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Abstract: In this paper, the fixed-time and preassigned-time synchronization issues of fully quaternion-
valued fuzzy memristive neural networks are studied based on the dynamic event-triggered control
mechanism. Initially, the fuzzy rules are defined within the quaternion domain and the relevant prop-
erties are established through rigorous analysis. Subsequently, to conserve resources and enhance
the efficiency of the controller, a kind of dynamic event-triggered control mechanism is introduced
for the fuzzy memristive neural networks. Based on the non-separation analysis, fixed-time and
preassigned-time synchronization criteria are presented and the Zeno phenomenon under the event-
triggered mechanism is excluded successfully. Finally, the effectiveness of the theoretical results is
verified through numerical simulations.

Keywords: quaternion-valued fuzzy memristive neural network; fixed-time synchronization;
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1. Introduction

Over the past several decades, artificial neural networks have taken center stage in
technology research. At present, in an attempt to mimic the complex operations of the
human brain, researchers have embarked on the exploration of a novel form of artificial
neural network known as the fuzzy memristive neural network (FMNN). This ground-
breaking neural network blends fuzzy logic and memristor technology, boosting the deep
learning prowess of neural networks by imitating the synaptic behavior inherent in the
human brain. The fuzzy memristive neural network not only facilitates the storage and
processing of substantial volumes of data but also enhances adaptability and efficiency
in the machine learning process. This form of neural network holds immense potential
for propelling the evolution of artificial intelligence and heralding a novel technological
revolution. Currently, researchers in the field of FMNN have produced several excellent
results [1–4]. For instance, in [1], an impulsive sampled data communication mechanism
is proposed to investigate the anti-synchronization of FMNNs. Gong et al. presented the
T-S FMNN synchronization criterion in [3]. Additionally, Wang et al. investigated the
fixed-time and preassigned-time synchronization of FMNNs [4].

It is important to note that the aforementioned studies on FMNN have been conducted
in the real number domain. As a generalization of real-valued numbers and complex-valued
numbers, the algebraic structure of quaternions is well-recognized for its ability to empower
networks with increased representational capacity and a reduced count of parameters
when addressing complex interrelationships and patterns. By integrating quaternion-
based weights and activation functions, the quaternion-valued neural network (QVNN)
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improves the traditional mathematical representation of neurons and makes it possible to
process multi-channel data, including color imagery [5], video content [6], and 3D spatial
information [7]. Currently, the dynamic properties of QVNN have been widely concerned,
such as dissipativity [8,9], stability [10,11], optimization [12], and synchronization [13,14].
The fusion of QVNN, known for its efficient data representation, with the high fault
tolerance characteristic of FMNN, has given rise to the innovative quaternion-valued fuzzy
neural network model. This synergetic model amplifies the network’s resilience to noise
and data incompleteness while preserving the inherent multi-dimensional correlations
present within the data.

Synchronization pertains to the coordinated process where neurons or neuron clusters
within a neural network achieve a uniform or coherent state of activity via mutual influence.
This phenomenon has become a significant topic in the field of QVNNs. Zhang et al. pro-
vided several criteria for synchronization of quaternion-valued memristive neural networks
(QVMNNs) by designing adaptive control strategies [15]. The exponential synchroniza-
tion for QVMNNs with time-varying delayed were addressed in [16,17]. Moreover, the
issues of synchronization associated with quaternion-valued fuzzy neural networks have
been reported in [18–20]. Nevertheless, due to the complexity of quaternion-valued and
memristor-based neurons, there are fewer related references on quaternion-valued fuzzy
memristive neural networks (QVFMNNs). Furthermore, the fuzzy operations introduced
into the model of QVMNN, the design of controller, and the theoretical proof are not a
trivial generalization. We need to design new control algorithms, use special techniques to
deal with the fuzzy term, and study the synchronization of QVFMNN.

Traditional research on synchronous systems typically emphasizes exponential and
asymptotic synchronization. However, these techniques frequently fail to achieve syn-
chronization within a limited time. Consequently, there has been an increasing interest in
research on fixed-time synchronization (FITS) to meet practical application requirements.
FITS aims to attain consistency of states among all neurons in a network within a finite time,
regardless of initial conditions. There are several outstanding results about FITS [21–24].
Tang et al. designed a continuous sampling and non-chattering controller to achieve the
FITS of neural networks [21]. The FITS of memristor-based neural networks was investi-
gated by a continuous sampling feedback control in [24]. With the development of time,
more investigation in the engineering field is needed to achieve synchronization in an
ideal predetermined time, in which the convergence time is independent of the system
and controller parameters. Hu et al. have proposed a mature theory of prescribed-time
stability [25], which successfully extended the fixed-time stability theory. Subsequently,
numerous noteworthy achievements have been made [26–30]. The preassigned-time syn-
chronization (PETS) of complex-valued memristive neural networks was studied in [29].
It is important to note that most of the aforementioned research is based on continuous
time-triggered control. When it comes to resource utilization, this control wastes computing
and energy resources by performing control tasks periodically. In addition, if the sampling
period is relatively small, a large number of redundant sampling signals will be released
into the communication network with limited bandwidth, which will inevitably cause
network congestion.

Event-triggered control is an important method in the design of modern control
systems, with the core concept of reducing redundant data transmission and improving
computation efficiency by designing event-triggered mechanisms. In an event-triggered
control framework, the update of control inputs is not performed at fixed time points, but
rather depends on specific changes in the system state or the occurrence of certain events.
This approach is in stark contrast to traditional periodic sampling control, which continu-
ously checks and updates the system state at fixed time intervals, regardless of whether
there is a significant change in the system state. Static event-triggered control is one of the
more traditional event-triggering methods. In a static event-triggering mechanism, the trig-
gering condition typically relies on a determined relationship between the current system
state and the sampling error. When the system error exceeds a preset threshold, a control
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action is triggered. The design goal of this mechanism is to ensure that the system state can
gradually converge to the desired target or origin [31–35]. Dynamic event-triggered control
introduces internal dynamic variables to improve upon the static method. The dynamic
event-triggering mechanism allows the triggering conditions to adjust dynamically with
time and changes in system state, which can further save resources while maintaining or
enhancing system performance. By introducing dynamic variables, the control system
can adjust the event-triggering rules based on real-time system performance and predeter-
mined stability requirements, thus increasing the interval between executions and reducing
unnecessary control updates while ensuring stability and performance metrics [36–39].

Based on the preceding analysis, this study aims to address the synchronization of
QVFMNNs by a kind of dynamic event-triggered control mechanism in both fixed-time
and prescribed-time scenarios. The main contributions and innovations of this article can
be highlighted as follows.

(1) Building on the foundational insights of established methods like the lexicographic
order method and the metric function method [40–42], this paper embarks on a novel
journey within the realm of quaternion analysis by redefining fuzzy rules. It further
fortifies this innovation by rigorously analyzing and validating the accuracy and
efficacy of the lemmas tied to the fuzzy rules, thereby setting a new benchmark in
theoretical exploration.

(2) Moving beyond traditional static event-triggering control mechanisms [43,44] with an
eye towards enhancing communication efficiency, this paper introduces an innovative
approach through the formulation of quaternion-valued dynamic event-triggering
control strategies devoid of linear components. This strategic framework is designed
to guarantee both FITS and PETS within the context of QVFMNNs. Additionally, the
paper adeptly eliminates the potential for Zeno phenomena within the system by
employing a methodical application of the proof by contradiction.

(3) Different from the conventional separation technique, the FITS and PETS of QVFMNN
are discussed through a direct analytical approach. Consequently, several flexible
criteria are established for achieving FITS and PETS of QVFMNN and the upper
bound of the setting time is provided explicitly.

In Section 2, the necessary preliminaries are introduced. Section 3 are dedicated to
exploring the FITS and PETS of QVFMNNs through the lens of event-triggered control
mechanisms, respectively. In Section 4, two numerical examples are present to substantiate
the theoretical results. The paper is summarized in Section 5.

2. Model Description and Preliminaries

A quaternion-valued fuzzy memristive neural network is given by

ẇp(t) = −dp(wp(t))wp(t) + ∑
q∈N

apq(wp(t)) fq(wq(t)) + ∑
q∈N

bpq(wp(t))gq(wq(mpq(t)))

+
∨

q∈N
θpqgq(xq(mpq(t))) +

∧
q∈N

σpqgq(wq(mpq(t))) + ∑
q∈N

cpqηq (1)

+
∨

q∈N
ϕpqηq +

∧
q∈N

ψpqηq + ξp, p ∈ N,

where wp(t) ∈ Q is the state of the pth unit, dp(wp(t)) ∈ Q is the feedback self-connection
weight, apq(wp(t)), bpq(wp(t)) ∈ Q are the connection weights, fq(·) and gq(·) : Q → Q
are quaternion-valued activation functions, mpq(t) ≤ t is the generalized time delay,
cpq, ϕpq, ψpq ∈ Q mean the connection weights of fuzzy feed-forward template, ηp and
ξp denote the bias and the external input of the pth neuron, respectively.

∨
and

∧
de-

note the fuzzy operations of OR and AND, and θpq and σpq ∈ Q purport the connection
weights of the fuzzy feedback MIN template and feed forward MAX template. In addition,
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wp(s) = ϱp(s) ∈ C([−𭟋, 0]) is the initial state of the network (1), in which
𭟋 = max

p,q∈N
{|mpq(0)|}. Moreover, the connection weights dp(wp(t)), apq(wp(t)), bpq(wp(t)) satisfy

dp(wp(t)) =

ďp = ďR
p + ďI

pi + ďJ
p j + ďK

p k, |wp(t)|1 ≤ hp,

d̂p = d̂R
p + d̂I

pi + d̂J
p j + d̂K

p k, |wp(t)|1 > hp,

apq(wp(t)) =

ǎpq = ǎR
pq + ǎI

pqi + ǎJ
pq j + ǎK

pqk, |xp(t)|1 ≤ hp,

âpq = âR
pq + âI

pqi + âJ
pq j + âK

pqk, |xp(t)|1 > hp,

bpq(wp(t)) =

b̌pq = b̌R
pq + b̌I

pqi + b̌J
pq j + b̌K

pqk, |wp(t)|1 ≤ hp,

b̂pq = b̂R
pq + b̂I

pqi + b̂J
pq j + b̂K

pqk, |wp(t)|1 > hp,

where ďp ̸= d̂p, ǎpq ̸= âpq, b̌pq ̸= b̂pq, hµ
p > 0 are the switching jump.

Definition 1. For any ap ∈ Q, p ∈ N, the fuzzy rules
∨

p∈N
ap and

∧
p∈N

ap are defined as

∧
p∈N

ap = min
p∈N

{aR
p }+ min

p∈N
{aI

p}i + min
p∈N

{aJ
p}j + min

p∈N
{aK

p }k,∨
p∈N

ap = max
p∈N

{aR
p }+ max

p∈N
{aI

p}i + max
p∈N

{aJ
p}j + max

p∈N
{aK

p }k.

Remark 1. In model (1), the fuzzy rule is introduced into QVMNN to describe the fuzzy logic in
the feed-forward MAX template and feedback MIN template. Previous researchers have made efforts
to compare the ‘magnitude’ of quaternions. For instance, Li et al. proposed a lexicographical order
method [40]. In [41], the quaternion vector was decomposed into two complex-value vectors, which
naturally solved the aforementioned problem using a generalized inequality technique. Additionally,
the ‘magnitude’ of different quaternions was determined based on a defined linear distance function
in [42]. In contrast to these approaches, a quaternion-valued fuzzy rule is introduced in Definition 1
in this article. Notably, Definition 1 degenerates to a real-valued fuzzy rule when i = j = k = 0, and
to a complex-valued fuzzy rule when j = k = 0. This implies that the developed quaternion-valued
fuzzy rule is an important generalization of its real-valued and complex-valued counterpart.

It is worth noting that the right-hand side of system (1) is essentially discontinuous
due to the presence of the switching jump points. According to the theory of non-smooth
analysis in [45–48], the Filippov solution of system (1) satisfies

ẇp(t) ∈ −co[dp(wp(t))]wp(t) + ∑
q∈N

co[apq(wp(t))] fq(wq(t)) + ∑
q∈N

co[bpq(wp(t))]gq(wq(mpq(t)))

+
∨

q∈N
θpqgq(wq(mpq(t))) +

∧
q∈N

σpqgq(wq(mpq(t))) + ∑
q∈N

cpqηq

+
∨

q∈N
ϕpqηq +

∧
q∈N

ψpqηq + ξp, p ∈ N,

where the convex hull of dp(wp(t)), apq(wp(t)), and bpq(wp(t)) are defined as

co[dp(wp(t))] = co[ďR
p , d̂R

p ] + co[ďI
p, d̂I

p]i + co[ďJ
p, d̂J

p]j + co[ďK
p , d̂K

p ]k,

co[apq(wp(t))] = co[ǎR
pq, âR

pq] + co[ǎI
pq, âI

pq]i + co[ǎJ
pq, âJ

pq]j + co[ǎK
pq, âK

pq]k,

co[bpq(wp(t))] = co[b̌R
pq, b̂R

pq] + co[b̌I
pq, b̂I

pq]i + co[b̌J
pq, b̂J

pq]j + co[b̌K
pq, b̂K

pq]k.
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By the theory of measurable selections [48], there exist d́p(t) ∈ co[dp(wp(t))], ápq(t) ∈
co[apq(wp(t))], and b́pq(t) ∈ co[bpq(wp(t))] such that

ẇp(t) = −d́p(t)wp(t) + ∑
q∈N

ápq(t) fq(wq(t)) + ∑
q∈N

b́pq(t)gq(wq(mpq(t)))

+
∨

q∈N
θpqgq(wq(mpq(t))) +

∧
q∈N

σpqgq(wq(mpq(t))) + ∑
q∈N

cpqηq (2)

+
∨

q∈N
ϕpqηq +

∧
q∈N

ψpqηq + ξp, p ∈ N.

Thus, the response system of system (1) is described by

δ̇p(t) = −dp(δp(t))δp(t) + ∑
q∈N

apq(δp(t)) fq(δq(t)) + ∑
q∈N

bpq(δp(t))gq(δq(mpq(t)))

+
∨

q∈N
θpqgq(δq(mpq(t))) +

∧
q∈N

σpqgq(δq(mpq(t))) + ∑
q∈N

cpqηq (3)

+
∨

q∈N
ϕpqηq +

∧
q∈N

ψpqηq + ξp + up(t), p ∈ N,

where up(t) is the control input and δp(s) = ℸp(s) ∈ C([−𭟋, 0]) is the initial state of the
response system (3).

Similarly, there exist d̀p(t) ∈ co[dp(δp(t))], àpq(t) ∈ co[apq(δp(t))] and b̀pq(t) ∈
co[bpq(δp(t))] such that

δ̇p(t) = −d̀p(t)δp(t) + ∑
q∈N

àpq(t) fq(δq(t)) + ∑
q∈N

b̀pq(t)gq(δq(mpq(t)))

+
∨

q∈N
θpqgq(δq(mpq(t))) +

∧
q∈N

σpqgq(δq(mpq(t))) + ∑
q∈N

cpqηq (4)

+
∨

q∈N
ϕpqηq +

∧
q∈N

ψpqηq + ξp + up(t), p ∈ N.

Assumption 1. For any p ∈ N, u, v ∈ Q, there exist positive constants l1
p, l̃1

p, L1
p, L̃1

p such that

| fp(u)− fp(v)|1 ≤ l1
p|u − v|1,

|gp(u)− gp(v)|1 ≤ l̃1
p|u − v|1,

| fp(u)|1 ≤ L1
p, |gp(u)|1 ≤ L̃1

p.

Remark 2. Activation functions are intrinsically critical elements that affect the dynamic charac-
teristics of the designed neural networks. According to Assumption 1, the existence and uniqueness
of solutions for system (1) can be guaranteed due to the continuity of activation functions [16,17].
The assumption of Lipschitz conditions is quite common because activation functions such as the
Logistic sigmoid function, piecewise linear functions, and hyperbolic tangent functions satisfy
these conditions.

Definition 2. Drive-response QVFMNNs (1) and (3) are said to be FITS if there exist two number
Tmax and T(α(Θ)) satisfying Tmax ≥ T(α(Θ)) > 0 such that

lim
t→T(α(Θ))

|α(t)|1 = 0, |α(t)|1 = 0, for all t ≥ T(α(Θ)),

where α(t) = (α1(t), · · · , αp(t))T ∈ Qn, αp(t) = δp(t) − wp(t), χp(s) = ϱp(s) − ℸp(s) ∈
C([𭟋, 0]), Θ = (δ1(s), · · · , δp(s))T ∈ Qn, p ∈ N. Moreover, drive-response QVFMNNs (1) and (3)
are said to be PETS for a preassigned time Tpat if

lim
t→Tpat

|α(t)|1 = 0, |α(t)|1 = 0, for all t ≥ Tpat,
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in which Tpat > 0 is completely independent of initial values and system parameters.

Definition 3. For o ∈ Q, the signum function of o is defined as

[o] ≜ sign(oR) + isign(oI) + jsign(o J) + ksign(oK).

For a regular, positive, and radially unbounded functionV(x) : Qn → R, x(t) : R → Qn, the
following results should be introduced.

Lemma 1 ([25]). If there exist constants z1 ≤ 0, z2 > 0, z3 > 0, 0 ≤ b1 < 1, and b2 > 1 such
that for any x(t) ∈ Qn \ {0n},

d
dt

V(x(t)) ≤ z1V(x(t))− z2Vb1(x(t))− z3Vb2(x(t)),

then the following results are true.
(i) If z1 < 0, x(t) ≡ 0n for t ≥ T̄1, where

T̄1 =
π

z2(b2 − b1)

( z2

z3

)ϖcsc(z3π).

(ii) If 0 < z1 < min{z2, z3}, x(t) ≡ 0n for t ≥ T̄2, where

T̄2 =
πcsc(πz3)

z3(b2 − b1)

( z3

z2 − z1

)1−ϖ I(
z3

z2 + z3 − z1
, z3, 1 − z3)

+
πcsc(πz3)

z2(b2 − b1)

( z2

z3 − z1

)ϖ I(
z2

z2 + z3 − z1
, 1 − z3, z3),

in which ϖ = (1 − b1)/(b2 − b1) and the incomplete Beta function ratio I(r, p, q) is given in [25].
(iii) If 0 < z1 < 2

√
z2z3 and b1 + b2 = 2, x(t) ≡ 0n for t ≥ T̄3, where

T̄3 =
2

(b2 − 1)
√

ι

(π

2
+ arctan(

z1

ι
)
)
,

in which ι = 4z2z3 − z2
1.

Lemma 2 ([25]). If there exist constants Tpat > 0, z1 ∈ R, z2, z3 > 0, 0 ≤ b1 < 1, b2 > 1 such
that for any x(t) ∈ Qn \ {0n},

d
dt

V(x(t)) ≤ − T̃
Tpat

(
− z1V(x(t)) + z2Vb1(x(t)) + z3Vb2(x(t)

)
,

then x(t) ≡ 0n for t ≥ Tpat, where

T̃ =


T̄1, z1 ≤ 0,
T̄2, 0 < z1 < min{z2, z3},
T̄3, 0 < z1 < 2

√
z2z3, b1 + b2 = 2.

Lemma 3 ([25]). Assume that ci ≥ 0 for 1 ≤ i ≤ N, 0 ≤ b1 ≤ 1 and b2 > 1, then

∑
i∈N

cb1
i ≥ (∑

i∈N
ci)

b1 , ∑
i∈N

cb2
i ≥ n1−b2(∑

i∈N
ci)

b2 .

Lemma 4 ([49]). For any ρ1, ρ2 ∈ Q, ρ(t) : R → Q, the following properties hold

(1) ρ1 = ρ1,

(2) ρ1 + ρ1 = 2ρR
1 ≤ 2|ρ1|1,
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(3) ρ1ρ2 = ρ2ρ1,

(4)
d|ρ(t)|1

dt
=

1
2
([ρ(t)]

dρ(t)
dt

+
dρ(t)

dt
[ρ(t)]).

Lemma 5 ([49]). For any r1, r2, r3 ∈ Q,

(1) (rR
1 − |rI

1| − |r J
1| − |rK

1 |)|r2|1 ≤ ([r2]r1r2)
R

≤ (rR
1 + |rI

1|+ |r J
1|+ |rK

1 |)|r2|1,

(2) − |z|1|r3|1 ≤ ([r1]r2r3)
R ≤ |r2|1|r3|1.

Lemma 6. For any ϑ(t) ∈ Q, D+|ϑ(t)|1 ≤ |ϑ̇(t)|1.

Proof. By Lemma 4, it can be concluded that

D+|ϑ(t)|1 =
1
2
([ϑ(t)]D+ϑ(t) + D+ϑ(t)[ϑ(t)])

= (sign(ϑR(t))ϑ̇R(t) + sign(ϑI(t))ϑ̇I(t)

+ sign(ϑJ(t))ϑ̇J(t) + sign(ϑK(t))ϑ̇K(t))

≤ |ϑ̇R(t)|+ |ϑ̇I(t)|+ |ϑ̇J(t)|+ |ϑ̇K(t)|.

Further, according to the definition of the absolute-based norm,

|ϑ̇(t)|1 = |ϑ̇R(t) + iϑ̇I(t) + jϑ̇J(t) + kϑ̇K(t)|1
= |ϑ̇R(t)|+ |ϑ̇I(t)|+ |ϑ̇J(t)|+ |ϑ̇K(t)|.

Thus, D+|ϑ(t)|1 ≤ |ϑ̇(t)|1.

Lemma 7. For any ϵp, ϵ̃p ∈ Q, p ∈ N,∣∣∣∣ ∨
p∈N

ϵp −
∨

p∈N
ϵ̃p

∣∣∣∣
1
≤ ∑

p∈N
|ϵp − ϵ̃p|1,

∣∣∣∣ ∧
p∈N

ϵp −
∧

p∈N
ϵ̃p

∣∣∣∣
1
≤ ∑

p∈N
|ϵp − ϵ̃p|1.

Proof. Based on Definition 1, there exist τ1, τ2, τ3, τ4, ϖ1, ϖ2, ϖ3, ϖ4 ∈ N such that∨
p∈N

ϵp = ϵR
τ1
+ ϵI

τ2
i + ϵJ

τ3 j + ϵK
τ4

k,

∨
p∈N

ϵ̃p = ϵ̃R
ϖ1

+ ϵ̃I
ϖ2

i + ϵ̃J
ϖ3

j + ϵ̃K
ϖ4

k.

Hence, ∣∣∣∣ ∨
p∈N

ϵp −
∨

p∈N
ϵ̃p

∣∣∣∣
1

= |ϵR
τ1
− ϵ̃R

ϖ1
|+ |ϵI

τ2
− ϵ̃I

ϖ2
|+ |ϵJ

τ3 − ϵ̃J
ϖ3
|+ |ϵK

τ4
− ϵ̃K

ϖ4
|,

≤ max{|ϵR
τ1
− ϵ̃R

τ1
|, |ϵR

ϖ1
− ϵ̃R

ϖ1
|}

+ max{|ϵI
τ2
− ϵ̃I

τ2
|, |ϵI

ϖ2
− ϵ̃I

ϖ2
|}

+ max{|ϵJ
τ3 − ϵ̃J

τ3 |, |ϵ
J
ϖ3

− ϵ̃J
ϖ3
|}

+ max{|ϵK
τ4
− ϵ̃K

τ4
|, |ϵK

ϖ4
− ϵ̃K

ϖ4
|}

≤ ∑
p∈N

|ϵR
p − ϵ̃R

p |+ ∑
p∈N

|ϵI
p − ϵ̃I

p|
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+ ∑
p∈N

|ϵJ
p − ϵ̃J

p|+ ∑
p∈N

|ϵK
p − ϵ̃K

p |

≤ ∑
p∈N

|ϵp − ϵ̃p|1.

Similar to the above analysis, it can be obtained∣∣∣∣ ∧
p∈N

ϵp −
∧

p∈N
ϵ̃p

∣∣∣∣
1
≤ ∑

p∈N
|ϵp − ϵ̃p|1,

The proof is completed.

Remark 3. In recent research on QVFNN [18,19,40–42], without the rigorous theoretical proof, the
above two inequalities are directly used to investigate the synchronization of QVFNN. To address
this gap, based on the revised fuzzy rule definition, Lemma 7 in this paper is offered.

3. Main Results

This section presents several main theorems with an absolute-based norm and
2-norm that give the FITS and PETS of the QVFMNNs (1) and (3) by the designed event-
triggered control.

3.1. FITS

Before giving the main results, several notations are provided.

ãpq = max{|âpq|1, |ǎpq|1}, b̃pq = max{|b̂pq|1, |b̌pq|1},

d̃p = max{−d̂R
p + |d̂I

p|+ |d̂J
p|+ |d̂K

p |,−ďR
p + |ďI

p|+ |ďJ
p|+ |ďK

p |},

β̃1 = (2n)1−ε min
p∈N

{βp}, β̃2 = (2n)1−ε min
p∈N

{β̂p}, β̃3 = (2n)1−ε min
p∈N

{β̌p},

κ̃1 = max
p∈N

{d̃p + ∑
q∈N

ãqpl1
p}, ι1 = 4nM1 β̃1 − κ̃2

1, ι2 = 4nM̂1 β̃2 − κ̃2
1, ι3 = 4nM̌1 β̃3 − κ̃2

1.

A1p = h1
p|[αp(t)]|1|d̂p − ďp|1 + ∑

q∈N

(
h1

p|[ep(t)]|1|âpq − ǎpq|1l1
q + 2L̃q(b̃pq|[αp(t)]|1 + |θpq|1 + |σpq|1)

)
,

A2p = h1
p|[αp(t)]|1|d̂p − ďp|1 + ∑

q∈N

(
l1
q h1

p|[αp(t)]|1|âpq − ǎpq|1 + 2L̃q b̃pq|[αp(t)]|1
)
,

A3p = d̃ph1
p + ∑

q∈N

(
ãpql1

q h1
q + 2L̃q(b̃pq|[αp(t)]|1 + |θpq|1 + |σpq|1)

)
.

To achieve FITS, the event-triggered controller based on the absolute-based norm is
designed by

up(t) = −[αp(ts)](γp + βp|αp(ts)|ε1), t ∈ [ts, ts+1), (5)

where ts, s ∈ Z is the latest triggering instant with t0 = 0, ε > 1, and γp, βp are positive
constants, p ∈ N.

The dynamic triggering law are developed as follows
ts+1 = inf{t : t ≥ ts, Fp(t) ≥ 0},

Fp(t) = A1p + |Ep(t)|1 − γp + M1 − ,pλp(t)ג

λ̇p(t) = −pλp(t)ג− βpλε
p(t),

(6)
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where M1, pג > 0 and λp(t) with λp(0) > 0 is the internal dynamic variable and Ep(t) is
the measure errors and described by

Ep(t) = [αp(ts)](γp + βp|αp(ts)|ε1)− [αp(t)](γp + βp|αp(t)|ε1).

The above event-triggered synchronization mechanism is shown in Figure 1.

Figure 1. Structure of FMQVNNs with event-triggered control mechanism.

Lemma 8. For any t ≥ 0, p ∈ N, λp(t) ≥ 0.

Proof. To begin with, confirm that λp(t) ≥ 0 is valid for any t ≥ 0. If it is not valid, there
exists a t̃ such that λp(t̃) < 0. Since λp(t) with λp(0) > 0 is continuous, there exist some t̂
in the interval (0, t̃) such that λp(t̂) = 0. Let t∗ = inf{t̂|λp(t̂) = 0, t̂ ∈ (0, t̃)}. Obviously,
λp(t∗) = 0 and λp(t) > 0 for t ∈ [0, t∗).

Integrate both sides of the third term in (6) to obtain

0 = λp(t∗) = e
∫ t∗

0 p−βpλε−1ג−)
p (t))dsλp(0) > 0,

this is contradictory to the above conditions. Therefore, for any t ≥ 0, λp(t) ≥ 0.

Remark 4. In comparison to traditional static event-triggering mechanisms [43,44], the key
advantage of dynamic event-triggering mechanisms is that they can adjust the triggering conditions
based on the current state and performance requirements of the system, thereby adapting to the
constantly changing system environment and demands. This paper introduces a dynamic variable
function λp(t) into the event-triggering conditions, which can converge from λp(0) to 0 over time.
Such a design allows for dynamic adjustment of the triggering threshold according to changes
in the system state. As a result, it can help to reduce the number of data packet transmissions
and thus lower the likelihood of network congestion. Furthermore, the dynamic event-triggering
mechanism can also reduce unnecessary task execution, save computational resources, and decrease
energy consumption.

Theorem 1. Based on Assumption 1 the event-triggered control mechanism (5) and (6), then the
following results are true.

(1) If k̃1 ≤ 0, the FITS of QVFMNNs (1) and (3) can be realized and the ST is estimated by

T1 =
π

εnM1
(

nM1

β̃1
)

1
ε csc(

π

ε
).
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(2) If 0 < k̃1 < min{nM1, β̃1}, then α(t) ≡ 0n for t ≥ T2, in which

T2 =
πcsc(πε)

β̃1 ε̂
(

β̃1

nM1 − k̃1
)1−ε̂ I(

β̃1

nM1 + β̃1 − k̃1
, ε, 1 − ε̂)

+
πcsc(πε)

nM1 ε̂
(

nM1

β̃2 − k̃1
)ε̂ I(

nM1

nM1 + β̃2 − k̃1
, 1 − ε̂, ε̂).

(3) If 0 < k̃1 < 2
√

nM1 β̃1 and ε = 2, then α(t) ≡ 0n for t ≥ T3, in which

T3 =
2√
ι1
(

π

2
+ arctan(

k̃1

ι1
)).

Proof. Consider the following absolute-based norm Lyapunov function

V(t) = V1(t) + V2(t) = ∑
p∈N

|αp(t)|1 + ∑
p∈N

λp(t).

According to the systems (1) and (3), for any α(t) ∈ Rn \ {0n},

D+V1(t) =
1
2 ∑

p∈N
([αp(t)]D+αp(t) + D+αp(t)[αp(t)])

= −1
2 ∑

p∈N

(
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))

− (d̀p(t)δp(t)− d́p(t)wp(t))[αp(t)]
)

+
1
2 ∑

p∈N
∑

q∈N

(
[αp(t)](àpq(t) fq(δq(t))− ápq(t) fq(wq(t)))

+ (àpq(t) fq(δq(t))− ápq(t) fq(wq(t)))[αp(t)]
)

+
1
2 ∑

p∈N
∑

q∈N

(
[αp(t)](b̀pq(t)gq(δq(mpq(t)))− b́pq(t)gq(wq(mpq(t)))) (7)

+ (b̀pq(t)gq(δq(mpq(t)))− b́pq(t)gq(wq(mpq(t))))[αp(t)]
)

+
1
2 ∑

p∈N

(
[αp(t)](

∨
q∈N

θpqgq(δq(mpq(t))))−
∨

q∈N
θpqgq(wq(mpq(t))))

+
∨

q∈N
θpqgq(δq(mpq(t))))−

∨
q∈N

θpqgq(wq(mpq(t)))[αp(t)]
)

+
1
2 ∑

p∈N

(
[αp(t)](

∧
q∈N

σpqgq(δq(mpq(t))))−
∧

q∈N
σpqgq(wq(mpq(t))))

+
∧

q∈N
σpqgq(δq(mpq(t))))−

∧
q∈N

σpqgq(wq(mpq(t)))[αp(t)]
)

+
1
2 ∑

p∈N

(
[αp(t)]up(t) + up(t)[αp(t)]

)
.

when α(t) ̸= {0n}, based on Lemma 4,

− 1
2 ∑

p∈N

(
αp(t)(d̀p(t)δp(t)− d́p(t)wp(t))− (d̀p(t)δp(t)− d́p(t)wp(t))αp(t)

)
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= − ∑
p∈N

{
αp(t)(d̀p(t)δp(t)− d́p(t)wp(t))

}R

.

In view of Lemma 5, the following cases are discussed.

(1) When |wp(t)|1, |δp(t)|1 ≤ h1
p,

− ∑
p∈N

{
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))

}R

= − ∑
p∈N

{
[αp(t)]ďpαp(t)

}R

≤ ∑
p∈N

(−ďR
p + |ďp I|+ |ďJ

p|+ |ďK
p |)|αp(t)|1.

(2) When |wp(t)|1, |δp(t)|1 > h1
p,

− ∑
p∈N

{
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))

}R

= − ∑
p∈N

{
[αp(t)]d̂pαp(t)

}R

≤ ∑
p∈N

(−d̂R
p + |d̂p I|+ |d̂J

p|+ |d̂K
p |)|αp(t)|1.

(3) When |wp(t)|1 > h1
p, |δp(t)|1 ≤ h1

p,

− ∑
p∈N

{
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))

}R

= − ∑
p∈N

{
[ep(t)](ďpδp(t)− d̂pwp(t))

}R

= − ∑
p∈N

{
[ep(t)](ďpδp(t)− d̂pδp(t) + d̂pδp(t)− d̂pwp(t))

}R

≤ ∑
p∈N

(−d̂R
p + |d̂p I|+ |d̂J

p|+ |d̂K
p |)|αp(t)|1 + h1

p|[αp(t)]|1|d̂p − ďp|1.

(4) When |wp(t)|1 ≤ h1
p, |δp(t)|1 > h1

p,

− ∑
p∈N

{
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))

}R

= − ∑
p∈N

{
[αp(t)](d̂pδp(t)− ďpwp(t))

}R

= − ∑
p∈N

{
[αp(t)](d̂pδp(t)− d̂pwp(t) + d̂pwp(t)− ďpwp(t))

}R

≤ ∑
p∈N

(−d̂R
p + |d̂p I|+ |d̂J

p|+ |d̂K
p |)|αp(t)|1 + h1

p|[αp(t)]|1|d̂p − ďp|1.

As mentioned above,

− 1
2 ∑

p∈N

(
[αp(t)](d̀p(t)δp(t)− d́p(t)wp(t))− (d̀p(t)δp(t)− d́p(t)wp(t))[αp(t)]

)
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≤ ∑
p∈N

d̃p|αp(t)|1 + h1
p|[αp(t)]|1|d̂p − ďp|1. (8)

From Assumption 1,

1
2 ∑

p∈N
∑

q∈N

(
[αp(t)](àpq(t) fq(δq(t))− ápq(t) fq(wq(t)))

+ (àpq(t) fq(δq(t))− apq(wp(t)) fq(wq(t)))[αp(t)]
)

(9)

≤ ∑
p∈N

∑
q∈N

(lp ãqp|αp(t)|1 + lqh1
p|[αp(t)]|1|âpq − ǎpq|1),

and

1
2 ∑

p∈N
∑

q∈N

(
[αp(t)](b̀pq(t)gq(δq(mpq(t)))− b́pq(t)gq(wq(mpq(t))))

+ (b̀pq(t)gq(δq(mpq(t)))− b́pq(t)gq(wq(mpq(t))))[αp(t)]
)

(10)

≤ ∑
p∈N

∑
q∈N

2b̃pq L̃q|[αp(t)]|1.

In addition, in light of Lemma 7,

1
2 ∑

p∈N

(
[αp(t)](

∨
q∈N

θpqgq(δq(mpq(t))))−
∨

q∈N
θpqgq(wq(mpq(t))))

+
∨

q∈N
θpqgq(δq(mpq(t))))−

∨
q∈N

θpqgq(wq(mpq(t)))[αp(t)]
)

(11)

≤ ∑
p∈N

∑
q∈N

2|θpq|1 L̃q,

and

1
2 ∑

p∈N

(
[αp(t)](

∧
q∈N

σpqgq(δq(mpq(t))))−
∧

q∈N
σpqgq(wq(mpq(t))))

+
∧

q∈N
σpqgq(δq(mpq(t))))−

∧
q∈N

σpqgq(wq(mpq(t)))[αp(t)]
)

(12)

≤ ∑
p∈N

∑
q∈N

2|σpq|1 L̃q.

From event-triggered mechanism (5) and (6), for any α(t) ∈ Qn \ {0n},

1
2 ∑

p∈N

(
[αp(t)]up(t) + up(t)[αp(t)]

)
= −1

2 ∑
p∈N

([αp(t)]Ep(t) + Ep(t)[αp(t)])− ∑
p∈N

[αp(t)][αp(t)]γp (13)

− ∑
p∈N

[αp(t)][αp(t)]βp|αp(t)|ε1

≤ ∑
p∈N

(|Ep(t)|1 − γp − βp|αp(t)|ε1).
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Submitting the (8)–(13) into (7) and using the event-triggered condition (6),

D+V1(t) ≤ ∑
p∈N

(d̃p + ∑
q∈N

lp ãqp)|αp(t)|1 − ∑
p∈N

βp|αp(t)|ε1

+ ∑
p∈N

(A1p + |Ep(t)|1 − γp)

≤ ∑
p∈N

(d̃p + ∑
q∈N

lp ãqp)|αp(t)|1 − ∑
p∈N

βp|αp(t)|ε1 − nM1

= κ̃1 ∑
p∈N

|αp(t)|1 − ∑
p∈N

βp|αp(t)|ε1 + ∑
p∈N

βpλp(t)ε − nM1.

If k̃1 ≤ 0,
D+V(t) ≤ −β̃1Vε(t)− nM1,

according to Lemma 1, the QVFMNNs (1) and (3) are fixed-time synchronized within the
time T1.

When 0 < k̃1 < min{nM1, β̃1},

D+V(t) ≤ κ̃1V(t)− β̃1Vε(t)− nM1,

the QVFMNNs (1) and (3) can realize FXT synchronization within the time T2. In particular,

when 0 < k̃1 < 2
√

nM1 β̃1, the FITS of QVFMNNs (1) and (3) will be achieved within the
time T3. The proof is complied.

Remark 5. In [40,41], researchers explored the dissipativity and synchronicity of QVFMNNs
employing the quadratic norm methodology. Contrarily, our investigation diverges from these
prior studies by concentrating on the fixed-time synchronization of QVFMNNs via the 1-norm
perspective. This method not only provides more accurate estimations of system settling times but
also broadens the scope of our conclusions. As a result, our study gains applicability across a wider
array of systems.

It is worth noting that if the fuzzy terms are removed, system (1) will degenerate into
the following QVMNN,

ẇp(t) = −dp(wp(t))wp(t) + ∑
q∈N

apq(wp(t)) fq(wq(t))

+ ∑
q∈N

bpq(wp(t))gq(wq(mpq(t))) + ξp, q ∈ N, (14)

Correspondingly, the response system is degenerated to

δ̇p(t) = −dp(δp(t))δp(t) + ∑
q∈N

apq(δp(t)) fq(δq(t))

+ ∑
q∈N

bpq(δp(t))gq(δq(mpq(t))) + ξp + ûp(t), q ∈ N. (15)

In order to realize the FITS of QVMNNs (14) and (15), the following event-triggered
controller is designed for all t ∈ [tŝ, tŝ+1),

ûp(t) = −[αp(tŝ)](γ̂p + β̂p|αp(tŝ)|ε̂1), (16)

where tŝ, ŝ ∈ Z is the latest triggering instant with t0 = 0 and ε̂ > 1 and γ̂p, β̂p are positive
constants, p ∈ N.
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The triggering condition is developed by
tŝ+1 = inf{t : t ≥ tŝ, F̂p(t) ≥ 0},

F̂p(t) = A2p + |Êp(t)|1 − γ̂p + M̂1 − ℶ̂pλ̂p(t),
˙̂λp(t) = −ℶ̂pλ̂p(t)− β̂pλ̂ε̂

p(t),

(17)

where M̂1, ℶ̂p > 0, λ̂(t) with λ̂p(0) > 0 is the internal dynamic variable and Êp(t) is the
measure errors and described by

Êp(t) = [αp(tŝ)](γ̂p + β̂p|αp(tŝ)|ε̂1)− [αp(t)](γ̂p + β̂p|αp(t)|ε̂1).

Corollary 1. According to Assumption 1, the event-triggered control mechanism (16) and (17),
then the following results are true.

(1) If k̃1 ≤ 0, the FITS of systems (14) and (15) can be realized and the ST is estimated by

T̂1 =
π

ε̂nM̂
(

nM̂1

β̃2
)

1
ε̂ csc(

π

ε̂
).

(2) If 0 < k̃1 < min{nM̂1, β̃2}, then α(t) ≡ 0n for t ≥ T̂2, where

T̂2 =
πcsc(πε̂)

β̃2 ε̂
(

β̃2

nM̂1 − k̃1
)1−ε̂ I(

β̃2

nM̂1 + β̃2 − k̃1
, ε̂, 1 − ε̂)

+
πcsc(πε̂)

nM̂1 ε̂
(

nM̂1

β̃2 − k̃1
)ε̂ I(

ε

ε̂ + β̃2 − k̃1
, 1 − ε̂, ε̂).

(3) If 0 < k̃1 < 2
√

ε̂β̃2 and ε̂ = 2, then α(t) ≡ 0n for t ≥ T̂3, where

T̂3 =
2√
ι2
(

π

2
+ arctan(

k̃1

ι2
)).

On the other hand, if the memristive mechanisms are removed, system (1) will degen-
erate into QVMNN,

ẇp(t) = −dpwp(t) + ∑
q∈N

apq fq(wq(t)) + ∑
q∈N

bpqgq(wq(mpq(t))) + ∑
q∈N

cpqλq

+
∨

q∈N
θpqgq(wq(mpq(t))) +

∧
q∈N

σpqgq(wq(mpq(t))) (18)

+
∨

q∈N
ϕpqλq +

∧
q∈N

ψpqλq + ξp, q ∈ N,

Similarly, the response system is given by

δ̇p(t) = −dpδp(t) + ∑
q∈N

apq fq(δq(t)) + ∑
q∈N

bpqgq(δq(mpq(t))) + ∑
q∈N

cpqλq

+
∨

q∈N
θpqgq(δq(mpq(t))) +

∧
q∈N

σpqgq(δq(mpq(t))) (19)

+
∨

q∈N
ϕpqλq +

∧
q∈N

ψpqλq + ξp + ǔp(t), q ∈ N,

In order to realize the FITS of QVMNNs (18) and (19), the following event-triggered
controller is designed for all t ∈ [tš, tš+1),

ǔp(t) = −[αp(tš)](γ̌p + β̌p|αp(tš)|ε̌1), (20)
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where tš, š ∈ Z is the latest triggering instant with t0 = 0, ε̌ > 1 and γ̌p, β̌p are positive
constants, p ∈ N.

The triggering condition is developed as follows
tŝ+1 = inf{t : t ≥ tš, F̌p(t) ≥ 0},

F̌p(t) = A2p + |Ěp(t)|1 − γ̌p + M̌1 − ℶ̌pλ̌p(t),
˙̌λp(t) = −ℶ̌pλ̌p(t)− β̌pλ̌ε̌

p(t),

(21)

where M̌1, ℶ̌p > 0, λ̌(t) with λ̌p(0) > 0 is the internal dynamic variable and Ěp(t) is the
measure errors and described by

Ěp(t) = [αp(tš)](γ̌p + β̌p|αp(tš)|ε̌1)− [αp(t)](γ̌p + β̌p|αp(t)|ε̌1).

Corollary 2. Based on Assumption 1, the event-triggered control mechanism (20) and (21), then
the following results are true.

(1) If k̃1 ≤ 0, the FITS of systems (18) and (19) can be realized and the ST is estimated by

Ť1 =
π

ε̌nM̌1
(

nM̌1

β̃3
)

1
ε̌ csc(

π

ε̌
).

(2) If 0 < k̃1 < min{nM̌1, β̃3}, then α(t) ≡ 0n for t ≥ Ť2, where

Ť2 =
πcsc(πε̌)

β̃3 ε̌
(

β̃3

nM̌1 − k̃1
)1−ε̌ I(

β̃3

nM̌1 + β̃3 − k̃1
, ε̌, 1 − ε̌)

+
πcsc(πε̌)

nM̌1 ε̌
(

nM̌1

β̃3 − k̃1
)ε̌ I(

ε̌

ε̌ + β̃3 − k̃1
, 1 − ε̌, ε̌).

(3) If 0 < k̃1 < 2
√

ε̌β̃3 and ε̌ = 2, then α(t) ≡ 0n for t ≥ Ť3, where

Ť3 =
2√
ι3
(

π

2
+ arctan(

k̃1

ι3
)).

Remark 6. Based on Corollaries 1 and 2, the following results can be obtained. Firstly, the authors
investigated the issues of FITS and PETS for QVNNs [13]. If the system in this paper is degenerated,
the FITS and PETS of QVNNs based on event-triggered control can be achieved. Secondly, compared
to the asymptotic synchronization results of the QVMNNs in [15–17], if the fuzzy mechanism in
the system of this paper is removed, the FITS and PETS of the systems can be obtained. Lastly, if
the system in this paper is reduced to a QVFNN, better synchronization results can be obtained as
compared to [19].

Next, we will prove that Zeno behavior does not occur under the designed event-
triggering mechanism. For convenience, let

B1 = |d̂p − ďp|1h1
p|αp(t)|1 + 2 ∑

q∈N
|ãpq|1L1

q|αp(t)|1

+ 2 ∑
q∈N

|b̃pq|1 L̃1
q|αp(t)|1 + 2 ∑

q∈N
|θpq|1 L̃1

q

+ 2 ∑
q∈N

|σpq|1 L̃1
q + 4γp.

Theorem 2. Based on the event-triggered controller mechanism (5) and (6), there is no Zeno
behavior in systems (1) and (3).
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Proof. From Theorem 1, V̇1(t) ≤ 0, which leads to

|αp(t)|1 ≤ ∑
p∈N

|αp(t)|1 = V1(t) ≤ V1(0) = G1.

Consider the Dini derivative of |Ep(t)|1,

D+|Ep(t)|1 =
1
2
([Ep(t)]D+Ep(t) + D+Ep(t)[Ep(t)])

=
1
2

{
[Ep(t)][αp(t)](−βpε|αp(t)|ε−1

1 D+|αp(t)|1)

+ [αp(t)](−βpε|αp(t)|ε−1
1 D+|αp(t)|1)[Ep(t)]

}
≤ 4βpε|αp(t)|ε−1

1 |D+|αp(t)|1|,

By Lemma 6, for any t ∈ [ts, ts+1),

D+|αp(t)|1 ≤ |α̇p(t)|1
≤ |d̃p|1|αp(t)|1 + |d̂p − ďp|1h1

p|αp(t)|1 + 2 ∑
q∈N

|ãpq|1L1
q|αp(t)|1 + 2 ∑

q∈N
|b̃pq|1 L̃1

q|αp(t)|1

+ 2 ∑
q∈N

|θpq|1 L̃1
q + 2 ∑

q∈N
|σpq|1 L̃1

q + 4(γp + βp|αp(ts)|ε1)

≤ |d̃p|1G1 + B1 + 4β1p(G1)
ε,

Hence,

D+|Ep(t)|1 ≤ 4βpε(G1)
ε−1

(
|d̃p|1G1 + B1 + 4βp(G1)

ε

)
= 4βp|d̃p|1ε(G1)

ε + 4B1βpε(G1)
ε−1 + 16β2

pε(G1)
2ε−1

≜ H1.

For t ∈ [ts, ts+1), |Ep(t)|1 ≤ H1(t − ts). When t = t−s+1,

|Ep(t−s+1)|1 ≤ H1(ts+1 − ts). (22)

On the other hand, based on triggering condition (6),

|Ep(t−s+1)|1 > λp(t), t ∈ [ts, ts+1).

In light of Lemma 7, for any t ∈ [ts, ts+1),

λp(t) = e
∫ t

ts (−ℶp−βpλε−1
p (r))drλp(ts) = e

∫ t
ts−1

(−ℶp−βpλε−1
p (r))dr

λp(ts−1)

= · · · = e
∫ t

0 (−ℶp−βpλε−1
p (r))drλp(0),

thus,

|Ep(t−s+1)|1 > e
∫ t

0 (−ℶp−βpλε−1
p (r))drλp(0),

which combines (22),

△s = ts+1 − ts ≥
e
∫ t

0 (−ℶp−βpλε−1
p (r))drλp(0)

H1
.
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Note that the event-triggering condition (6) is not satisfied after Tst, where Tst is the ST
of QVFMNNs. In other words, we only need to verify that Zeno behavior does not occur
for any t ∈ (0, Tst).

Firstly, when κ̃1 ≤ 0,

△s >
e
∫ T1

0 (−ℶp−βpλε−1
p (r))drλp(0)

H1
> 0.

Secondly, when 0 < κ̃1 < min{nM1, β̃1},

△s >
e
∫ T2

0 (−ℶp−βpλε−1
p (r))drλp(0)

H1
> 0.

Finally, when 0 < κ̃1 < 2
√

nM1 β̃1,

△s >
e
∫ T3

0 (−ℶp−βpλε−1
p (r))drλp(0)

H1
> 0.

Therefore, under the event-triggered controller mechanism (5) and (6), systems (1) and (3)
will not demonstrate the Zeno behavior. The proof is completed.

3.2. PETS

The PETS of QVFMNNs (1) and (3) will be analyzed below. The controller based on
the absolute value-like norm is characterized by

up(t) = − T̂
T1p

[αp(ts̄)](γp + βp|αp(ts̄)|ε1), (23)

where T1p is a positive preassigned time,

T̂ =


T1, κ̃1 ≤ 0,
T2, 0 < κ̃1 < min{nM1, β̃1},

T3, 0 < κ̃1 < 2
√

nM1 β̃1, ε = 2.

The triggering condition is developed by

ts̄+1 = inf{t : t ≥ ts̄, Fp(t) > 0},

Fp(t) = A1p + |Ep(t)|1 −
T̂

T1p
γp +

T̂
T1p

M1 −ℶpλp(t),

λ̇p(t) = −ℶpλp(t)−
T̂

T1p
βpλε

p(t),

(24)

where λp(t) > 0,

Ep(t) =
T̂

T1p
[ep(ts̄)](γp + βp|ep(ts̄)|ε1)−

T̂
T1p

[ep(t)](γp + βp|ep(t)|ε1).

Theorem 3. Based on Assumption 1, the PETS of systems (1) and (3) is realized within the
preassigned time T1p satisfying 0 < T1p ≤ T̂ under the control laws (23) and (24).
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Proof. Construct the following Lyapunov function

V̂(t) = V1(t) + V3(t) = ∑
p∈N

|αp(t)|1 + ∑
p∈N

λp(t).

Similar to the proof of Theorem 1,

D+V1(t) ≤ ∑
p∈N

(d̃p + ∑
q∈N

lp ãqp)|αp(t)|1 −
T̂

T1p
∑

p∈N
βp|αp(t)|ε1

+ ∑
p∈N

(A1p + |Ep(t)|1 −
T̂

T1p
γp)

≤ ∑
p∈N

(d̃p + ∑
q∈N

lp ãqp)|αp(t)|1

− T̂
T1p

∑
p∈N

βp|αp(t)|ε1 −
T̂

T1p
nM1

≤ κ̃1 ∑
p∈N

|αp(t)|1 −
T̂

T1p
∑

p∈N
βp|αp(t)|ε1 −

T̂
T1p

nM1.

when κ̃1 ≤ 0,

D+V̂(t) ≤ T̂
T1p

(
− β̃1(V(t))ε − nM1

)
.

In view of Lemma 2, the QVFMNNs (1) and (3) are preassigned-time synchronized
within the time T1p.

When 0 < κ̃1 < min{nM1, β̃1},

D+V̂(t) ≤ T̂
T1p

(
κ̃1V(t)− β̃1(V(t))ε − nM1

)
.

The QVFMNNs (1) and (3) can realize PETS within the time T1p. In particular, when

0 < κ̃1 < 2
√

nM1 β̃1, the PETS of QVFMNNs (1) and (3) is achieved within the time T1p.

The PETS of QVMNNs (14) and (15) will be analyzed below. To achieve this aim, the
controller is proposed by

ûp(t) = −
ˆ̄T

T̂1p
[αp(t ˆ̄s)](γ̂p + β̂p|αp(t ˆ̄s)|ε̂1), t ∈ [t ˆ̄s, t ˆ̄s+1), (25)

where T̂1p is a positive preassigned time,

ˆ̄T =


T̂1, κ̃1 ≤ 0,
T̂2, 0 < κ̃1 < min{nM̂1, β̃2},

T̂3, 0 < κ̃1 < 2
√

nM̂1 β̃2, ε̂ = 2.

The triggering condition is developed by

t ˆ̄s+1 = inf{t : t ≥ t ˆ̄s, F̂p(t) > 0},

F̂p(t) = A2p + |Êp(t)|1 −
ˆ̄T

T̂1p
γ̂p + M̂1 − ℶ̂pλ̂p(t),

˙̂λp(t) = −ℶ̂pλ̂p(t)−
ˆ̄T

T̂1p
β̂pλ̂ε̂

p(t),

(26)
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where λ̂p(t) > 0,

Êp(t) =
ˆ̄T

T̂1p
[αp(t ˆ̄s)](γ̂p + β̂p|αp(t ˆ̄s)|ε̂1)−

ˆ̄T
T̂1p

[αp(t)](γ̂p + β̂p|αp(t)|ε̂1).

Corollary 3. Based on Assumption 1, the PETS of networks (14) and (15) is realized within the
preassigned time T̂1p satisfying 0 < T̂1p ≤ ˆ̄T under the control laws (25) and (26).

In order to achieve the PETS of QVFNNs (18) and (19), the controller is designed by

ǔp(t) = −
ˇ̄T

Ť1p
[αp(t ˇ̄s)](γ̌p + β̌p|αp(t ˇ̄s)|ε̌1), t ∈ [t ˇ̄s, t ˇ̄s+1), (27)

where Ť1p is a positive preassigned time,

ˇ̄T =


Ť1, κ̃1 ≤ 0,
Ť2, 0 < κ̃1 < min{nM̌1, β̃3},

Ť3, 0 < κ̃1 < 2
√

nM̌1 β̃3, ε̌ = 2.

The triggering condition is developed by

t ˇ̄s+1 = inf{t : t ≥ t ˇ̄s, F̌p(t) > 0},

F̌p(t) = A3p + |Ěp(t)|1 −
ˇ̄T

Ť1p
γ̌p + M̌1 − ℶ̌pλ̌p(t),

˙̌λp(t) = −ℶ̌pλ̌p(t)−
Ť

Ť1p
β̌pλ̌ε̌

p(t),

(28)

where λ̌p(t) > 0, and the measure error Ěp(t) is defined by

Ěp(t) =
Ť

Ť1p
[αp(t ˇ̄s)](γ̌p + β̌p|αp(t ˇ̄s)|ε̌1)−

Ť
Ť1p

[αp(t)](γ̌p + β̌p|αp(t)|ε̌1).

Corollary 4. Based on Assumption 1, the networks (18) and (19) are PETS within the preassigned
time Ť1p satisfying 0 < Ť1p ≤ ˇ̄T under the control laws (27) and (28).

Remark 7. Specifically, when the QVFMNNs (1) and (3) are simplified into real-valued [4] or
complex-valued [29] NN models, the control strategies outlined in this paper can also be adapted
for use with real or complex-variable control laws. Additionally, the synchronization conditions
established herein are applicable to systems with either real or complex variables.

Remark 8. In [22], the authors addressed the challenges of higher-dimensional data by proposing a
criterion for achieving FITS in octonion-valued neural networks. Building upon the insight gained
from these studies, our forthcoming research aims to explore the FITS and PETS of octonion-valued
neural networks by adaptive event-triggered control.

Remark 9. Take Theorem 1 as an example, the following steps (Table 1) can be used to achieve FITS
of (1) and (3).
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Table 1. FITS control algorithm.

Parameter Selection Steps in Theorem 1.

Step 1: the value of k̃1 is calculated by using the parameters A1p, A2p, A3p, l1
p and l̃1

p.
Step 2: choose control parameters γp, βp, ,pג M1 and ε in the controller (5) and (6).
Step 3: estimate the setting time T1(T2, T3).
Step 4: draw the simulation result of FITS.

4. Numerical Simulations

In this section, three numerical examples are presented to verify the above
theoretical results.

Example 1. Consider the following QVFMNN with two neurons

ẇp(t) = −dp(wp(t))wp(t) + ∑
q=1,2

apq(wp(t)) fq(wq(t))

+ ∑
q=1,2

bpq(wp(t))gq(wq(mpq(t)))

+
∨

q=1,2

θpqgq(wq(mpq(t))) + ∑
q=1,2

cpqηq (29)

+
∧

q=1,2

σpqgq(wq(mpq(t))) +
∨

q=1,2

ϕpqηq

+
∧

q=1,2

ψpqηq + ξp, p = 1, 2,

where wp(t) ∈ Q, fq(x) = 0.82 tanh(xR) + i0.82 sin(xI) + j0.82 tanh(x J) + k0.82 sin(xK),
gq(x) = 0.88 sin(xR) + i0.88 sin(xI) + j0.88 sin(x J) + k0.88 sin(xK), mpq(t) = t − et

1+et ,
θ11 = 0.5, θ12 = 0.4, θ21 = 0.2, θ22 = 0.6, σ11 = 0.2, σ12 = 0.3, σ21 = 0.7, σ22 = 0.5,
η1 = 1, η2 = 0.8, ξ1 = ξ2 = 0, and

(ϕpq)2×2 =

(
0.8 − 2.0i + 0.8j − 1.4k 0.6 + 0.8i + 0.6j + 0.4k
1.4 + 0.6i + 1.6j − 1.8k −1.3 − 1.5i + 0.9j − 0.5k

)
,

(ψpq)2×2 =

(
0.6 − 1.0i + 1.0j − 2.4k 1.3 − 1.6i + 1.3j − 1.8k
0.8 − 1.2i + 1.2j − 1.3k 1.1 − 0.6i + 1.4j − 0.6k

)
,

and memristive weights are given as

d1(x1(t)) =
{

−2.10 − 2.20 − 2.50j − 2.20k, |x1(t)|1 ≤ 0.90,
−1.16 − 2.20i − 1.56j − 1.61k, |x1(t)|1 > 0.90,

d2(x2(t)) =
{

−1.40 − 1.50i − 1.80j − 2.20k, |x2(t)|1 ≤ 0.90,
−1.56 − 4.00i − 1.70j − 2.20k, |x2(t)|1 > 0.90,

a11(x1(t)) =
{

−1.80 − 1.50i − 0.80j − 1.80k, |x1(t)|1 ≤ 0.90,
2.00 − 0.80i + 0.40j − 0.70k, |x1(t)|1 > 0.90,

a12(x1(t)) =
{

0.60 + 0.90i + 1.30j − 1.30k, |x1(t)|1 ≤ 0.90,
−0.80 + 3.50i − 0.50j − 0.90k, |x1(t)|1 > 0.90,

a21(x2(t)) =
{

−1.50 − 1.66i − 1.50j − 1.36k, |x2(t)|1 ≤ 0.90,
−0.60 + 0.56i − 0.80j − 0.60k, |x2(t)|1 > 0.90,
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a22(x2(t)) =
{

−1.00 − 0.40i − 1.40j + 0.50k, |x2(t)|1 ≤ 0.90,
1.50 − 2.00i − 0.35j + 0.65k, |x2(t)|1 > 0.90,

b11(x1(t)) =
{

−1.20 + 1.20i − 1.60j − 0.50k, |x1(t)|1 ≤ 0.90,
−1.85 + 0.50i − 1.40j + 0.50k, |x1(t)|1 > 0.90,

b12(x1(t)) =
{

−1.30 − 0.50i − 1.50j + 0.25k, |x1(t)|1 ≤ 0.90,
−0.20 + 2.80i − 1.00j + 0.69k, |x1(t)|1 > 0.90,

b21(x2(t)) =
{

−1.90 − 2.30i − 1.60j − 1.45k, |x2(t)|1 ≤ 0.90,
−1.20 − 0.80i − 1.80j + 0.80k, |x2(t)|1 > 0.90,

b22(x2(t)) =
{

−0.10 − 0.90i + 1.20j − 0.50k, |x2(t)|1 ≤ 0.90,
−0.20 − 1.00i − 0.80j − 0.55k, |x2(t)|1 > 0.90.

Set x1(s) = −1.50 − 1.00i − 1.50j − 1.60k and x2(s) = −1.80 + 1.50i − 2.00j + 1.50k
as the initial conditions of (29), in which s ∈ [−0.5, 0). Then, the chaotic behaviors of
system (29) is shown in Figures 2–5.
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Figure 2. Chaotic behaviors of xR
1 (t) and xR

2 (t).
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Figure 3. Chaotic behaviors of xI
1(t) and xI

2(t).
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Figure 4. Chaotic behaviors of x J
1(t) and x J

2(t).

-4 -3 -2 -1 0 1 2

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5. Chaotic behaviors of xK
1 (t) and xK

2 (t).

The response system of system (31) is described by

δ̇p(t) = −dp(δp(t))δp(t) + ∑
q=1,2

apq(δp(t)) fq(δq(t))

+ ∑
q=1,2

bpq(δp(t))gq(δq(mpq(t)))

+
∨

q=1,2

θpqgq(δq(mpq(t))) + ∑
q=1,2

cpqηq (30)

+
∧

q=1,2

σpqgq(δq(mpq(t))) +
∨

q=1,2

ϕpqηq

+
∧

q=1,2

ψpqηq + ξp + up(t), p = 1, 2.

Set δ1(s) = 1.90 − 1.80i − 1.30j + 1.60k and δ2(s) = 1.10 − 1.50i − 2.00j − 1.60k as the
initial conditions of (32), in which s ∈ [−0.5, 0).

Firstly, to verify the FITS results of (29) and (30) based on event-triggered control
mechanism (5) and (6), select γ1 = 18, γ2 = 14, β1 = 5, β2 = 6, ε = 1.2, M1 = 0.5,
1ג = 2, 2ג = 1.2, λ1(0) = 20, and λ2(0) = 15. By means of Theorems 1 and 2, the
QVFMNNs (29) and (30) can achieve FITS, and the settling time is estimated by T1 = 1.7250.
The synchronization results are shown in Figures 6–8.
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Figure 6. Synchronization errors of QVFMNNs (31) and (32) under controller (5).
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Figure 7. Triggering instants of each neuron.
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Figure 8. The dynamic evolution of λr(t).

In addition, choose T1p = 1.0 in (23). The PETS of QVFMNNs (31) and (32) can be
realized within the preassigned time T1p according to Theorem 3, which is demonstrated in
Figures 9 and 10.
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Figure 9. Synchronization errors of QVFMNNs (31) and (32) under controller (23).
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Figure 10. Triggering instants of each neuron.

Remark 10. In Figure 6, the trajectories of the FITS errors are shown, which are convergent
within T1 = 1.7250 in Theorem 1. The exclusion of Zeno behavior is demonstrated as shown in
Figure 7. Similarly, Figures 8 and 9 validate the prescribed-time synchronization results mentioned
in Theorem 3. In addition, with identical parameter settings, the estimated ST is 2.3513. Clearly,
the settling time estimation presented in this study is more precise. The relevant result is displayed
in Table 2.

Table 2. Comparison of settling-time estimation.

(γ1, γ2, β1, β2, ϵ) = (18, 14, 5, 6, 1.2)

Refs. [22,24,33] Example 1

estimation of settling time 2.3513 1.7250

Example 2. Consider the following QVMNN with two neurons

ẇp(t) = −dp(wp(t))wp(t) + ∑
q=1,2

apq(wp(t)) fq(wq(t))

+ ∑
q=1,2

bpq(wp(t))gq(wq(mpq(t))) + ξp, p = 1, 2, (31)
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where wp(t) ∈ Q, fq(x) = 0.82 tanh(xR) + i0.82 sin(xI) + j0.82 tanh(x J) + k0.82 sin(xK),
gq(x) = 0.88 sin(xR) + i0.88 sin(xI) + j0.88 sin(x J) + k0.88 sin(xK), mpq(t) = t − et

1+et , ξ1 =
ξ2 = 0, and memristive weights are given as

d1(x1(t)) =

 −2.10 − 2.20 − 2.50j − 2.20k, |x1(t)|1 ≤ 0.90,

−1.10 − 2.20i − 1.50j − 1.61k, |x1(t)|1 > 0.90,

d2(x2(t)) =

 −1.30 − 1.50i − 1.80j − 2.20k, |x2(t)|1 ≤ 0.90,

−1.50 − 4.00i − 1.50j − 2.20k, |x2(t)|1 > 0.90,

a11(x1(t)) =

 −1.80 − 1.50i − 0.80j − 1.80k, |x1(t)|1 ≤ 0.90,

2.00 − 0.80i + 1.40j − 0.70k, |x1(t)|1 > 0.90,

a12(x1(t)) =

 0.50 + 0.90i + 1.50j − 1.30k, |x1(t)|1 ≤ 0.90,

−0.70 + 3.50i − 0.80j − 0.90k, |x1(t)|1 > 0.90,

a21(x2(t)) =

 1.50 − 1.66i − 1.50j − 2.30k, |x2(t)|1 ≤ 0.90,

−0.60 + 0.50i − 1.80j − 0.60k, |x2(t)|1 > 0.90,

a22(x2(t)) =

 −2.00 − 1.40i − 1.40j + 0.50k, |x2(t)|1 ≤ 0.90,

1.50 − 2.00i − 1.30j + 0.60k, |x2(t)|1 > 0.90,

b11(x1(t)) =

 −1.20 + 1.20i − 1.60j − 0.50k, |x1(t)|1 ≤ 0.90,

−1.80 + 0.50i − 1.40j + 0.50k, |x1(t)|1 > 0.90,

b12(x1(t)) =

 −1.30 − 1.50i − 1.50j + 0.25k, |x1(t)|1 ≤ 0.90,

−0.20 + 2.80i − 1.20j + 0.40k, |x1(t)|1 > 0.90,

b21(x2(t)) =

 −1.90 − 2.30i − 1.60j − 1.45k, |x2(t)|1 ≤ 0.90,

−1.20 − 0.80i − 1.80j + 0.80k, |x2(t)|1 > 0.90,

b22(x2(t)) =

 −0.15 − 0.90i + 1.20j − 0.50k, |x2(t)|1 ≤ 0.90,

−1.20 − 1.00i − 1.80j − 0.50k, |x2(t)|1 > 0.90.

Set x1(s) = −1.80 − 1.20i − 0.50j − 1.60k and x2(s) = −0.80 + 1.20i − 2.00j + 1.50k
as the initial conditions of (31), in which s ∈ [−0.5, 0). Then, the chaotic behaviors of
system (31) is shown in Figures 11−14.

The response system of system (31) is described by

δ̇p(t) = −dp(δp(t))δp(t) + ∑
q=1,2

apq(δp(t)) fq(δq(t))

+ ∑
q=1,2

bpq(δp(t))gq(δq(mpq(t))) + ξp + up(t), p = 1, 2. (32)
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Figure 14. Chaotic behaviors of xK
1 (t) and xK

2 (t).

Set δ1(s) = 1.90 − 2.80i − 2.30j + 1.60k and δ2(s) = 1.00 − 2.50i − 2.00j − 2.60k as the
initial conditions of (32), in which s ∈ [−0.5, 0).

Firstly, the FITS results of (31) and (32) based on event-triggered control
mechanism (16) and (17) are verified, select γ̂1 = 10, γ̂2 = 12, β̂1 = 4, β̂2 = 5,
ε̂ = 1.3, M̂1 = 0.6, 1ג̂ = 3, 2ג̂ = 2, λ̂1(0) = 12, and λ̂2(0) = 14. Based on Corol-
lary 1, the QVMNNs (31) and (32) can achieve FITS, and the settling time is estimated by
T̂1 = 1.4634. The synchronization results are shown in Figures 15−17.
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Figure 15. Synchronization errors of QVFMNNs (31) and (32) under controller (16).
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Figure 16. Triggering instants of each neuron.
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Figure 17. The dynamic evolution of λr(t).

Furthermore, choose T̂1p = 1.2 in (25). The PETS of QVMNNs (31) and (32) can
be realized within the preassigned time T̂1p = 1.2 according to Corollary 3, which are
demonstrated in Figures 18 and 19.
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Figure 18. Synchronization errors of QVFMNNs (31) and (32) under controller (25).
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5. Conclusions

In this paper, under the framework of a direct analysis approach, the synchronization
of delayed QVNNs including fuzzy term and memristive were investigated in a fixed time
and preassigned time, respectively. Firstly, unlike the existing quaternion-valued fuzzy
rules [28,40–42], a new fuzzy rule was proposed in the quaternion field, and the some
important properties were established. Furthermore, several dynamic event-triggering
protocols were designed to ensure FITS and PETS, and the established synchronization
criteria were more concise than the existing separation results. Lastly, the effectiveness and
applicability of the main results of this paper were verified by two numerical examples.

Note that the finite-time and FITS of the second-order NNs have been explored by
means of reduced-order variable substitution techniques. Nevertheless, there seems to be
few related works to discussed the FITS and PETS of QVMNNs with delay by using direct
analytical method and a dynamic event-triggering approach. The challenging problem will
be addressed in our future work.
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Abbreviations

R R = (−∞,+∞)

Q The quaternion set

Rn The n-dimensional real number vector set

Qn The n-dimensional quaternion number vector set

N N = {1, 2, · · · n}

κ κ = {R, I, J, K}

|w|1 |w|1 = |wR|+ |wI |+ |wJ |+ |wK |,

for any w = wR + iwI + jwJ + kwK ∈ Q

aκ−(w) The left limit of discontinuous function a(·) : Q → Q

at point w ∈ Q

aκ+(w) The right limit of discontinuous function a(·) : Q → Q

at point w ∈ Q

àκ(w) The minimum of aκ−(w)

áκ(w) The maximum of aκ+(w)

c̄o[a(w)] c̄o[a(w)] = c̄o[aR(w)] + c̄o[aI(w)]i + c̄o[aJ(w)]j

+c̄o[aK(w)]k, in which c̄o[aR(w)] = [áR(w), àR(w)]

c̄o[aI(w)] = [áI(w), àI(w)], c̄o[aJ(w)] = [áJ(w), àJ(w)],

c̄o[aK(w)] = [áK(w), àK(w)]
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