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Abstract: In this article, when 2 < p < 4, we establish the C(l)(’)lC -regularity of weak solutions to
6
the degenerate parabolic p-Laplacian equation oju = — ¥ X* (|Vu|P~2X;u) on the group SU(3)
i=1
granted with horizontal vector fields Xj, . .., X¢. Compared to the Heisenberg group, H", we obtained
the optimal range of p; thatis, 2 < p < 4.
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1. Introduction

The study of the regularity for partial differential equations involving the p-Laplacian
operator has always been a hot topic. In the Euclidean space, the C!, C1*, W22-regularities
and other second-order Sobolev regularities for the p-Laplacian equation have been proved
in [1-7]. In recent years, there has been significant progress in the study of the regu-
larity for the p-Laplacian equation in sub-Riemannian manifolds. Many scholars have
made outstanding contributions. In the Heisenberg group, H", Domokos-Manfredi [8,9],
Manfredi-Mingione [10], Migione et al. [11], Ricciotti [12], and Zhong-Mukherjee [13,14]
established the C%! and Cl*-regularities for the p-Laplacian equation in the full range
1 < p < o; Domokos [15] and Lie et al. [16] proved the W?2-regularity for the p-Laplacian
equation in the range of 1 < p < 3+ % with n > 2. In the group SU(3), the C*!,
C*, and W?2-regularities of the p-Laplacian equation were established by [17,18]. The
method in [13,14] is extended by Citti-Mukherjee [19] to include Hormander vector fields
of step two, and the C%! and C!#-regularities for the p-Laplacian equation have been
successfully established. The C!#-regularity for inhomogeneous quasi-linear equations
on the Heisenberg group H" were established by [20,21] when 2 — ﬁ < p < co. New
ideas and perspectives behind the development of research on regularity include certain
hybrid-type Caccioppoli-type inequalities, as first proposed and introduced by Zhong [13].
In comparison, for the degenerate parabolic p-Laplacian equation, such inequalities are not
applicable due to the differences in homogeneity between the time and spatial derivatives.
Therefore, we need to find and create new methods and techniques to establish more
suitable Caccioppoli-type inequalities.

In this study paper, we propose a new method to construct a crucial Caccioppoli-type
inequality. Based on the inequality, when 2 < p < 4, we establish the C%!-regularity
for the parabolic p-Laplacian equation on the group SU(3). To be specific, we focus on a
special type of unitary group composed of 3 x 3 complex matrices. We denote by SU(3) this
unitary group and endow it with horizontal vector fields X, X5, ..., X¢. More exhaustive
geometries and properties of SU(3) are shown in Section 2. We select an open domain () in
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the group SU(3). For T > 0, we define a cylinder @ = Q x (0, T), as first proposed in [22].
In Q, we consider the following equation:

6
dt = — Y X; Ai(Vym) inQ=0Qx(0,T). @
i=1

Here, X} is the formal adjoint of X;; V = (X1, Xa, ..., Xe) is the horizontal gradient; the
vector function A := (Ay,..., Ag) € C2(R®, ]R6) meets the following condition:

6
V'|gIP2]el? < ,ZlAi,g]-(é)Qiej <Y'[Z]P~2[of?,
ij=
A0 < Y|g|PL.

(2)

for every {,0 € R®, where Aig,(Z) == 9, Ai(0), p € [2,00) and 0 < v <Y < oo If, for
every function p € C°(Q), the equation

/OT [ dnupdxdt = - /OT [ é A;(V ) Xppdxdt 3)

holds true, then we name the function u € LP((0,T), W;_Zp loc (Q)) as a weak solution to

Equation (1). Here, W;{’p loc (Q) is the first-order p-th integrable horizontal local Sobolev

space, which is composed of total functions f € er oc (Q), whose distributional horizontal

gradients are V4 f € L"l’0 . (Q). In the classic case, A(&) = |&|P~2Z, Equation (1) becomes
the parabolic p-Laplacian equation:

6
Btu = — ZX?(IV'HuV]izX,‘M).
i=1

The study of the parabolic p-Laplacian equation originated from DiBenedetto-Friedman [22].
They established the Cl*-regularity of the weak solution in the Euclidean space;
Wiegner [23] also proved the same result. For more exhaustive results on the parabolic
p-Laplacian equation and more general cases in the Euclidean space, we refer to the
book by DiBenedetto [24]. For the study of the parabolic p-Laplacian equation in the
sub-Riemannian manifold, Capogna et al. [25] established, when 2 < p < oo, the C*-
regularity of the weak solution to the non-degenerate parabolic p-Laplacian equation in
the Heisenberg group H", as follows:

2n p-2
o =Y X;((1+|Xul) = Xu).
i=1
Recently, for the degenerate parabolic p-Laplacian equation in the Heisenberg group, H",
when 2 < p < 4, Capogna et al. [26] established the C%!-regularity of the weak solution.
In this study paper, we focus on the C*!-regularity of the weak solution u to (3) on

SU(3). As a consequence, when 2 < p < 4, we establish the C%}C -regularity of u; that is,
Vyu € LY .. See Theorem 1 below for details.

Theorem 1. Suppose u € LP((0,T), W;{’ploc (Q))) is a weak solution to (1), satisfying condition
(2),in @ =Q x (0,T). Then, Vyyu € LY (Q) for 2 < p < 4. Moreover, when 2 < p < 4, for
every Q%zr C Qulro C Q, we have the following:

1
1 1 P 2 P
sup [Vyu| < Cpu2 max <<WN+2//QM(1 + |VHu|2)2dxdt) ,y2(2—p>), 4)

wr



Mathematics 2024, 12, 1288

30f20

where C = C(p,v,Y,19) >0, Qur := B(xo,7) x (tg — ur?, tg) and N = 10 is the homogeneous
dimension of SU(3).

Consequently, when 2 < p < 4, the weak solution to the parabolic p-Laplacian equation on
SU(3) has the CO'-regularity and satisfies (4).

To prove Theorem 1, it requires us to contemplate the following regularized equation:

6

Oy = Z XiA”(Vyug) inQ; uy=u ona,Q, (5)
i=1

where u is a weak solution to (1), and 9,Q = Q) x {t = 0} U9Q) x (0, T) is the parabolic

boundary of the cylinder Q, with the following condition:

_2 6 -2
o(@+ ¢ 7 o < X AT (Qaig < Y(o+ 27 ol

ij=1
|AZ(Q)] < Y(o+|g2) 7.

(6)

for every {, 0 € R®, where ¢ € (0,1], ;T(-j (¢) :=0gA7(Z), p € [2,00) and 0 < v <Y < 0.
Here, from [17], since {X;}1<;<¢ are the left-invariant vector fields, we have X' = —X;.
Simultaneously, we also need to consider the Riemannian approximation equation (see

Section 2 for details):
8
drite = y_ XFATC(Veue) inQ; ue=1us, onodyQ, 7)
i=1

where u, is a weak solution to (5), with the following condition:

p=2 8 p=2
v(o+21*) 77 [of* < ,ZlAﬁg‘j(C)ein <Y(e+121) 7 lof,
l,]:

AT ()] < Y(e+ 7).

(8)

for every , 0 € R8, where ;75(47) 1= g, A7C(0), p € [2,00) and 0 < v <Y < co. Above,
v,Y depend only on v',Y'. Let ue be a weak solution to (7). When 2 < p < oo, we write
A7(Z) = A(D) +vo'"T Tand AT(§) = Ai(Car) + (o + [C[7) 7 £ see (126], Section 2) for
details. The Riemannian approximation technique has become a mature technique widely
used in studying equations; see [17,19,25,26] for the definition and more details of the
technique. It is proven in [25,26] that A” — A and uy — u as ¢ — 0, and that A7¢ — A7
and ue — U, as € — 0; also see [13,14,17,19] for an example.

Hence, to obtain Theorem 1, we only need to prove that {ue}, cc (01 have the following
C(l)(’)lC -regularity uniformly in o, e € (0, 1]. Finally, letting € — 0,0 — 0, from the following
theorem, we can apply the standard method as [25,26] to derive Theorem 1.

Theorem 2. Assume that ue € LP((0,T), W71-Zploc (Q)) is a weak solution to (7) with condition
8),inQ=0x(0,T).If2<p <4, then Véu € LS. (Q). Moreover, when 2 < p < 4, for any
Quar C Quary C Q, we have the following:

1
3 3 2 r
sup |Véue| < Cy% max (<W;+2/ /Q (c+ |V€ue|2)§dxdt> ,]/[2(2;7)), )
wr S Xu2r

where C = C(p,v,Y,r9) > 0and Qy, := Be(xq,7) X (to — ur?, tg).

The proof of Theorem 2 relies on Moser’s iteration; see Section 4 for details. The key
point, by the approach in [25,26], is to establish a crucial Caccioppoli-type estimate for
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Veue involving V€V¢u, (see Lemma 6). To obtain the crucial Caccioppoli-type estimate,
when 2 < p < 4, we establish two Caccioppoli-type inequalities for V¢V¢u, and Vi, in
Lemmas 4 and 5, proven in Section 3. Applying Lemma 5 to re-estimate the integral terms
on the right hand of (26) in Lemma 4, we prove the crucial Caccioppoli-type estimate in
Section 3.

Consequently, we construct a crucial Caccioppoli-type inequality (38). Based on
the inequality we establish, when 2 < p < 4, the C%!-regularity for the parabolic p-
Laplacian equation on the group SU(3). Compared to the Heisenberg group H", our new
result achieves the same range of p as [26]. Unfortunately, the C%!-regularity for the
range p € (1,2) U (4,00) cannot be achieved with our current technology because our
argument rests in a crucial way on Lemma 5 with the condition p € [2,4]. The difficulties
in the proof arise from handling and estimating integral terms involving V¢ V€u,. In
the Heisenberg group H", there exists the property that [X;, R] = 0; however, it does not
hold true on SU(3). For example, [X1, Ry] = 4X; (see Table 1). This means that we need
to handle more integral terms when estimating integral terms involving V¢ V€u.. Our
approach can also be applied to more general sub-Riemannian manifolds. For instance,
it can be used with a special class of semi-simple Lie groups as proposed in [17], and
Hormander vector fields of step two as discussed in [19], to establish the regularity for the
parabolic p-Laplacian equation. Technically speaking, our method can also be extended to
other types of partial differential equations, for example, the non-homogeneous equation

6
ou = — ¥ XS Ai(Vyu) + B(x,t,u, Vyu). The establishment of the regularity for the
i—1
range of p € (1,2) U (4, o0) will be the focus and difficulty of our next work.

Table 1. Lie bracket on SU(3).

X, X, X; X, Xs X6 Ry Rs
X, 0 —Ry X5 —Xe —X; Xy 4X, 2X,
X, R, 0 Xe X5 —X4 X5 4%, —2Xy
X; —Xs5  —Xg 0 —Rg X; X, 2X, 4X,
Xy Xe —Xs R 0 X, X —2X;  —4X;
X5 X3 X, -X; —X 0 Rs—R;  2Xe  —2Xg
Xe —Xu X3 —-X, X;  Ry—Rg 0 —2Xs  2Xs
R, —4X, 4X; —2Xy 2X4 —2Xe 2X5 0 0
Ry —2X» 2X; —4Xy 4X 2X6 —2Xs 0 0

2. Preliminaries

The group SU(3) is a special type of unitary group composed of 3 x 3 complex matrices;
that is,
SU(3):={Ae€GL(3,C): A-A" =E,detA =1},

where E is the identity matrix. The Lie algebra of SU(3) is defined by the following:
su(3):={Begl(3,C): B4+ B*=0,trB=0}

granted with the inner product (B, C) := —tr(BC).
The two-dimensional maximal torus on the group SU(3) is provided by the following;:

et 0 0
S:= 0 e 0 151,952,853 €ER,s1+5p+5s3 =03,
0 0 €%
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whose Lie algebra is as follows:

iSl 0 0
S:= 0 is, O 151,82,53 € R,s1+sp+s3 =0
0 0 i53

is selected as the Cartan subalgebra. The following Gell-Mann matrices form a set of the
orthogonal basis of su(3), namely the following;:

0 1 0 0 i 0 0 0 0
Xi=| -1 00|, =i o0}, x3=(0 0 1],
0 00 000 0 -1 0

0 0 O 0 01 0 0 i
=0 0o —i|, xs=| 0 00}, Xe=|0 0 0|,
0 —i 0 -1 0 0 i 00
i 00 -5 0 0
51— 0 i 0 ’ 52— 0 —\% 0
0 0 O 2i
0 0 7

The following two vector fields are generated from [Xj, X5] and[X3, X4], respectively;
that is,

—2i 0 0 00 0
Ry=—[X;,Xs]=| 0 2 0| and Rg=—[X3,XsJ=| 0 20 0 |.

0 0 0 0 0 -2

Since 51 = %R7 and S; = ﬁlﬁ - %Rg, the vertical vector fields Ry, Rg form a set of

orthogonal basis of S. Hence, the vertical gradient is defined by V5 := (Ry, Rg).
We recall the Riemannian approximation technique. Given € € (0, 1], we define the
Riemannian approximation to the vector fields Xj, Xy, ..., Xg, as

X‘f = Xl,Xg = Xz,...,Xg = X6,X; = €R7,X§ = €Rg.

From which, we denote V€ = (X3, ..., Xq,€Ry7, €Rg) as the gradient,
The following table ([17], Table 2.1), shows the total Lie bracket for any two vector
fields belonging to {X3, ..., Xs, R7, Rg}.
Table 1 shows that
(k)

k !
[Xi, Xj] = ol Xe +6[/R),  [Xi,Rj] = 0\, [Ry,R}] =0, (10)

and that

k 1
[X¢, X¢] = o)) X +6/R), (11)

where Ug](»), 61.(,1].), 191(? € R are constants determined entirely by Table 1. From Table 1, it is
not difficult for us to discover that the horizontal subspace H in SU(3) is generated by the
set of orthogonal bases { X3, X, ..., Xs} satisfying the Hormander condition. Hence, the
horizontal gradient is defined by Vy; = (X1, X, ..., X¢). Here, the basis {X7, X»,..., X4}
is left-invariant due to the left-invariance of the Gell-Mann matrices. To summarize, the

basis {Xl, Xo,..., X6} generates the horizontal distribution of a sub-Riemannian manifold.
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3. Several Caccioppoli-Type Inequalities and a Crucial Caccioppoli-Type Estimate

In this section, we establish the crucial Caccioppoli-type estimate for V€u, involving
V€Veu. and some Caccioppoli-type inequalities, which are uniform in 7, e € (0,1]. The
following two lemmas are prerequisites for the proofs of subsequent lemmas.

Lemma 1. Suppose ue is a weak solution to (7). Then, vf = Xjue, withl =1,...,8, solves

8
00§ = Z X§( Veue) Xi X5 ue) + Y IXF, XFJATC(Veue). (12)
i,j=1 i=1

Proof. From (7), by the Lie bracket, we have the following:

8
90§ = Xfope = Y X5 (XEATE(Veue))
i=1
8 8
=2 XP(XTAT(Vue)) + ) IXT, X{JAT (Veue)
1

i=1

8
= ) X (AT (Vue) Xf X ue) + Z (X, XE] A2 (Veue)
1 ij=1

O

Lemma 2. Suppose uc is a weak solution to (7). Then, Rjue, with | = 7,8 solves the following:
8 8
U, ag,e
OtRjue = '21 Xf(Ai,éj(Veue)Xleue) + '21 Xf(Ai’éj(Veue)[Rl,Xje]ue)
i,j= L=

8
+ )[Ry, XJATS (Veue). (13)

i=1

Proof. Letting vf = €R;u. in Lemma 1, we have the following:

8
OiRjue = Z X§( 1§ < (VEue)R X ue) Z [Ry, X{]AT(VEue).
ij=1 i=1

From this, by Rle = X]?Rl + [Ry, Xje], we obtain (13). O
3.1. Several Caccioppoli-Type Inequalities

The following lemma provides a Caccioppoli-type inequality for V¢ u. involving
VGVRME.

Lemma 3. Suppose u. is a weak solution to (7). Then, when p € (1,00), for every v > 0 and
every ¢ € C1([0, T], C5°(Q2)), we have the following:

/tltz /0(0—1— |V€u€|2)p772|V€VRu€|2Q4+7|VRu€|7dxdt
< C/ttz/n|V€VRu€|7+2Q3+7|8tQ]dxdt
1
0+ 02 [ [ (o (990" |V 7 Ve 2t
Cly+1) / / (0 + [Vue2) E 7|V e | Tdxdt, (14)

where C = C(v,Y) >0
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Proof. Applying ¢ = ¢*|Vrue|7Rjuc to test (13), we obtain the following:

ty
Ll :/ / atRlu€Q2|VRue\7Rluedxdt

t
—/2/ Z XE( ue)X Rjue)0?|V gue|TRyucdxdt
ij=1
/ / Z X5 ( Veue)[R;, X ]ue)Q |VRue|TRjuedxdt
1] 1

ta
o E[Rz, XEJAT (Vue) 2| V| Ryedxdt = S+ Sy + . (15)
1=
For L!, integrating by parts, we have the following:

8 1 fp 2 t
lei/ /a A\ Y+2 det:—i/ / v 1+2p9,0dxdt,
1:27 T+2/n Jo ([Vrue )¢ dx Y+2Jy Ql Rie|T"00r0dx

which yields
. 2 +2
| ZL | < m/; /Q |VRue| " "¢|dro|dxdt. (16)
=7 1

For Sll, integrating by parts, we have the following;:

8 t
Y. Si= Z / 2/ Z -A Vue) XiRjue20X; 0| Vyute|"Rjuedxdt
=7

ij=1
B Z/ttz/ 1]21 Veue XeRlueg |V Rte|"X{ Rjuedxdt
_7/&/ Z A% XE(|VRucl?) Q| Vrue "X (|Vrue[?)dxdt
ij=1
=—511 — S12 — S13- a7

For S}, integrating by parts, we have the following:

/ / ZA Veue) Rl,XE]uGZQX€Q|VRu€|7Rluedxdt

ij=1
t
/2/ Z ue Rl, ]ueQ |vRue|7X€Rlu€dxdt
ij=1
)
—'y/ / Z Veu) Rl,Xe]MEQ |Vywue|"™ 2 ZRkueX Riuedxdt
ij=1 k=7

= — Sh1 — Shy — Shs. (18)
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For Slz, integrating by parts, we have the following:
ty o 8
- / /Q Y AT (Veue)20[Ry, Xflo| Vte| " Ryuedxdt
i=1
th 8
- / / 2 A?,E(Veue)gz [Rl/ XﬂRluedxdt
b TS

ty 8 8
/Q Y ATE(Veue)o®Ryue| Vrue|" 2 Y Ryute[Ry, XE]Ryuedxdt
i=1 k=7

1 l 1
- S31 - 532 - S33'

Combining (15) and (17)—-(19), we obtain the following:

8
512+513=—ZLI 511—22 b+ She)
1=7

=7k=1

(19)

(20)

Now, we use the condition inequality to estimate each term in (20) separately. Apply-

ing condition (8) to estimate S1, we obtain the following:
f2 2y 252 2,2
S12 > v/ /0(0' + [ Veue|®) 7 |VEVRue|“0% | VR ue| "dxdt.

51

Applying condition (8) to estimate S13, we obtain the following:
t -
s> 20 [7 [ (@4 196ueP) 2 Ve (| Vi) o2 Ve~ 2t > 0.
ty

Applying condition (8) to estimate S13, we obtain the following:

f2 2\ B2 +1

Sul <2Y [ [ (¢ + |Vue) 2 |V Vruelol Vol | Vrone ™ dxd
f

Applying condition (8) to estimate S); and SL,, we obtain the following:

8 8 tr -1
| 25121| + Z 5131‘ < 4Y/t /Q((T—i- |V€u€|2)pTQ\V€Q||VRuE\7+ldxdt.
1=7 1=7 1

Applying condition (8) to estimate Sb,, Séz, 5123, and 553, we obtain the following:
: l 5 l S l b l
| Y Sl +1)_ Szl +1)_ Sxl+1) Sl
1=7 1=7 1=7 1=7

ta —1
<a¥(r+1) [ [ (04 VU @IVl 19°V e et
1

Combining (16) and (20)—(25), by Young’s inequality, we obtain the following;:

2 2y 22 2,2
/ /Q(U+|V€ue\ )T |VEV |70 | VR ue|Vdxdt
t
c b
< m/ / VeV gte|T+20]dr0]dxdt
+c/ / (0 + [VEue[2) 2" | V€0 2|V e |7+ 2dxdt

FClr 12 [ [ (o 19U @V e xd,
t

(21)

(22)

(23)

(24)

(25)
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where C = C(v,Y) > 0. Setting 0 — ¢**7/2 in the above inequality, we obtain (14). O

The following lemma provides a Caccioppoli-type inequality for V¢ V€u,

Lemma 4. Suppose u. is a weak solution to (7). Then, when p € (1,00), for every v > 0 and
every o € C1([0, T], C3(QY)), we have the following:

1
Y+2 t1<t<t2

/ (0 + |Veue )z dex+/ / (0 + | Veuc|? ) Veue|*o*dxdt

< Cly+1) //(T+|Ve1/le|) (0% + |V€0|? + 0| V0| )dxdt
Cly+1) //0+|V6u| |V73u€|2 2dxdt

— A% Ta dxdt, 26
+7+2/tl | o+ [V4ue) "+ arglod 26)
where C = C(n,p,v,Y) > 0.

Proof. Applying ¢ = 0?(c + |Veu€|2)%Xl‘€u€ to test (12), then integrating by parts, we
obtain the following;:

t
! :%/2/(‘7+|veue|2)%at((xfue)2)gzdxdt

t
:_/ 2/ Z ATE (V¥ue) X XS ue20X5 0(0 + [ Vuel?) 2 Xfuedxdt
ij=1

t
—/2/ Z .A Veue) Xy Xeueg (o + |Veue|? )ZXfouedxdt
ij=1

/ Z ATE (VEue) X, X e XSue (0 + | Vu 2) 2 X (|VEne ) dudt
i,j=1

t

—/2/ ZA?'G(Veue)ZQ[Xf,XﬂQ(UJr Veue[?)? XEuedxdt
h /05
t . 8

*/2/ ZA?’G(Veue)Q2(0+IVeuelz)%[ € X XCucdxdt

/ ZA” Ue)0* XS ue (0 + |Veue|?) Z Xfue[X5, XS] Xfuedxdt

5]
-
1

:_51_52_53_54_55—56. (27)
For Slz’ we use X} X]e = X]eXle + [X}, Xﬂ to obtain the following:
Sz —/ / Z Atfe ue XeXl UeQ ((7+ |V€u€\ )ZXfoMgdxdt

1]1

t
+ / i / 2 ATE (Vue) (X5, X5 uea? (0 + | V¥uel?)  X§ X uedxdt
i,j=1

2821 + 522. (28)
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For Si, we use XleX]e = X]eXle + [XF, Xﬂ to obtain the following:

sl / 2 ATE (VEue) X (X))@ (0 + | Veue ) = XE (| 9¥ue ) dxd
z] 1
/ Z Veue) (XS, XS Jeo? X ue (o + | Veuel?) = XE(|Veue[?)dudt
:S?)l + 532. (29)

Combining (27)-(29), we obtain
L8, +sh, =8 —sb, —sk, — s, —sL sk (30)

Now, we use the condition inequality to estimate each term in (30) separately. To
bound the first term in the left hand of (26), we note the following:

ty
viz</<a+|v€u Dk @20‘") _2L1+m/ / (0 + |V¥ue2) '+ odrodxdt.
t

Applying condition (8) to estimate S, we obtain the following:

8 ; ty »
Y shzo [ [ 0+ V)
1=1 tl (@)

Veue |2Q2dxdt.

Applying condition (8) to estimate 531, we obtain the following:

(|V€ue|?)|?0*dxdt.

8 t

v 2
Y shz [ (@ IVeue)”
1=1 tl O

Applying condition (8) to estimate S}, we obtain the following:

1 f2 € 2\ P
Sl|§c/ /(a+|v el?)
4 Jo

where C = C(Y) > 0. Applying condition (8) to estimate Sh, and S},, we obtain
the following:

Veue|o|VEo|dxdt,

kol + Shal < Cly +1) / [ @+ [94ue) 5 (|9 el + | Vel g2 V< Vet
where C = C(Y) > 0. Applying condition (8) to estimate S}, we obtain the following:
1 2 e, 12yE €
Si<C [ [ o+ 1Vue) " oIV 7ol +| Vol dxdt,
1

where C = C(Y) >0
Below, we estimate 515. We use (11) to Sl5 and obtain the following:

t 8
st :Uk/tz/o Y ATE(Veue)o* (o + IV€uc|?) X XS ucdxdt
1 Q5

t 8
+6m/2/02_,4;7r€(veu€)@2(0+|V€ue|2>%Rlegu€dxdt
h i=1

=0;Sk; + 61y,
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where vy, 0, are constants completely determined by Table 1. Applying condition (8) to
estimate 5151, we obtain the following:

t ~
S| < C/Z/Q(U—i— \Vguelz)p T ue|0>dxdt,
5]

where C = C(Y) > 0. For SL,, by Ry X§ = XRy, + [Ry, X§], we obtain the following:
t 8 7
sk, = /t / 2 AT (VU)o (o + |VEue 2) 3 XS R yuedxdt
, Jo!

t
+ / i / Z AT (VEue) o2 (0 + |Vue|?) [Ry, XS uedxdt
=551 + Sho-
Using (10) to Sé‘zzf by condition (8), we obtain the following:

t
S5 < C/ ’ /Q(U-i- \Veue|2)p+7702dxdt,
ty

where C = C(Y) > 0. For SL,,, integrating by parts, we have the following:

Sho1 = - / / Z Veue XIXEMeQ (0 + | Vue|?)? Ryuedxdt
i,j=1
/ZA“ 0%(c + |Veuc|?) EXkueXeXkueRmuedxdt
k=1

t
- 2/ ’ /Q Z AT (Veue)oXfo(o + |V€u1e[2) 2 Rypuuedaxdt.
ty i=1
Applying condition (8) to estimate Séﬂ, we obtain the following:

t
S5 5C(’Y+1)/ / (0 + | Veue[2)" Veuc|o?|Vrue|dxdt

+C/ / (o4 |VEuc|?) e Q|V€Q||VRue|dxdt
where C = C(Y) > 0. Combining these estimates, we obtain the estimate of SL, as follows:
L & e, 12\= € 2
S5 SC/ /Q((T-i- |Vue|) 2 Veue|o*dxdt
31
t
+C/2/ (o + |V€ue|2)¥qzdxdt
t JQ

Clrs1) [* [ (o 9ue)’

+c/ / (0 + [ VEue?) 7" 0| V0|V ite|dxdt,

u€|Q2 |V rue|dxdt

where C = C(Y) > 0.
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For S., we use the same method as estimating 515 and obtain the following:

p—

t
56| SC’Y/Z/Q(U+|V€ue|2) 7 | Ve Veue |02 dxdt
t

ot
+C’)//2 / (0 + |VEue?) =" o2dxdt
. tl o Q

p—2

T VEVeue | 02| VR e |dxdt

t
+C'y(’y+1)/t /Q(‘T+|V€Me|2)
v
2 e, 12y Pty ¢
—I—C’Y/t /Q((T—HV ue|?) "7 0|Veol||Vrue|dxdt,
1

where C = C(Y) > 0.
Combining all estimates to (30), then by Young's inequality, we obtain (26). O

Based on Lemma 3, we obtain the following lemma, which provides two Caccioppoli-
type inequalities for V.

Lemma 5. Suppose u is a weak solution to (7). Then, when p € [2,4], for every v > 0 and every
0 € C'([0, T], CP(QY)), we have the following:

£
/2/ |VRue|p+'yQp+7dxdt
H Ja
<Cp+IVeali= [ [ (e +]9eu?)+" duat
spt(e)
& e, 12y 52 evre,, (2 4+
+C(p+’y)/t /Q(U+\V uel?) 7 |[Vyue|"|VEV U] 70T dxdt, (31)

1

where C = C(p) > 0;

1
t =
</2/ |VRue|”+7Q”+7dxdt>p !
n Jo

1
€ ' Pty r+ry
< Clp+ 2 el + lelu) ([ [ (o 9uel) H dxa

4-p

1 p—2 e 12\ PEY 2(p+7)
HClp ol p=lspt(@ 0 ([ [ (o4 Veu) T axar) T, @)
sptie
where C = C(v,Y) > 0.

Proof. First, we prove (31). Denote

t
u:= / ’ / |VruePT7oPT7dxdt, V := // (0 + \Veue|2)p+77dxdt.
h /O spt(e)
According to Table 1, we write the following:

Ryue = —[X1, Xplue = XoXque — X1 Xpte
Rgue = —[X3, Xylue = X4 Xaue — XzXylle.

From this and Vi ue = (Ryue, Rgite), we rewrite |Vyue|[PT7 as

|VRue|PT =|VrueP~>T7((Ryue)* + (Rgue)?)

:|VRue|p72+7(R7ue(X2X1ue - X1X2ue) + Rsue(X4X3ue - X3X4ue)>-
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Then U can be written as follows:

t
u :/ / |V Rue|P 2T Ryue(XoXque — X1 Xoue)oP T dxdt
n Jo

5]
+ / / |V Rute|P 2T Rguie (XaXaue — X3Xque)oP T 7dxdt = Uy + U.
n Jo

For U;, we integrate by parts to obtain the following:

ty
Uy=—(p—2-17) /t /Q |Vrtte|P 3T Ryuc 0P 77 (Xo |V pute| Xqtte — X1 | Vgtte| Xoue ) dxdt
1

t
- /t /Q |VRue|”_2+Vgp+7(X2R7ueX1ue — X1Ryue Xpue )dxdt
1
t
—(p+7) /t /Q |V rute|P 2 " RyueoP 117 (Xp0X11e — X10Xoue)dxdt.
1
Thus,

t
U <2(p+7) [ [ 1V uel| Vel 279 Ve ol
1

ty
+2(p+ 1) /t /Q IVeue||Vrite P17 VEV pite| | VE 0]~ 7 dxdt.
1

In the same way, we obtain the estimate of U, as follows:

5}
U <2(p+7) /t /Q Vue||Vgite|P~2HT|VEV Rt 0P+ Tdxdt
1

)
#20p+) [ [ 190l Vil VTl [Veglo?~HTdxdt.
1

Thus,

)
U <4(p+ 1) /t /O VEue||Vgite |27 | VEV Rt 0P+ Tdxdt
1

t
Falpt) [ [ IVl Vel VT [Vl Tdxdt = Ly + Ly (33
1

Below, we estimate L1 and L,. For Ly, applying Holder’s inequality, we have the following:

4-p 2p—4+y

Li < 4(p+ )2V U 267,

where
1)
xo= [ IV e 1199V e P lxa.
51

For L, applying Holder’s inequality, we have the following;:

1

Ly <4(p+7)IVel=Viu

p=1+y
P+

Thus,

—p

1 2 2p—dty 1 pelty
U <A4(p+7)x2 Ve U2en +4(p+ )|Vl V Pt 7ir .

From this, by Young’s inequality, we obtain (31).

(34)

(35)

(36)

(37)
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Second, we prove (32). Applying Lemma 3 to re-estimate M defined in (35), then we
apply Holder’s inequality to obtain the following:

r+2 +2

P2  y+2 p=2  p+2
X <C(y+1)2| V|2 VITr Ur + C|lgdsgll i [spt(o)| 777 L7+
+C(y+ 1) follt Vi urt,
where C = C(v,Y) > 0. This, with (34), yields the following;:

—2 4-p p=1ty

—1+ 1 p
Ly <C(p + 72|Vl =V U T + C(p + 7)l|0drg]| 2 |spt()| 20 VD U 757

2 5 -2 P2y
+C(p+ ) lleli=Vru 7.
Combining the above inequality, (33) and (36), we obtain the following:

p—2 4-p p—1+y

—1+ 1 -
U <C(p+ )2 Veellie VT U 77 + C(p + 1)l 0di] 7 [spt(g)| 2 V2w U 7o

P P 2 p-2ty
+C(p+ 1) leli=Vrrt v

p—2+

Dividing both sides of the above inequality by U P simultaneously, we apply Young’s

inequality to obtain the following:
2 2 p=2 4-p
urs <C(p+1)*IVealli=Vr + Clp+7)lldrell=Ispt(e) | 7¥1 V¥
+Clp+ 2 PllelF v,
which implies (32). O

3.2. A crucial Caccioppoli-Type Estimate

Based on Lemmas 4 and 5, we obtain the crucial Caccioppoli-type estimate for V€u,
involving V€V€u.

Lemma 6. Suppose e is a weak solution to (7). Then, when p € [2,4], for every v > 0 and
0 € CL([0, T], C°(Q)), we have the following:

P—2

7 |V€V€u€|292dxdt

e, 2\ 2 2 f2 €, |2
sup (c+|Vue|”) 2 o dx—l—/t /Q((T—HV ue|”)
1

1 <t<tp Q

Jiastd
< Clp+ (ol + I9%elft +loVrelis) [ [ (o [9ue) = dud
a+2

p=2 + Py
+C ) ledelirlst@F ([ @ Iveue) Fasar) T, o)
sptie
where C = C(p,v,Y) > 0.

Proof. To obtain (38), we need to re-estimate each integral term on the right-hand side of
(26), separately.



Mathematics 2024, 12, 1288 15 of 20

First, we bind the second integral term on the hand side of (26). Applying Holder’s
inequality, then by (32) in Lemma 5, we obtain the following:

/ /(0+\V€ue| |VRue\2Q2dxdt

2+7

7
(// (0 + |Veue?) =" dxdt) (/ / |VRue |”+7Qp+7dxdt)
pt

Clp+ 1 Ulellts +19%lE) [ [ (o 9ue) 2 dnc

IN

Y2

p=2 [
Clp+ 1P ledialinlspt@l 7 ([ [ or o) F dzar)
Sp

where C = C(p,v,Y) > 0.
Second, we bind the final integral term on the hand side of (26). We apply Holder’s
inequality to obtain the following:

1) +2
/t /()(0+|V€ue|2)%|atg|gdxdt
1
742

—2 T
<lledelu=lspr(@1F ([ [ (o |9 uelt) F )
spt(o

Combining the above estimates and (26), we obtain the following: (38). O
4. Proof of Theorem 2

In this section, we apply the crucial Caccioppoli-type estimate to prove Theorem 2.

The Proof of Theorem 2. For every non-negative cut-off function ¢ € C!([0, T],C°(Q))
vanishing on the parabolic boundary of Q, satisfying lo] <1in Q, and for any v > 0, we
denote the following:

+
w:=(c+ \V5u5|2)¥gz.

Then, (38) is rewritten as follows:

sup | w Nian dx+/ / |Vew|*dxdt

t<t<t,
< Clp+71)(lellis + IVeel= + ||QVRQ||L°°)//Spt(Q) wdxdt
42
2 Pty
Clp+7 ledialuslsprl@) 7 ([ [ wraar) . )
spt(

We denote g := 2 + I‘\ll(&ii)), where N = 10 is the homogeneous dimension of SU(3).

Applying Holder’s inequality, we apply the Sobolev inequality to obtain the following:
—2

ty ty 2(7+2) % N NT
/ / wldxdt S/ (/ w Py dx) (/ wNde> dt
Hn JO h Q Q

2(y+2) % tr 5
§C< sup w Pt dx) / /Q |Vew|“dxdt,
t

b <t<t, /O
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which, together with (39), yields the following:

N
ty N+2
( [ wfidxdt) <Clp+1)°(lellE + V¥l + oV rallu=) [ [ wldxds
t1 JQ spt(e)

2

Pty
+Clpt 1 ledelinlspt@l 7 ([ [ atasar) ™, o
spt(

where C = C(p,v,Y) > 0.
For any u,r > 0, we define the parabolic cylinder Qur == Bg(xo, ) X (to — ur?, tp).

Givenany Q2 C Qu2r, C Q, wedenoter; = (142 ")rand 7; = 2(x' — 1) withx = Ny2

such that

2(y;i +2) ) .
1=+ (1+=L—"L), i=0,12,...;
p Yi+1 (p r)/l)( N(p—"/)/l)

we write Q; = Qy», with Qy = 9,5, and Qo = 9+, then choose a standard parabolic
cut-off function ¢; € C*(Q;) satisfying the following:

{ 0; = 1 in Ql—i—lr

22i+8 22i+8

Vel < 2 . IVrail <2 e |0r0;| < urr in Q;.

By (40) with ¢ = ¢; and y = ;, writing &; = p +7; = p — 2 + 2«’, we obtain the following:

N
0i N2
<//Q (U+|Veue|2)§r1dxdt>
i+1
: r=2
0,

< CRR(r 24 1) K// (0 + [ V<ucl )dedt) e )

8;—p+2
9; 9;
x (//Q (o + |v€ue|2)zdxdt) , 41)

where C = C(p,v,Y) > 0. To simplify writing, we denote

Y 19%‘
Xi = (//Q (c+ |V€ue|2)2dxdt> .

B o) 1y, P42
Xj+1 S L i( +}4 )

Then (41) becomes

where C = C(p,v,Y,r9) = C(p,v,Y)(1+13) > 0. From this, letting t; = max(xl,y%),
we obtain the following:

%1

Xif1

< Cuw 2%, (42)

Without loss of generality, we may assume C = C(p,v,Y,rp) > 1. Iterating (42), we have

the following:
1+1 —j 00K1+1

Xi—O-l S (HK i+1 )— ip1 ,

where Kj =C VNLHZZJ' 19]9, bi=p—2+ 2kt and k = % From this, letting i — oo, we obtain
the following:
P
XKoo :=limsup j; < CV%X(%, (43)
i—00

where C = C(p,v,Y,rg) > 0. Since supg,, |VEue| < Xoo, combining (43), we obtain (9). [
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5. Higher Integrability of d;u

In this section, based on Theorem 1, when 2 < p < 4, we prove the higher integrability
of dsu. Setting o — 0 in the following theorem, we gain d;u € Lq oc forany 1 < g < oco.

Theorem 3. Suppose u, is a weak solution to (5) in QO x (0, T). Then, when 2 < p < 4, we have
oy € L1 (Qx (0,T)) for any q € [1,00). Moreover, when p € [2,4], for every v > 0 and

loc

every ¢ € CL([0, T], C5°(Q2)), we have
t2
/ / |0¢us |20 P2 dxdt
t Jo
- 12
< C7 2 (7 +2)"2spt(0)| (X" 2 Vet~ + X" 0deell=) T, (44)
where C = C(p,v,Y) > 0and x = supg ) (0 + |V ytis|2)2.

Proof. For any v > 0, from (5), we have

6
|atua|wr2 =[Oty |T0suy 2 Xi(Aa(vHutT))'
i=1

From this, integrating by parts, we have

ot t 6
L:/z/ |at1/l¢7|’Y+2Q'Y+2dxdt — /2/ |atugl76tugZXi(A?(VHua))Q7+2dxdt
* tl Q tl (@] i=1
t 6
=- (7+2)/2/Q|atua|lyat1/laZA?(V’HMU)Q'YJ'_lxiQdde
h i=1

ty 6
—(r+1) /t /Q |0s14e| Y X011 ZA?(VHuU)QV+2dxdt =1+ L. (45)
1 i=1

We apply condition (6) and Holder’s inequality to obtain the following:

t _
0 <COr+2) [ [ (04 19002 e 717 T qltna
1
pag|

1) 72
SC(’y—i—Z)(/t /Q |8tua|7+zq7+2dxdt>
1
1

[} (p—1)(y+2) T2
X </t /Q(U—i— |V;.lug|2) =t VHQ|7+2dxdt>
1

1
<C(7 +2) || Vollispt(e) |72 P~ LL752; (46)

ty -1
|15 §C(7+1)/t /Q(a—i—|V7{ug\2)p7|8tug\7|VH8tug|Q7+2dxdt
1

v
t 2(7+2)
SC(’Y+1)</t2/Q|atu07+297+2dxdt> ”
1

_1_

2
X (// (a+|vHu,,|2)’””4”)dxdt> "
spt(e)
1 r v

<C(y+1)[spt(g)| 72 x LT 3, 47)

Nl—
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where x = sup(,) (0 + |Vyuel )%

t —
J= /2 /Q((H_ |v””‘7|2)p72 |0ttte ||V aydrue 207 T dxdt.
f

Below, we estimate |. Differentiating (5) with respect to t, we obtain the following:

6
at(atua) = le(at.A V’Hu(r Z X 1§ VHVU)X atua) (48)
i=1 ij=1

Applying ¢ = |91y |70sus07 T to test (48), we integrate by parts to obtain the following:
ty
L= / / 3 (Br1to) | sty | D107 HAdadt

~aen Y S A 90 X e o b
ij=1

,)/ +4 Z / / Aggj(VHMU)Xjatua|3tua|78tugg7+3Xidedt = —51 — 5.
ij=1

Thus,
S1=—-L-05,.

For £, we integrate by parts to obtain

1 7+4
ﬁ:—/ /a drtty|TT2) 0 T Adxdt —
52 )0 Jo t([0rug[77) 0T dx

/ |0r1y | 720730 0dxdt,
which, together with condition (6), yields
t
IZ| gc/t /Q\atu,7|7+zg7+3|8tg|dxdt.
Jh

For 51, condition (6) implies
51> U(’)f + 1)]

For Sy, by condition (6), by Young’s inequality, we have the following;:

2l <COr ) [ [ (@4 [Fral?) 2 oo 7 Vil | ¥ el

SLJ Dyscir+1) /: /Q(U Vo) 7 [0rug | 71272 Wy Pdxat
Combining these estimates, we obtain the estimate of ], as follows:
J<C [* [ (0419 30l) 2 oo 172672 W ofPtact
1
+ % /: /Q |91 | " T20773|90|dxdt
<COP 2 Vel + — ledrellim L. )
Combining (47) and (49), we obtain the following;:

1 p_ afl _ 1
|| < C(y+1)lspt(e)| 72X T L7 (x| VasallE + [l0drel| i) 2. (50)
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Combining (45), (46) and (50), we obtain the following:

1 +1
L <C(y+2)|| Vel lspt() | 72" 'L 72
T2y b Lz (P2 2 3
+C(y +Dspt(0) 72 x 2 L772 (X7~ | Vellie + [[00tel|1e) 2.
From this, we obtain (44). O

6. Conclusions

In this article, we construct a crucial Caccioppoli-type inequality (38). Based on
the inequality, when p € [2,4], we built up the C(l)(’)lC -regularity of weak solutions to the
degenerate parabolic p-Laplacian equation on the group SU(3) granted with the horizontal
vector fields Xj, ..., X¢. Compared to the Heisenberg group H", our new result achieves the
same range of p as [26]. Unfortunately, the C%!'-regularity for the range p € (1,2) U (4, )
cannot be achieved with our current technology because our argument rests in a crucial
way on Lemma 5 with the condition p € [2,4]. Our approach can also be used for more
general sub-Riemannian manifolds, for instance, a special class of the semi-simple Lie group
proposed in [17] and Hormander vector fields of step two in [19], to establish regularity for
the parabolic p-Laplacian equation. Technically speaking, our method can also be extended
to other types of partial differential equations, for example, the non-homogeneous equation

6
o = — Y, XFAi(Vyu) + B(x,t,u, Vyu). The establishment of the regularity for the
i=1

range p € (1,2) U (4, c0) will be the focus and difficulty of our next work.

In conclusion, the results shown in this article are original. We believe that our results
will be widely applied in the study of regularities for equations involving the p-Laplacian
operator and other areas of applied science.
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