
between two nodes indicates that two activities come from the same organization. We
may not know which terrorist organizations carried out terrorist activities. Therefore, the
relationship between certain terrorist activities is unclear. When facing networks with
incomplete information, researchers need to consider adopting a more robust, flexible, and
adaptive approach to fully utilize the existing information and solve the challenges due to
missing information.

Traditional community detection techniques assume the complete network topol-
ogy, and the discovery process relies on graph analysis to measure node similarity in the
neighborhood. However, real-world networks have limited structural information, and
incomplete networks can affect neighborhood analysis and further reduce the accuracy
of community detection. CNN architecture can gradually recover complete latent fea-
tures from basic inputs, so the first supervised CNN model [16] for incomplete structural
networks (TINs) was proposed for community detection. The model includes two CNN
layers with maximum pooling operation for network representation and a fully connected
DNN layer for cluster detection. The CNN architecture recovers the complete potential
features from the original input, the convolution layer represents the local features of each
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node from different angles, and the last fully connected layer updates the community of
each node.

These methods are divided into three categories, namely, methods based on link
prediction completion networks [17,18], methods based on probabilistic models [19,20],
and methods based on graph neural networks [21–23].

Based on the link prediction and completion network method, the link prediction
method is used to predict some missing edges to complete the network, and then carry
out the community detection task on this complete network. The method is divided
into two categories. The first category includes the two-stage algorithm [24]; specifically
speaking, the first phase requires a link prediction to recover the missing edges, and the
second stage requires community detection on a complementary network, as proposed
by Burgess et al. [12]. EDGEBOOST is a consensus clustering approach using link pre-
diction enhancement to address the community detection problem of complex networks;
specifically speaking, it applies a link prediction algorithm in a given network to predict
the missing edges and performs basic clustering on the original network and predicted
edges using different community detection algorithms, which produces multiple basic
community divisions. These basic community divisions are integrated into a consensus
matrix, and the consensus clustering algorithm is applied to obtain the final stable and
accurate division of communities. The second category includes the method [25] for si-
multaneous community detection and link prediction in a unified framework, such as
CLMC [25], which is one of the most representative algorithms in the category; its goal is to
learn a similarity matrix in the Unity framework to detect communities and a complement
matrix to predict missing edges. Zhang et al. proposed a joint optimization framework,
COPE [13], where link prediction and community detection are mutually reinforcing; by
learning the probability of invisible links and nodes joining communities, the framework
aims to improve the quality of community detection and can produce better results. He
et al. argue that all these algorithms assume that the more the algorithm can correctly
predict the missing edges [7], the more accurate the group detection. However, the goal
of link prediction is to predict as many correct edges as possible, which is inconsistent
with the requirement of predicting important edges to identify communities in the edge-
missing network. Therefore, combining link prediction and community detection does
not effectively detect the community structure of networks with missing edges. Thus,
by proposing a community self-directed generative model, SGCD, the improvement is
achieved by accommodating two sets of variables in our model, one for recovering the
missing edges and one for describing associations.

The method based on probabilistic models mainly relies on probabilistic models to
represent the relationship between nodes and edges, thus making inferences on the basis
of known partial network structure and attribute information. For example, Tran et al.
proposed the regularized non-negative matrix factorization (NMF) community detection
framework KroMFac and the DeepNC method based on the Kronecker graph model [24].
The expectation maximization (EM) algorithm was applied in KroMFac. Specifically, the
parameter matrix is generated from an inferred Kronecker, the missing part of the network
is estimated first, and then the community structure is revealed by solving the regularized
NMF-assisted optimization problem to maximize the possibility of the underlying graph.
Chen et al. proposed a general framework based on the Gumbel-softmax network inference
(GIN) to infer network structure and node information from time series data with missing
nodes [26]. We addressed this problem by finding an optimized network structure, a
suitable set of initial states, and a network dynamic approximator that minimizes the error
between the observed time series of nodes and the time series generated by the GIN model.
Jelena et al. argue that the network traffic estimation may suffer large errors due to the
incompleteness of the observed data, and, to solve this problem, a method based on the
maximum entropy model was proposed to reconstruct the network traffic [27].

The method based on the graph neural network mainly applies the graph convo-
lutional network (GCN) class model to the network completion problem. For example,
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Xu et al. proposed a GCN-based model [28], which regards the process of completing a
graph as the growth process of the network and learns growth rules to supplement the
whole network. META-CODE [29] infers network structure by using the multi-allocation
cluster (MAC) and the community attribution graph model (AGM). Tran et al. proposed
a new approach, DeepNC, for completing missing parts of the inference network based
on a graph depth generative model [30]. Specifically, the DeepNC method uses a deep
generative model to infer the missing parts of the network. Specifically, first, autoregressive
generative models are used to learn the likelihood distribution of edges in the network.
This model can capture the underlying topology and node features in the network. Based
on the learned autoregression generation model, we determined the completion network
that maximizes the likelihood distribution given by the observable graph topology.

3. Problem Definition

The network with a missing edge is depicted as GO = (V, EO), where V is a collection
of nodes and EO is the collection of edges; the missing-edge network GO with a number
of |VO| can be understood as coming from a real network GT = (V, ET), where ET is the
complete set of edges of the real network, EO ∈ ET. Edges describe the relationship between
nodes, and the adjacency matrix of a network with missing edges can be represented by
X ∈ R|V|×|V|, where XI,j represent the connection relationship between node vi and vj.
Given an incomplete graph containing a set of nodes and a subset of connections between
nodes, the goal is to learn an optimal graph S ∈ S = [0, 1]|V|×|V| and, finally, perform
community detection on S.

4. Methodology

The objective of the LPGSE algorithm is to estimate an optimal graph by using a
combination of link prediction, graph representation learning, and probability estimation.
Finally, the community detection task is conducted on the optimal graph, which includes
four parts, namely, link prediction, structure observation, network estimation, and com-
munity detection. First, link prediction is conducted to predict possible edges present but
not observed in the network, helping to improve the integrity of the network; then, by
constructing the observation set in the input GCN of the completed network, these sets can
reflect the possible structure of the network. Next, according to the observation set, the
original network is estimated using the probability estimates to generate a new network
structure. The process is repeated for link prediction, and probability estimation until
an optimal graph is obtained. In this process, predicted edges are added to the original
network, and the observation set is used to guide the process of network estimation, and,
for community detection on this optimal graph, to identify the community structure in the
network. The specific algorithm process and framework are shown in Figure 1.
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4.1. Link Prediction

The integrity of the network is crucial to community detection tasks, because an
incomplete network structure may seriously affect the accuracy of community detection.
In the LPGSE algorithm, completing the network whenever possible is a key step. Link
prediction is a method used to predict the possible connections between nodes in a network,
which can help us to better understand and mine the potential relationships in the network.
In order to take full advantage of the link prediction in the community detection task, the
LPGSE algorithm first uses the link prediction technology to complete the missing edges in
the network. This step can improve the network integrity by learning the patterns in the
existing network structure to predict the missing connections.

In LPGSE, the link prediction algorithm is not mandatory, and any link prediction
algorithm can use WLNM [31] as the link prediction part in this algorithm. WLNM uses
the WL transformation to capture the local and global structure information of the graph,
which helps to better understand the potential links between nodes, and, thus, improves
the accuracy of link prediction. The WL transformation shows strong discriminative
ability in the graph isomorphism test, which means that the WLNM model can have strong
generalization ability on different types of graph structures, and can also achieve a good
prediction effect for diverse network structures. WLNM can be integrated with other neural
network structures, such as convolutional neural networks and recurrent neural networks,
which can help to further improve the performance of the model.

The WLNM algorithm mainly includes closed subgraph extraction, subgraph pattern
coding, adjacency matrix construction, and neural network training. First, for each edge, the
closed subgraph node set Vk containing K neighbor nodes is extracted, and the extraction
process starts from first-order neighbors and then gradually extends to second-order
neighbors, third-order neighbors, etc., until K neighbor nodes are reached. These subgraphs
can capture the higher-order neighborhood structure between the nodes. After extracting
and encoding the subgraphs, the former K subgraphs are selected according to certain
criteria (e.g., importance, frequency of the subgraphs, etc.) ensuring that the model focuses
on the most important local structural features. Next, each subgraph is represented as an
adjacency matrix, with the node order given by the Palette-WL labeling algorithm. This is
a color refinement method based on the modified hash function. Then, an upper triangle
adjacency matrix is constructed for each node, reflecting the connections between the nodes.
Subsequently, the adjacency matrix is input into the neural network for learning. Neural
networks can learn the connections between nodes by optimizing the loss functions. After
training the neural network, the existence of the test link can be predicted by extracting
a closed subgraph of the test link, encoding using Palette-WL, and feeding the resulting
adjacency matrix to the neural network. Finally, a predicted score between 0 and 1 is output
for each test link, representing the estimated probability that the test link is positive. The
flow of the WLNM algorithm is shown in Figure 2.
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4.2. Structural Observation

Learning the graph-structured data from a single information source inevitably results
in bias and uncertainty. If an edge exists in multiple measurements, its confidence will be
greater, as will the community information. Therefore, a reliable graph structure should
consider the integrated information to inject multifaceted information and reduce bias [32].
The LPGSE algorithm constructs a set of observations for the optimal graph using the
graph X’ after completing the link prediction, and then estimates the graph based on these
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observation sets. Here, the GCN is selected as the backbone, and the graph X′, after link
prediction completion, is input into the GCN to construct the initial observation sets K and
C for the network estimation.

Specifically, GCN follows the neighbor aggregation strategy by iteratively updating
the representation of nodes by pooling the representation of the node neighbors. Formally,
the k-layer aggregation rule of the GCN is shown in Equation (1).

H(k) = σ

(
∼
D
− 1

2 ∼
A

∼
D
− 1

2
H(k−l)Wk

)
, (1)

where
∼
A is the normalized adjacency matrix,

∼
Dii = ∑j

∼
Aij, Wk is the hierarchical trainable

weight matrix, σ represents the activation function, H(k) ∈ RN×d is the matrix represented
by the k-layer nodes, and H0 = X′. The GCN parameter θ =

(
W1, W2 . . . .Wl

)
can be

trained by gradient descent.
The current GCN takes action on the X′ after completion of the link prediction. To esti-

mate the optimal graph structure of the GCN, we need to build multifaceted observations
that can be integrated to resist bias. After k-aggregate iterations, the node representa-
tion captures structural information within the k-order graph neighborhood, providing
local-to-global information.

Specifically, the fixed GCN parameter θ, taking out the node representation
H =

(
H0, H1 . . . Hl

)
, deconstructs the KNN graph K =

(
K0, K1 . . . Kl

)
as the observation

set for the optimal graph, where Ki is the adjacency matrix of the KNN graph generated by
Hi, characterizing the similarity of the order i neighborhood. Obviously, the original graph
X′ is also an important observation of the optimal graph, so it is combined with the set of
KNN graphs to form the complete observation set K =

(
X′, K0, K1 . . . Kl

)
. Meanwhile, the

initial community detection is performed in these KNN maps, constituting the observation
set C =

(
C′, C0, C1 . . . Cl

)
. The observation set results K and C represent the optimal

graph structure from different viewpoints and can be integrated to infer more reliable
graph structures. These observations, K and C, and the predicted values Z are fed into the
estimator to accurately infer the posterior distribution of the graph structure.

4.3. Network Estimation

Considering the local smoothing characteristics of GCN, the random block model
(Stochastic Block Model, SBM) is a good choice; it is widely used for community detection
and is suitable to model for graphs with strong community structure [20,33]. It should be
noted that the probability distribution P(G|Ω, Z, yL ) is used to generate graph G, and the
specific method is shown in Equation (2).

P(G|Ω, Z, yL ) = Πi<jΩ
Gij
cicj

(
1 − Ωcicj

)1−Gij
, (2)

where Ω is the parameter of SBM; it assumes that the probability of edges between nodes
only depends on the result set of multiple observations C of community relationships. For
example, for node vi (belonging to the observed community ci) and node vj (belonging to
the multiple observed community cj), the edge probability between them is denoted by Ω;
this means that generating graph the G also generated edges between nodes, which only
depend on the multiple observed community division results. In order to obtain a more
accurate community structure, the yL label only chooses the observation repeats for further
analysis, because multiple observations are the same, with higher confidence.

The observation model is introduced to describe how the generative graph G maps
to the observations, which assumes that the observations at the edges are independent,
identically distributed Bernoulli random variables, conditional on the presence or absence
of edges in the generative graph. This assumption has been widely accepted in previous
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studies, such as community detection and graph generation, and has been shown to be
viable [34]. The P(K|G,α,β ) represent the probability of these observations K appearing
under the generating graph G and the model parameters α and β. We suppose that, in
the observation of M(i.e|K|), one side is observed to have an edge on the Eij and no edge
on the other M − Eij. With these definitions, the specific form of P(K|G,α,β ) is shown in
Equation (3).

P(K|G,α,β ) = Πi<j

[
αEij(1 − α)M−Eij

]Gij ×
[
βEij(1 − β)M−Eij

]1−Gij
, (3)

If an edge indeed exists in the generative graph G, among the total M observations,
the nodes vi and vj can be rewritten as αEij(1 − α)M−Eij , and, if not, the probability is
βEij(1 − β)M−Eij .

Based on the above process, it is difficult to directly calculate the posterior probability
P(G, Ω,α,β|K, Z, yL) of the generating graph G. However, combining the probability with
the above model and applying Bayesian estimation, as shown in Equation (4), we have

P(G, Ω,α,β|K, Z, yL) =
P(K|G,α,β )P(G|Ω, Z, yL )P(Ω)P(α)P(β)

P(K, Z, yL)
, (4)

where P(Ω), P(α), P(β)and P(K, Z, yL) are independent of each other. All possible values
of generating graph G are summed to obtain posterior probability expressions for the
parameters Ω, α, and β as shown in Equation (5).

P(Ω,α,β|K, Z, yL) = ∑
G

P(G, Ω,α,β|K, Z, yL), (5)

To maximize the posterior estimation, MAP calculates the estimated adjacency matrix
Q of the resulting graph G, which is shown in (6). It should be noted that the generative
graph G is used as the next loop iteration or the optimal graph S for community division.

Qij = ∑
G

q(G)Gij, (6)

where, Qij is expressed as the posterior probability of having an edge between the node
vi and the node vj, which is the confidence of that edge. To update the estimated adja-
cency matrix Q, Q will be solved using the expectation maximization (EM) algorithm [35]
maximization equation.

In E-step, the Jensen inequality is applied to Equation (5) because directly maximizing
the probability is inconvenient. This inequality is then used to derive Equation (7) after
taking the logarithm.

logP(Ω,α,β|K, Z, yL) ≥ ∑
G

q(G)log
P(G, Ω,α,β|K, Z, yL)

q(G)
, (7)

where q(G) is an arbitrary non-negative function satisfying ∑G q(G) = 1 and can be
regarded as a probability distribution over G. When the realization is completely equal, the
right side of Equation (7) is maximized to obtain the following equation:

q(G) =
P(G, Ω,α,β|K, Z, yL)

∑G P(G, Ω,α,β|K, Z, yL)
, (8)
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In M-step, the maximum value of the parameter can be found by differentiation. On
the right side of Equation (7), the derivative q(G) remains unchanged, and, assuming that
the prior is uniform, we can obtain the following equations:

∑
G

q(G)∑
i<j

[
Gij

Ωcicj

−
1 − Gij

1 − Ωcicj

]
= 0, (9)

∑
G

q(G)∑
i<j

Gij

[
Eij

α
−

M − Eij

1 − α

]
= 0, (10)

∑
G

q(G)∑
i<j

(
1 − Gij

)[Eij

β
−

M − Eij

1 − β

]
= 0, (11)

The solutions of these equations provide the MAP estimates of Ω, α, and β. Further,
an updated equation for each parameter is obtained, as shown in the following equations:

α =
∑i<j QijEij

M∑i<j Qij
, (12)

β =
∑i<j

(
1 − Qij

)
Eij

M∑i<j

(
1 − Qij

) , (13)

The calculation of Ω can be understood as the observed probability of an edge rs of
two societies r and s, which is calculated from the average probability of a single edge
between all nodes, that is, when r and s are in the same community equations as shown in
Equation (14), otherwise as shown in Equation (15).

Ωrs =
2Mrr

nr(nr − 1)
, (14)

Ωrs =
Mrs

nrns
, (15)

The calculation of the Qij value is as shown in the following Equation (16):

Qij =
Ωcicjα

Eij(1 − α)M−Eij

Ωcicjα
Eij(1 − α)M−Eij +

(
1 − Ωcicj

)
βEij(1 − β)M−Eij

, (16)

4.4. Community Detection

It should be noted that the above link prediction, structure observation, and network
estimation are circular iterative processes that learn an optimal graph S. After obtaining the
optimal graph S, the community detection algorithm can be implemented on it and then
divide the community. It is worth mentioning that in this step, there is no restriction on
the community detection algorithm, and any applicable community detection algorithm
can be used. In this case, the spectral clustering algorithm was selected as the method to
implement community detection.

By summarizing the process of the above algorithm, the pseudocode implementation
of the LPGSE algorithm is given as shown in the Algorithm 1.
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Algorithm 1 LPGSE.

Input:
GO = (V, EO), KNN graph parameters k, GCN parameters lr, p, epoch, σ, and layer,
deviation λ, threshold ε, estimated number of iterations τ.

Output: Community collection C.
1: Initialization parameters θ,Ω, α, and β.
2: for τ do:
3: Link prediction for the input Figure GO.
4: GCN model training.
5: Use the KNN diagram to construct the observation set K.
6: Build the observation set C with spectral clustering.
7: while

∣∣∣α − αold
∣∣∣ > λ or

∣∣∣β − βold
∣∣∣ > λ do:

8: Ωold = Ω, αold = α, βold = β.
9: Calculate α and β by Equations (12) and (13).

10: Calculate Ω by Equations (14) and (15).
11: Calculation Equation (16), update Q.
12: end while
13: The Si was extracted by using the threshold ε on the Q.
14: Set the next iteration A = Si.
15: end for
16: Using spectral clustering on S(τ).
17: return community collection C.

5. Experiments

The performance of LPGSE was tested on four widely used real networks with known
societies, with the specific dataset information shown in Table 1.

Table 1. Statistical information on datasets.

Dataset Number of Nodes Number of Edges Category

Zachary’s karate club 34 78 2
Football 115 613 12

Political books 105 441 2
Dolphin social network 62 160 3

For a comprehensive evaluation, different categories of comparison algorithms were
selected, including some traditional community detection algorithms and community de-
tection algorithms for incomplete network structures. Traditional community detection
algorithms usually assume that networks are complete, while the latter conduct com-
munity detection for networks with missing edges. The specific algorithms include the
following ones:

• Louvain [36]: An efficient community detection algorithm based on modular degree
optimization. It was proposed by Blondel et al. in 2008, and its main goal is to
find a way of dividing the network that maximizes the modularity between the
divided associations.

• Spectral [37]: An unsupervised learning algorithm based on graph theory is mainly
applied in tasks such as data clustering and community detection.

• Km-node2vec: A community detection algorithm that combines the K-means clus-
tering method and the Node2vec representation learning method. It first learns
low-dimensional vector representations of nodes in the Node2vec, and then uses these
representations for K-means clustering to obtain the community structure.

• Modularity [38]: A method to detect associations in a network by optimizing the
modular degree values.

• PIC [32]: A fast clustering method based on the idea of spectral clustering that reduces
the computational cost by avoiding computing eigenvalues and eigenvectors through
power iteration.
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• LPCD [12]: An approach combining link prediction and consensus clustering to
address community detection problems in complex networks.

• CLMC [25]: A cluster-driven low-rank matrix completion method for clustering on
networks supplemented with missing links to improve the performance of
community detection.

Because these networks are complete networks, in order to simulate the structure of
incomplete networks, we randomly deleted 10% of the existing edges of each network to
produce the missing-edge network; specifically, for each network, we randomly generated
50 instances of missing-edge networks, and calculated the NMI and ARI of each algorithm
tested on these networks.

NMI measures the amount of information shared between two clusterings, normalized
by the total information in the two clusterings. It is calculated as follows:

NMI =
I(X; Y)

H(X) + H(Y)
(17)

where I(X;Y) is mutual information shared between X and Y. H(X) and H(Y) are the entropy
of real clustering and modeled clustering, respectively. NMI takes values in the range [0,1].

ARI measures the similarity between two clusterings by considering pairs of samples
and counting pairs that are assigned to the same or different clusters in the two clusterings,
adjusted for chance. It is calculated as follows:

ARI =
∑ij

(
nij
2

)
− [∑i

(
ai
2

)
∑j

(
bi
2

)
]/
(

n
2

)
1
2 [∑i

(
ai
2

)
+∑j

(
bi
2

)
]− [∑i

(
ai
2

)
∑j

(
bi
2

)
]/
(

n
2

) (18)

where nij is the number of samples that are in both cluster i and j. ai is the number of
samples in cluster i. bi is the number of samples in cluster j. n is the total number of samples.

Experimental Results

In this study, comparative experiments were conducted on the four datasets presented
above. To simulate the missing-edge network, 10% of the existing edges were randomly
removed in each network. For each network, 50 missing-edge network instances were
randomly generated and the NMI and ARI averages on these networks were calculated for
each algorithm. The experimental results are shown in Table 2.

Table 2. Experimental results of different algorithms on Karate, Football, Polbooks, and Dolphins.

Method
Karate Football Polbooks Dolphins

NMI ARI NMI ARI NMI ARI NMI ARI

Louvain 0.4756 0.3583 0.8485 0.6946 0.5052 0.5299 0.3600 0.2047
Spectral 0.6486 0.6685 0.9188 0.8917 0.5745 0.6745 0.5883 0.6957

Km-node2vec 0.4949 0.5720 0.9054 0.8683 0.5751 0.6889 0.6391 0.7516
Modularity 0.4801 0.3579 0.7326 0.5032 0.5475 0.6559 0.3924 0.2366

PIC 0.1813 0.1004 0.5134 0.2509 0.5809 0.6926 0.3714 0.2469
LPCD 0.7324 0.7719 0.9188 0.8918 0.5745 0.6745 0.6394 0.7523
CLMC 0.8361 0.8819 0.9308 0.9063 0.5736 0.6946 0.6792 0.8004
LPGSE 0.8372 0.8823 0.9333 0.9113 0.6161 0.6956 0.6990 0.8099

It is clear from the above table that traditional community detection algorithms have
limitations in dealing with networks with incomplete structures. In the face of incomplete
network structure, the performance of the NMI and ARI indicators of algorithms such as
Louvain, Spectral, and Km-node2vec is greatly affected. The design of these traditional
community detection algorithms is based on the premise of complete networks, so their
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effectiveness in dealing with incomplete networks is severely limited. However, some
community detection algorithms designed specifically for incomplete network structures
compensate for this deficiency to some extent, making them outperform traditional algo-
rithms in NMI and ARI metrics. For example, LPCD, CLMC, and LPGSE complete the
missing edges by using the link prediction method, which reduces the impact of incomplete
network structure on the community detection task.

Among these algorithms, LPGSE, as a novel algorithm proposed in this study, showed
better performance in various algorithm comparisons. Compared with the best traditional
community detection algorithm, LPGSE improved by 29.0780% and 31.9820% in the NMI
and ARI indexes in the Karate dataset; NMI and ARI increased by 1.5781% and 2.1980%,
respectively; NMI and AMI improved by 6.060% and 0.4332% in the Polbooks dataset;
NMI and ARI increased by 9.3726% and 7.7568% in the Dolphins dataset. Moreover,
compared with the community detection algorithms of the same type for incomplete
network structure, LPGSE also outperformed the other algorithms on all the datasets. From
Figures 3 and 4, we can see more intuitively that LPGSE exhibits improved NMI and ARI
on different datasets.

Mathematics 2024, 12, x FOR PEER REVIEW  11  of  16 
 

 

CLMC  0.8361  0.8819  0.9308  0.9063  0.5736  0.6946  0.6792  0.8004 

LPGSE  0.8372  0.8823  0.9333  0.9113  0.6161  0.6956  0.6990  0.8099 

It is clear from the above table that traditional community detection algorithms have 

limitations in dealing with networks with incomplete structures. In the face of incomplete 

network structure, the performance of the NMI and ARI indicators of algorithms such as 

Louvain, Spectral, and Km-node2vec  is greatly affected. The design of these traditional 

community detection algorithms is based on the premise of complete networks, so their 

effectiveness  in dealing with  incomplete networks  is  severely  limited. However,  some 

community detection algorithms designed specifically for incomplete network structures 

compensate for this deficiency to some extent, making them outperform traditional algo-

rithms  in NMI and ARI metrics. For example, LPCD, CLMC, and LPGSE complete  the 

missing edges by using the link prediction method, which reduces the impact of incom-

plete network structure on the community detection task. 

Among  these  algorithms,  LPGSE,  as  a  novel  algorithm  proposed  in  this  study, 

showed better performance in various algorithm comparisons. Compared with the best 

traditional community detection algorithm, LPGSE improved by 29.0780% and 31.9820% 

in the NMI and ARI indexes in the Karate dataset; NMI and ARI increased by 1.5781% and 

2.1980%, respectively; NMI and AMI improved by 6.060% and 0.4332% in the Polbooks 

dataset; NMI and ARI increased by 9.3726% and 7.7568% in the Dolphins dataset. Moreo-

ver, compared with the community detection algorithms of the same type for incomplete 

network  structure, LPGSE also outperformed  the other algorithms on all  the datasets. 

From Figures 3 and 4, we can see more intuitively that LPGSE exhibits improved NMI and 

ARI on different datasets. 

 

Figure 3. NMI values of different algorithms on the four datasets: Karate, Football, Polbooks, and 

Dolphins. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Karate Football Polbooks Dolphins

N
M
I

Dataset

Louvain Spectral Km-node2vec Modularity PIC LPCD CLMC LPGSE
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Mathematics 2024, 12, 1269 12 of 16

By accumulating NMI and ARI metrics on four network datasets, the algorithm perfor-
mance can be comprehensively evaluated in different scenarios to more accurately demon-
strate the reliability and applicability of the algorithm. It can be seen from Figures 5 and 6
that by comparing the comprehensive performance of different algorithms on the four
datasets, the LPGSE algorithm has obvious advantages in handling the detection prob-
lem with incomplete network structures. This result further confirms the stability and
effectiveness of the LPGSE algorithm in the face of incomplete networks.
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Figure 5. The accumulated NMI values of different algorithms on the four datasets: Karate, Football,
Polbooks, and Dolphins.
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Figure 6. The accumulated ARI values of different algorithms on the four datasets: Karate, Football,
Polbooks, and Dolphins.

To demonstrate the stability of the LPGSE algorithm, we conducted a set of experi-
ments on the Karate dataset with different proportions of missing edges. By comparing
the experimental results of various algorithms in these different edge-missing ratios, we
evaluated the performance of LPGSE in different situations. The experimental results of the
various algorithms with different proportions of deletions are presented in Tables 3 and 4.

In order to more intuitively observe the changes of NMI and ARI indexes in different
Karate networks with different edge-missing ratios by different algorithms, the data in
the above table are plotted as a line diagram. As shown in Figures 7 and 8, this will more
intuitively compare and analyze the performance of different algorithms under the missing
proportion of different edges.
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Table 3. The NMI values of different algorithms under different edge-loss ratios in the
Karate network.

Ratio of
Missing Edges 10% 15% 20% 25% 30% 35% 40%

Modularity 0.4801 0.5809 0.5267 0.3797 0.5469 0.4261 0.4196
Km-node2vec 0.4949 0.6486 0.7324 0.6486 0.5778 0.2439 0.2065

Spectral 0.6486 0.7324 0.7324 0.2825 0.6485 0.4273 0.2825
Louvain 0.4756 0.5077 0.5267 0.5005 0.4371 0.4047 0.4196

LPCD 0.7324 0.7324 0.7324 0.2825 0.4273 0.4949 0.2439
CLMC 0.8361 0.8361 0.4949 0.5756 0.5778 0.0930 0.0110
LPGSE 0.8372 0.8372 0.7324 0.6486 0.7324 0.5756 0.4949

Table 4. The ARI values of different algorithms under different edge-loss ratios in the Karate network.

Ratio of
Missing Edges 10% 15% 20% 25% 30% 35% 40%

Modularity 0.3579 0.5897 0.3924 0.2705 0.4691 0.2726 0.2733
Km-node2vec 0.5720 0.6685 0.7717 0.6685 0.5725 0.1089 0.0724

Spectral 0.6685 0.7717 0.7717 0.1528 0.6685 0.4831 0.1528
Louvain 0.3583 0.4285 0.3924 0.4064 0.3590 0.2662 0.2733

LPCD 0.7719 0.7717 0.7717 0.1528 0.4831 0.5720 0.1089
CLMC 0.8819 0.8819 0.5720 0.6682 0.5725 0.0072 0.0064
LPGSE 0.8823 0.8823 0.7717 0.6685 0.7717 0.6682 0.5720

From the above line diagram, it can be clearly observed that, in the Karate network,
the LPGSE algorithm still shows good performance in different edge-missing ratios. In
the face of different degrees of edge deletion, the NMI and ARI indicators of the LPGSE
algorithm fluctuate less, which means that the algorithm can maintain high accuracy and
stability of community detection. This feature is important for dealing with the unstable or
absent network structure in real life.
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Figure 7. The NMI value changes of various algorithms under different edge-loss ratios in the
Karate network.
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Figure 8. The ARI value changes of various algorithms under different edge-loss ratios in the
Karate network.

6. Conclusions

Community detection in the network is an area of ongoing active research. The
development of new algorithms has received significant attention, focusing in particular
on improving accuracy and dealing with incomplete data. However, the vast majority of
community detection algorithms are based on the assumption that the network is fully
observed, which leads to incomplete data being ignored. To address the above problems,
this paper proposes a framework called LPGSE. The goal is to estimate an optimal graph
by using a combination of link prediction, graph representation learning, and probability
estimation, and, finally, to conduct a community detection task on the optimal graph.
Extensive experiments demonstrated the accuracy of our proposed algorithm. We also
tried different settings of edge-missing ratios, and analyzed the performance of different
algorithms in these cases by comparison. The results show that the model can still maintain
high community detection accuracy and stability when processing network data with
different edge-missing ratios.
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