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Abstract: For decades, wavelet theory has attracted interest in several fields in dealing with signals.
Nowadays, it is acknowledged that it is not very suitable to face aspects of multidimensional data like
singularities and this has led to the development of other mathematical tools. A recent application
of wavelet theory is in radiomics, an emerging field aiming to improve diagnostic, prognostic and
predictive analysis of various cancer types through the analysis of features extracted from medical
images. In this paper, for a radiomics study of prostate cancer with magnetic resonance (MR) images,
we apply a similar but more sophisticated tool, namely the shearlet transform which, in contrast to
the wavelet transform, allows us to examine variations along more orientations. In particular, we
conduct a parallel radiomics analysis based on the two different transformations and highlight a
better performance (evaluated in terms of statistical measures) in the use of the shearlet transform (in
absolute value). The results achieved suggest taking the shearlet transform into consideration for
radiomics studies in other contexts.
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1. Introduction

Wavelet theory, born in the 1980s to solve some problems in dealing with Fourier
analysis, received particular attention, not only in mathematics, but also in many applied
sciences [1–7]. A key concept of the wavelet theory is the scale leading to a multi-resolution
analysis of the functions which capture both fine and coarse characteristics [8,9].

Before giving the definition of the continuous wavelet transform, which is at the base
of wavelet theory, we recall some standard notations. By L2(Rn), we denote the Hilbert
space of square integrable (measurable) functions f : Rn → R from the Euclidean space Rn

of dimension n ≥ 1 to the set of real numbers R. The space L2(Rn) is equipped with the
inner product ⟨·, ·⟩, defined by

⟨ f , g⟩ =
∫
Rn

f (x)g(x)dx, f , g ∈ L2(Rn).

Definition 1 ([9]). Let ψ ∈ L2(Rn), a > 0, t ∈ Rn and

ψa,t(x) = a−
n
2 ψ

(
x − t

a

)
, x ∈ Rn.
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The continuous wavelet transform of f ∈ L2(Rn) is the function Wψ f : R+ × Rn → R
given by

Wψ f (a, t) = ⟨ f , ψa,t⟩, for (a, t) ∈ R+×Rn. (1)

The variables a ∈ R+ and t ∈ Rn are called scale and location parameters, respectively,
and the continuous wavelet transform can be interpreted in the following way. If ψ has
compact support centered in the origin, then Wψ f contains local information of f near
t. Moreover, for a small value of a, the support of ψa,t (called a wavelet) is tight, so Wψ f
gives better local details near t. Besides the definition above and discretized versions, (in
particular, the stationary wavelet transform SWT [10]) has been formulated for dealing with
discrete data, like images, based on decompositions at different scales (levels). Wavelet
theory is also related to a more general field, frame theory [9,11,12], concerning analysis,
synthesis and reconstruction by sequences of elements.

The wavelet transform is very efficient to approximate a one-dimensional signal
f : R → R containing pointwise discontinuity; however, the same does not hold for
multidimensional data f : Rn → R (n > 1), in general. This is due to the fact that
multidimensional data present other types of discontinuities, for instance, an edge in a
2D image corresponds to a sharp change of level grays and so it is a (non-pointwise)
discontinuity. For this reason, other tools such as those proposed in [13–19] have been
developed in the last decades to process multidimensional data (in particular, 2D images).
One of these new methods is the shearlet transform, introduced in [17,18], which is efficient
to analyze functions along directions. In order to show the definition (confining to the 2D
case), we first set some additional notations. Let ψ ∈ L2(R2). For a > 0, s ∈ R and t ∈ R2,
we put

ψa,s,t(x) = a−
3
4 ψ(A−1

a S−1
s (x − t)), x ∈ R2,

which we call a shearlet and where

Aa =

(
a 0
0 a

1
2

)
and Ss =

(
1 s
0 1

)
are the parabolic scaling and shearing matrices, respectively. The variables a ∈ R+, s ∈ R
and t ∈ R2 are called scale, shearing (or orientation) and location parameters, respectively.
Figure 1 illustrates how the shearing parameter affects the orientation of the support of ψ
(the parameter has a similar effect also on the support of the Fourier transform ψ̂).

(a) (b) (c)

(d) (e) (f)

Figure 1. The effects of the parameters a and s on the support of a function ψ : R2 → R. The
support of ψ (coinciding with ψ1,0,(0,0)) is shown in (a) and every figure reports the support of ψa,s,t

for different values of a and s (while the location parameter is always set as t = (0, 0)). All the figures
have the same scale. (a) a = 1 and s = 0, (b) a = 1 and s = −1, (c) a = 1 and s = 1, (d) a = 1

4 and
s = 0, (e) a = 1

4 and s = 1, (f) a = 1
4 and s = 3.
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Definition 2 ([18]). Let ψ ∈ L2(R2). The continuous shearlet transform of f ∈ L2(R2) is the
function Sψ f : R+×R×R2 → R given by

Sψ f (a, s, t) = ⟨ f , ψa,s,t⟩, for (a, s, t) ∈ R+×R×R2. (2)

The shearlet transform, as one can see in the above definition, takes inspiration from
the wavelet transform. However, it is more proficient in the analysis of images along given
orientations and, in fact, the shearlet transform has been employed in [20,21] to develop a
method for the analysis and detection of edges in images. Moreover, it found several other
applications, e.g., denoising [22–24], image fusion [25,26] and segmentation [27,28]. Finally,
in contrast to other methods, the shearlet transform is based on an algebraic structure of
group similarly to the wavelet transform [18].

Returning to the beginning of our discussion, due to its success in image processing,
the discretized version of the wavelet transform has become a common filter for radiomics,
a rising interdisciplinary field that combines medicine and informatics. Radiomics focuses
on the extraction of quantitative features from medical images, especially from tomographic
images such as positron emission tomography (PET) [29], computed tomography (CT) [30]
and magnetic resonance (MR) imaging [31]. This approach enables the conversion of
qualitative information, based on medical doctors’ experience, into objective information.
In other words, by analyzing quantitative features, radiomics aims to uncover valuable
information that may not be discernible through traditional visual inspection alone [32]. The
radiomics features can be extracted starting from the original images or after performing
the wavelet filter, i.e., the images are first decomposed according by the SWT and then the
features are calculated on each part [33–40]. Thus, wavelet analysis plays a significant
role in radiomics since it increases the range and the type of features usable to characterize
tumor properties and responses to treatment.

Motivated by the use of the wavelet transform as a filter for radiomics and by the
better properties of the shearlet transform, in this paper we carry out a radiomics analysis of
prostate cancer based on MR imaging using the absolute shearlet transform as a filter and
compare it to the classical wavelet transform. For absolute shearlet transform filtering, we
mean that the images are decomposed in approximation and details coefficients at different
levels and orientations, applying the so-called non-subsampled shearlet transform (NSST) [17],
which has analogy with the SWT, and then the absolute values of the coefficients are taken.
MR imaging provides high-quality quantitative images that are suitable for prostate volume
selection and segmentation, screening, detection, classification, risk stratification and treatment
planning [41]. In particular, MR imaging demonstrates excellent sensitivity and specificity
for detecting prostate cancer [42] and has been recommended as a diagnostic tool by the
American College of Radiology and the European Society of Urogenital Radiology [43].
Given the subjective and inconsistent nature of interpreting prostate MR imaging, suspicion
scores for prostate cancer have been developed, utilizing a one-to-five-point scale “Prostate
Imaging Reporting and Data System” (PI-RADS) to enhance standardization in MR imaging
interpretation and reporting. Furthermore, the integration of computerized diagnostic tools
alongside radiologists’ assessments has shown promise in improving the sensitivity and
specificity of prostate cancer detection [44]. Consequently, there is a notable interest in
exploring the potential of radiomics for prostate cancer detection [45].

The specific radiomics analysis investigated in this study consists in the prediction
of the nature of lesions (prostate cancer or non-neoplastic lesions) within the prostate,
employing a dataset of MR images. The primary objective of this study is not identifying
the absolute best predictive model for distinguishing between non-neoplastic lesions and
prostate cancers, but evaluating whether the incorporation of the absolute shearlet trans-
form can enhance the outcomes of radiomics compared to utilizing the wavelet transform
alone. We accomplish this by employing a conventional radiomics pipeline that incorpo-
rates three machine learning models: linear discriminant analysis, linear support vector
machine and decision tree. For the purpose of comparison between the two transforms, we
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evaluate the performance of the classifiers in terms of standard statistical measures (area
under the receiver operating characteristic curve, specificity, sensitivity and accuracy). Our
method, involving the absolute shearlet transform as preprocessing of the images, gives a
better performance according to the statistical indices and on the lesser number of features
employed by the models. For our study, we make use of PyRadiomics [46] (version v3.0.1),
an Image Biomarker Standardization Initiative (IBSI) compliant analysis software, for the
feature extraction and MATLAB (version R2023b) for the training and validation of the
models.

In the literature, other works involved the shearlet transform and the radiomics, but
under different points with respect to our study. In particular, the authors of [47,48] used
the shearlet transform, not as a filter, but for multi-modal medical image fusion before
conducting radiomics studies. In [49], the reproducibility of radiomics features (among
which the shearlet features) from ultrasound images is studied. The shearlet transform was
used also to extract more features for the detection of Alzheimer’s disease in [50], for the
classification of breast tumors in [51] and of brain cancer in [52]. Related works concerning
not medical but histological images are [53–56].

This paper is organized as follows. In Section 2, we describe the image dataset we used
for the analysis and we talk about radiomics focusing on PyRadiomics software and on the
feature types. We also recall how the SWT, implemented in PyRadiomics, is defined, and we
continue the discussion about the shearlet transform. Finally, we present our method for the
radiomics study in the object and the metrics for the evaluation. Section 3 reports the results
obtained by the method and the comparison with the wavelet approach. Finally, we discuss
the results in Section 4 and then make some concluding considerations in Section 5. This
paper also contains Appendix A with a more technical result about the shearlet transform.

2. Materials and Methods
2.1. Medical and Imaging Dataset
2.1.1. Patient Selection

This retrospective study was conducted at a single facility, the AOUP “Paolo Giaccone”,
under the auspices of the University of Palermo for consecutive patients who underwent
multiparametric prostate MR imaging between 1 June 2019 and 31 January 2023. We
selected 73 Prostate Imaging Reporting and Data Systems (PI-RADS) greater or equal to
3 lesions, subsequently divided into 2 groups based on the histological results obtained
from fusion biopsy. Group 1 (n = 45; 61.6%) comprises all lesions with a histological
result indicating prostate cancer with a Gleason score greater than or equals to 6, while
Group 2 (n = 28; 38.4%) includes all other non-neoplastic lesions (prostatitis, atypical small
acinar proliferation and prostatic intraepithelial neoplasia). Our case series do not include
prostate tumors with a Gleason score less than 6 because, in our hospital, lesions with such
a Gleason score are not usually reported in the histological findings. A large part of the
dataset, namely made of 71 patients, was used in [57] for a different analysis.

2.1.2. MR Imaging Technique

MRI exams were performed using a 1.5T MR scanner (Achieva, Philips Healthcare,
Best, The Netherlands) with a pelvic phased-array coil (16-channel HD Torso XL), using
the same imaging protocol in all patients.

The standard clinical prostate MRI examination comprised axial, coronal and sagittal
T2-weighted turbo spin-echo images of the prostate and seminal vesicles, along with axial
T1-weighted turbo spin-echo images. Additionally, diffusion-weighted imaging (DWI) was
performed at b values of 0, 700, and 1400 s/mm2, and post-processed to generate apparent
diffusion coefficient (ADC) maps. Following the unenhanced imaging, patients were
administered 1 mmol/kg body weight of Gadoteric acid (Gd-DOTA, Dotarem, Guerbet)
at a rate of 3 mL/s, followed by an infusion of 20–30 mL of saline solution at the same
rate. Axial T1-weighted three-dimensional spoiled gradient-recalled echo volumetric
interpolated images were acquired after contrast agent injection to capture the perfusion
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MRI of the prostate (dynamic contrast-enhanced (DCE)). Axial T2-weighted images and
ADC maps were used for the purposes of this study. Detailed pulse sequence parameters
are listed in Table 1.

Table 1. MR imaging parameters for the population study.

Parameter T2w TSE

Repetition time (ms) 3091

Echo time (ms) 100

Flip angle (degrees) 90

Slice thickness (mm) 3.3

Reconstruction interval (mm) 0.3

Acquisition matrix 320 × 320

Signal averages 3

Signal-to-noise ratio 1

Voxel size (mm) 0.5625 × 0.5625 × 3.3

2.2. Radiomics

The radiomics aim is to extract a large number of quantitative features from medical
images for building descriptive and predictive models. To be clearer, the aim is to predict
if a new case can be considered as a member of Group 1 or Group 2. To extract features
related to a specific anatomical district (such as the prostate, in our case), a medical image
of the district is needed as well as a mask containing the region of interest, in short, the ROI
(Figure 2 shows a slice of a MR image and the related mask). The mask can be realized by a
manual segmentation of the radiologist (as in our case) or by automatic/semi-automatic
segmentation algorithms [58].

(a) (b)
Figure 2. In (a), a slice of a MR image containing a prostate (in the center). In (b), the corresponding
mask containing the ROI (the prostate manually segmented by the radiologist).

Based on a T2-weighted image and the corresponding mask, a total of 110 radiomics
features can be extracted utilizing IBSI [59] compliant analysis software, i.e., PyRadiomics
version v3.0.1 (https://pyradiomics.readthedocs.io/en/latest/index.html, accessed on 15
March 2024) [46], for increasing the reproducibility of the extracted features. PyRadiomics
is a Python-based open-source program designed for scientific computing, compatible
with various platforms. The software extracts various types of features, including shape
descriptors, first-order statistics, and texture matrices such as the gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level dependence matrix
(GLDM), gray-level size-zone matrix (GLSZM) and neighboring gray-level dependence
matrix (NGLDM). Shape descriptors are concerned with the geometric characteristics of
the objects in the image and are not influenced by the intensity distribution of gray levels.
These descriptors encompass attributes such as volume, maximum diameter, surface area,
compactness and sphericity. First-order statistical descriptors, also known as histogram-

https://pyradiomics.readthedocs.io/en/latest/index.html
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based features, analyze the frequency distribution of a voxel (short for “volumetric picture
element”, which is a three-dimensional pixel representing a point of a regular grid in a
3D space on which the image is defined) and intensities within an organ by examining
the histogram of gray-level intensity values. Texture features, on the other hand, provide
insights into the spatial arrangement of gray levels within the image. They evaluate the
relative positions of voxels, offering information about the spatial organization of gray
levels within the organ of interest.

2.3. Wavelet Transform

For many applications, the continuous wavelet transform defined by (1) is discretized.
This is the case of the image processing, since an image is considered as a discrete object. In
particular, the PyRadiomics package for the feature extraction processes the images with
the so-called stationary wavelet transform (SWT) [10], which is determined (for a 3D image f )
by the following level decomposition scheme.

1. In the first level decomposition, the image f is decomposed in an image f 1
L and an

image f 1
H by applying a low-pass filter and a high-pass filter on the first variable,

respectively (low-pass refers to low frequencies, while high-pass to high frequencies).
Next, f 1

L is decomposed into an image f 1
LL and a image f 1

LH applying the filters with
respect to the second variable, respectively. The same is carried out for f 1

H and pro-
duces f 1

HL and f 1
HH . Finally, starting from f 1

LL, f 1
LH , f 1

HL, f 1
HH , similar decompositions

are performed in relation to the third variable and eight images are obtained, f 1
LLL,

f 1
LLH , f 1

LHL, f 1
LHH , f 1

HLL, f 1
HLH , f 1

HHL and f 1
HHH . The first of the eight images is called

the approximation coefficients image at the first level, while the other ones are called
detail coefficient images at the first level. This decomposition is shown in Figure 3.

2. The scheme is iterated ℓ times, where ℓ is the decomposition level desired, in the fol-
lowing way. If k = 2, . . . , ℓ, then the kth level decomposition takes as initial image the
approximation f k−1

LLL of the previous level and applies the decomposition as described
above into eight images, which are denoted by f k

LLL, f k
LLH , f k

LHL, f k
LHH , f k

HLL, f k
HLH ,

f k
HHL and f k

HHH . To conclude, the image f k
LLL is called the approximation coefficients

image at the kth level, while the other ones are called detail coefficients images at the kth

level. Figure 4 shows a representation of the level decomposition with two levels.

Figure 3. Scheme of the first level SWT decomposition of a 3D image f . The result is the bottom row, i.e.,
the approximation image f 1

LLL and the detail images f 1
LLH, f 1

LHL, f 1
LHH, f 1

HLL, f 1
HLH, f 1

HHL and f 1
HHH.
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First level decomposition Second level decomposition

Figure 4. Scheme of the SWT decomposition of a 3D image with two levels. The result includes the
detail images of the first and second level ( f k

LLH , f k
LHL, f k

LHH , f k
HLL, f k

HLH , f k
HHL, f k

HHH , k = 1, 2) and
the approximation image f 2

LLL of the second level.

The levels concerned in the SWT correspond to different scales, while the point
coordinates represent the locations. All the images produced by the SWT have the same
size of the original image, in contrast to the case of the other version, the classical discrete
wavelet transform [9], which generates images with halved dimensions from a level to
the next one. We make this remark because the radiomics features are calculated in terms
of the image voxels inside a ROI and so the image must have the same size of the mask
containing the ROI.

2.4. Shearlet Transform

Despite the similarity with the wavelet transform, Equation (2) of the shearlet trans-
form presents a directional bias problem for large values of s, see Section 4.3 of [18] (the
problem of large values of s can also be seen in Figure 1: the support of ψa,s,t tends to stretch
as s increases). Thus, to limit the range of s, a variation was proposed. First of all, the
Fourier domain is divided into four cones C1, C2, C3, C4 and a square R centered around
the origin as shown in Figure 5. The square is the low-frequency region and in each cone
the orientation varies over a bounded range.

Figure 5. The subdivision of the Fourier domain for the cone-adapted continuous shearlet transform.

The new formulation, called the cone-adapted continuous shearlet transform, separates
the horizontal cones from the vertical cones [18]. In particular, given three functions
ϕ, ψ, ψ̃ ∈ L2(R2), the cone-adapted continuous shearlet transform takes into account the ap-
proximation coefficients A(t′) = ⟨ f , ϕt′⟩ (related to the square region of the Fourier domain of
low-frequencies), where ϕt′(x) = ϕ(x − t′), and the detail coefficients Sψ f (a, s, t) = ⟨ f , ψa,s,t⟩
and Sψ̃ f (ã, s̃, t̃) = ⟨ f , ψ̃ã,s̃,̃t⟩ (related to the regions C1 ∪C3 and C2 ∪C4, respectively), where
a, ã, s, s̃ vary with limitations.

To apply the cone-adapted shearlet transform to images, a discretization is made
performing the so-called non-subsampled shearlet transform (NSST) [17]. In particular, we
used the toolbox for MATLAB available at https://www.math.uh.edu/~dlabate/shearlet_

https://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
https://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
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toolbox.zip (accessed on 15 March 2024) and made by the same authors of [17]. The NSST
is resumed with the following level decomposition scheme, represented in Figure 6.

1. In the first level decomposition the image f is decomposed into a low-pass image
f 1
a and a high-pass image f 1

d . Then the image f 1
d is in turn decomposed applying

band-pass filters into a number of images corresponding to the directional subbands.
2. In the the second level decomposition one starts with the previous step and decom-

poses f 1
a to obtain a low-pass image f 2

a and a high-pass image f 2
d . Next, the image f 2

d
is decomposed into a number of images according to the directional subbands.

3. The scheme iterates until the level ℓ of decomposition desired is reached. The final
results is an approximation coefficient image f ℓa and for any k = 1, . . . , ℓ a set of details
coefficient images { f k

d,i} for different orientations.

First level decomposition Second level decomposition

Figure 6. The scheme of the NSST decomposition of a 2-D image with two levels. The result includes
the detail images of the first and second level ( f k

d,1, . . . , f k
d,mk

, k = 1, 2) and the approximation image
f 2
a of the second level.

As we did about the SWT, we remark that by applying the NSST all the images obtained
have the same sizes of the original image f . This is important because in radiomics a mask
containing the ROI must be overlapped to an image of the same sizes. Figure 7 shows
a NSST decomposition with three levels and four orientations of a slice of a MR image
containing a prostate (in the center).

Finally, in our application we will take the absolute value of the NSST results. This
is motivated, as explained in the Appendix A, by the fact that the absolute value of the
shearlet transform (For brevity, we will use in the paper the expression absolute shearlet
transform) gives an indication about the edge orientation.

2.5. The Proposed Method

The workflow of our method (which, for brevity, we indicate with AST referring to
Absolute value Shearlet Transform) is illustrated in Figure 8 and described in the follow-
ing. Firstly, the images were acquired and, in each of them, the prostate was manually
segmented by a radiologist with 14 years of MR imaging experience, ensuring a high level
of accuracy in delineating volumes of interest [42]. An example of a slide of an image and
the ROI segmented by the radiologist is in Figure 2. Moreover, biopsy tests were conducted
to detect the presence of tumor inside the prostate.

https://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
https://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
https://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
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Figure 7. Some images resulting from a NSST decomposition (with three levels and four orientations
for each level) of a slice of a MR image containing a prostate. In the first row at the left: the original
image. In the first row at the right: the NSST approximation image at the third level. In the remaining
rows there are the detail images for different levels and orientations (first level in the second row,
second level in the third row and third level in the fouth row).

1
1

1

2
2

2
4
5

5
5 44
3
3
3

3

Image acquisition,
segmentation,

biopsy test

NSST decomposition
+ absolute value

Feature 
extraction

Feature 
ordering

Model training,
 validation,

feature selection

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 8. The steps of the proposed method. From the MR images and corresponding segmentations
of the prostate, NSST decomposition (followed by the absolute value) was applied to the images to
extract radiomics features using PyRadiomics. These features were then ordered and selected for
training and validating the machine learning models for the prediction of the lesion type (taking into
account the histological results obtained from the biopsy).

In the second step, the gray levels of images in the dataset were normalized to the
interval [0, 1], then the shearlet transform (by NSST discretization) decomposition was
determined on each slide of the images and the absolute value was applied. The number of
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levels of the NSST decomposition in other applications (such as [23,26,54]) is usually set to
a small number, from 3 to 6. Thus, we made an analysis with a total of decomposition levels
varying from 1 to 6. For each level chosen, we collect the approximation image and all the
detail images up to the that level. The amount of features extracted depends also on the
number of orientations (which must be a power of 2). Since one of our goal was to compare
the shearlet method to the standard wavelet method, in order to have similar quantities of
features between the shearlet and wavelet approaches, the number of orientations was set
to 8 for each level (we remember that the coarse details images in the SWT decomposition
are right 8).

Next, the radiomics features have been extracted using PyRadiomics, starting from the
manual segmentation superimposed both on the original images, on the approximation and
on the detail images obtained from the absolute shearlet decomposition. All the possible
types of features, as described in Section 2.2, were enabled (the shape-based features were
extracted only one time since they depends only on the ROIs). The number of features
involved for a specific maximum decomposition level is listed in Table 2.

Table 2. The numbers of features extracted for the two methods (AST and WT): applying the absolute
shearlet transform or the wavelet transform.

Total Decomposition Levels Number of Features
Extracted (AST Method)

Number of Features
Extracted (WT Method)

1 792 704

2 1496 1320

3 2200 1932

4 2904 2552

5 3608 3168

6 4312 3784

In the fourth step, the features extracted have been ordered for decreasing relevance.
This is a standard technique to train the models on the most relevant features [57]. In
particular, we made the ordering by using the MATLAB function fscchi2 which works
as follows. For each feature a chi-square test [60] is applied on the values extracted from
all the images and opposed to the responses, i.e., to the image types (Group 1 or Group
2). Once all the p-values are calculated, the features are ordered for p-values increasing. A
small p-value of the statistic test gives an indication that the feature is dependent on the
response variable and then more relevant.

The final step of the method was the training and validation of binary classification
models, for the prediction of the lesion type (prostate cancer or non-neoplastic lesion),
and the resulting feature selection. Specifically, for the classifiers we considered the linear
discriminant analysis model, the linear Support Vector Machine (SVM) model and the
decision tree model. Moreover, we operated a repeated (10 times) k-fold cross-validation (In
a k-fold cross-validation the dataset is randomly partitioned into k equal sized subsamples
(folds). A single fold is used for the validation of the model, and the remaining k − 1 folds
are used as training data. This is repeated k times, where each of the k folds is employed
exactly once as the validation data, and the results are averaged. In our case, we repeated
10 times the k-fold cross-validation to have a more stable estimates (for each time the
partition was balanced, i.e., it contained about the same proportions of the two groups,
prostate cancer and non-neoplastic lesion cases) [61], with k = 5, for each case.

Because of the very high number of features, we followed this process to reduce the
computational time of the training of each model and for the feature selection:

1. we started to define the model on the first feature and took the AUC value as main
performance index (see Section 2.6 for the definition of AUC);

2. we moved to set the model on the first two features and calculated the new AUC value;
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3. if the new AUC was lesser than the previous, then the process stopped and we took
only the first feature in consideration and the model of point 1; if instead the new
AUC value was greater than the previous one we trained the models on the first three
features and calculated the corresponding AUC value;

4. the process iterated and stopped at the first M features when the model trained on
the first M + 1 features gave an AUC less than that for the first M features, which
constituted precisely the features we selected at the end.

To validate our method we made a comparison with the use of wavelet transform
(which, for brevity, we indicate with WT method), which is already implemented in
PyRadiomics (The PyRadiomics settings for the wavelet filtering were configured as default
(apart for the bin width for each levels which depends on the range of coefficient values)),
making parallel tests on the same normalized dataset and with the same partitions for the
the 5-fold cross-validation. The radiomics analysis workflow was analogue: the number of
total levels was chosen from 1 to 6 and took the final approximation coefficients and the
details coefficients up to the final level.

Finally, we also made a comparison with the radiomics analysis on the features
extracted just from the original images, without applying any filter.

2.6. Performance Metrics

To compare the radiomics analysis carried out on the two different filters (shearlet and
wavelet), we evaluated the classification models in terms of standard performance indices.
The main index we look at is the

AUC = area under the receiver operating characteristic (ROC) curve.

The ROC curve [62] is a plot showing the performance of a binary classification model
at varying threshold values (an example is shown in Figure 9). The AUC of a ROC curve
is a number between 0 and 1 and represents the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance (thus
a high value of AUC is desired).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 9. The ROC curve obtained for a validation test of the linear discriminant analysis classifier
for the AST method. The area under the ROC curve is the AUC.

The other indices (with values comprised between 0 and 1, too) we computed are:

Sensitivity =
TP

TP + FN
, Speci f icity =

TN
TN + FP

,

Accuracy =
TP + TN

TP + TN + FP + FN
,
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where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives and FN is the number of false negatives obtained from a test.
Since we executed a repeated k-fold cross-validation on the models we finally have several
tests. Then, to summarize the values, we calculated the mean and the standard deviation
for each index.

3. Results

Table 3 contains the results of the performance evaluation explained here for the
three methods in comparison (AST: features extracted from the original images and from
the preprocessing with the Absolute Shearlet Transform; WT: features extracted from the
original images and from the preprocessing with the Wavelet Transform; Original: features
extracted only from the original images). Additional evaluations, concerning TP, TN, FP
and FN numbers, are in Table 4. For AST and WT methods the values refer to the best result
over the total decomposition levels from 1 to 6. In particular, as one can see on the AUC
graphs of Figures 10 and 11 related to the most performant models (linear discriminant
analysis and linear SVM), the best result for AST is obtained for the total of levels equals to
5, while the best result for WT is obtained for the total of levels equals to 2.

Table 3. Performance indices (expressed in percentage) for the three radiomics analysis. For AST and
WT methods the values refer to the best result over the total decomposition levels, namely 5 levels in
the case of AST (for any classifier), 2 levels in the case of WT with discriminant analysis and SVM,
and 3 levels in the case of WT with decision tree. In each entry, the first number represents the mean
of the corresponding index over all tests in the repeated k-fold cross-validation. Similarly, the second
number (after the symbol ±) represents the standard deviation over all tests. The last column gives
the number of features selected.

Classifier Method AUC Sensitivity Specificity Accuracy N.
Features

Linear Discr.
Analysis

AST 81.5 ± 11.6 91.6 ± 8.3 64.0 ± 16.4 80.9 ± 8.7 1
WT 77.8 ± 13.4 91.1 ± 9.8 56.5 ± 20.3 77.9 ± 10.0 2

Original 71.8 ± 12.7 94.2 ± 8.5 45.7 ± 20.1 75.6 ± 8.6 1

Linear SVM
AST 81.2 ± 11.5 90.7 ± 9.4 64.0 ± 16.4 80.4 ± 9.9 1
WT 77.2 ± 13.4 91.8 ± 8.9 53.7 ± 23.1 77.2 ± 10.2 2

Original 71.3 ± 12.9 96.0 ± 6.3 32.8 ± 19.1 71.9 ± 8.5 1

Decision Tree
AST 73.9 ± 12.3 76.4 ± 11.6 68.7 ± 18.4 73.5 ± 9.8 1
WT 77.0 ± 11.8 80.9 ± 13.1 60.2 ± 22.5 73.0 ± 10.7 3

Original 61.9 ± 15.5 74.7 ± 15.6 51.2 ± 23.2 65.8 ± 10.3 2

Table 4. Mean and the standard deviation of True Positives, True Negatives, False Positives and False
Negatives numbers for the three radiomics analysis. The total decomposition levels for AST and WT
methods are indicated in the caption of Table 3. The table should be read taking into account that
each fold for the cross-validation contains about the same proportion of the two groups, i.e., a mean
of 9 non-neoplastic lesion cases and 5.6 prostate cancer cases.

Classifier Method TP TN FP FN

Linear Discr.
Analysis

AST 8.24 ± 0.74 3.56 ± 0.88 2.04 ± 0.99 0.76 ± 0.74
WT 8.20 ± 0.88 3.16 ± 1.15 2.44 ± 1.15 0.80 ± 0.88

Original 8.48 ± 0.76 2.56 ± 1.11 3.04 ± 1.12 0.52 ± 0.76

Linear SVM
AST 8.16 ± 0.84 3.56 ± 0.88 2.04 ± 0.99 0.84 ± 0.84
WT 8.26 ± 0.80 3.00 ± 1.29 2.60 ± 1.32 0.74 ± 0.80

Original 8.64 ± 0.56 1.84 ± 1.09 3.76 ± 1.12 0.36 ± 0.56

Decision Tree
AST 6.88 ± 1.04 3.84 ± 1.09 1.76 ± 1.08 2.12 ± 1.04
WT 7.28 ± 1.18 3.38 ± 1.29 2.22 ± 1.23 1.72 ± 1.18

Original 6.72 ± 1.40 2.90 ± 1.39 2.70 ± 1.25 2.28 ± 1.04
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Figure 10. Plots of the means of the performance indices of the best linear discriminant analysis
model for different levels. In red: model trained with the absolute shearlet transform. In blue: model
trained with the wavelet transform.
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Figure 11. Plots of the means of the performance indices of the best linear SVM model for different
levels. In red: model trained with the absolute shearlet transform. In blue: model trained with the
wavelet transform.

Table 3 also reports the numbers of features selected by the methods; in particular,
we highlight that for our shearlet approach a less number of features were selected (1 vs.
2). The features under consideration by the linear discriminant analysis and by linear
SVM can be read in Table 5 and will be discussed in the next section (for more details
about the definitions see https://pyradiomics.readthedocs.io/en/latest/features.html (ac-
cessed on 15 March 2024)). We specify that “shearlet5orientation7_glcm_Idn” refers to
the GLCM texture feature Inverse Difference Normalized (IDN) of the shearlet detail coeffi-
cients at the 5th level and with 7th range of orientation (which is pictured in Figure 12).
Moreover, “wavelet1LHH_glcm_ClusterShade” corresponds to the GLCM texture feature
Cluster Shade calculated on the wavelet detail coefficients LHH of the second level and
“wavelet1HHL_glszm_ZoneVariance” refer to the GLSZM feature Zone Variance on the
wavelet detail coefficients HHL of the second level.

Figure 12. The range of orientation related to the selected feature by the AST method.

In Figure 13 we show some examples containing prostates and, in some cases, also the
cancers, discussing in addition the results of the prediction of the best models.

As completeness, we also took in consideration all the features, from original and
from shearlet and wavelet decompositions, together. This analysis does not improve
the results. The best case scenario remains that of models trained exclusively on the
“shearlet5orientation7_glcm_Idn” feature.

https://pyradiomics.readthedocs.io/en/latest/features.html


Mathematics 2024, 12, 1296 14 of 19

Table 5. Features selected by the methods (both in case of linear discriminant analysis and linear
SVM classifiers) with regard the best result over the levels (AST: 5 levels, WT: 2 levels). Note that
PyRadiomics actually starts to label the levels for the wavelet filter from 0, so these wavelet features
belong of the second level of decomposition.

Method Features Selected

AST shearlet5orientation7_glcm_Idn

WT wavelet1LHH_glcm_ClusterShade
wavelet1HHL_glszm_ZoneVariance

Original original_shape_MinorAxisLength

(a) (b) (c)
Figure 13. Examples of prostates delineated in green. Figures (a,b) are cases of Group 1 (with prostate
cancer in red) while figure (c) belongs to Group 2. In the following we refer to some predictions of
the models in Table 5. The first case is a TP for AST and for Original (both classifiers), while it is a FN
for WT (both classifiers). The second case is a TP for AST-linear discriminant analysis and for WT
and for Original (both classifiers), while it is a FN for AST-linear SVM. The third case is a TN for AST
(both classifiers), while it is a FP for WT and for Original (both classifiers).

4. Discussion

As can be seen from Table 3, the proposed radiomics method, based on the extraction of
features from the images processed by the absolute shearlet transform, gives better results for
the prediction of the prostate cancer in comparison with the classical wavelet transform.

The best classifiers are the linear discriminant analysis and the linear SVM. Thus, in
the following we confine the consideration to these models. The means not only of AUC,
but also of the other performance indices, are higher (with the exception of the sensitivity
for the linear SVM classifiers) for AST and, at the same time, the standard deviations are
lower, meaning a reduced variability among the test cases. With this observation, we can
state that the absolute shearlet transform is a finer preprocessing tool. This is established
also by the fact that the analysis with overall features does not improve the results of the
models trained on the feature “shearlet5orientation7_glcm_Idn”.

The AST method significantly outperforms (with approximately a 10% difference in
AUC) the procedure that solely involves feature extraction from the original images. While
the specificity is higher in the latter case, its corresponding sensitivity is notably low, and
the accuracy is lower compared to AST. Moreover, paying attention to Table 4, we can
observe that the incorrect predictions (the sum of FP and FN) are lower among all the
methods for AST.

In [57] a prediction model for prostate cancer was developed using a different statistical
method and without the use of any filter. As previously said, the dataset from [57] overlaps
with our study, comprising 71 cases. Since the datasets are almost identical, we report the
performance indices of [57]: AUC of 68.46%, sensitivity of 76.25%, specificity of 73.15%,
and accuracy of 71.02%. Although our primary aim is not to identify the best predictive
model, it is possible to see how the results obtained with the shearlet transform are better.

As already remarked, the proposed method leads to a single selected feature, while
WT method need two features. From a theoretical point of view, this difference is reflected



Mathematics 2024, 12, 1296 15 of 19

into simpler prediction models for the AST method. Remaining on the subject, we discuss
the interpretation of the selected features. As stated in https://pyradiomics.readthedocs.io/
en/latest/features.html (accessed on 15 March 2024), the inverse difference normalized is a
measure of the local homogeneity of an image. The fact that the shearlet feature is relevant
in distinguishing the prostate cancer and the non-neoplastic lesion cases means that there
is a difference between the local homogeneity between the two cases, in the detail image at
the 5th level and with 7th orientation. We attribute the relevance of this feature in the fact
that a prostate cancer is determined by edges (even if slight in some cases) and, as stated by
Theorem A1, the absolute shearlet transform efficiently recognizes the presence of edges. On
the other hands, wavelet1LHH_glcm_ClusterShade is a measure of the asymmetry about the
mean of the GLCM when the low-pass is applied in the first variable and the high-pass is
applied in the second and third variables. The feature wavelet1HHL_glszm_ZoneVariance
measures instead the variance in region volumes for the zones when the high-pass is applied
in the first and second variables and the low-pass is applied in the third variable. Finally,
original_shape_MinorAxisLength is the second-largest axis length of the ellipsoid which
encloses the prostate. Although the simplicity of using one or two features for classification
may be unexpected, it is essential to consider that radiomic features, especially those derived
from advanced transforms such as shearlets or wavelets, can capture complex information
from medical images. Obviously, it is crucial to conduct further analyses involving larger
patient cohorts and comprehensive clinical data. Interpreting radiomic features in clinical
settings is challenging due to the complex nature of medical imaging data.

As can be deduct from their definitions (https://pyradiomics.readthedocs.io/en/
latest/features.html accessed on 15 March 2024), the shape descriptors, the first-order
statistics and the texture matrices are invariant if the image and the ROI are translated by
the same quantity, if they are both mirror-reflected or rotated by multiples of 90 degrees.
Consequently, the Original method produces the same result if a translation, a mirror
reflection or a rotation is applied. Moreover, since the wavelet and shearlet transforms
do not work with a preferred direction (indeed, for instance, the low-pass and the high-
pass filters in the SWT decomposition are the same applied on each spatial variable) and
incorporate translations, the types of features (like Idn, ClusterShade and ZoneVariance)
obtained by the AST and WT methods do not change if mirror-reflections, rotations by
multiples of 90 degrees and shifts are applied. Of course, the labels like orientation7 for
AST and LHH for WT, which depend on the direction, change accordingly to the reflection
or the rotation.

Our study refrained from exploring numerous machine learning or feature selection
methods as we focused on evaluating the impact of integrating the absolute shearlet
transform into the traditional radiomics workflow. We compared it with the wavelet
transform, usually used in radiomics and strictly similar to it. Therefore, we employed
conventional techniques to assess the improvement achieved by the absolute shearlet
transform. Future investigations should aim for a more comprehensive radiomics analysis,
moving beyond the assessment of shearlet transform utility and striving to identify a
radiomics pipeline that maximizes the discriminatory power of predictive models. To
address this aim, we plan to incorporate the shearlet transform into matRadiomics, a tool
developed by our research group [63], facilitating broader-spectrum analyses in the future.

Another limitation is that our study is restricted to T2-weighted (T2w) images, whereas
multiparametric prostate MRI studies include diffusion-weighted (DWI) and dynamic
contrast-enhanced (DCE) sequences. A clinically relevant radiomics analysis should be
capable to accurately categorize these sequences as well. However, this represents the
initial phase of shearlet transform of applying to prostate cancer radiomics analysis on MR
images. Additional investigation is necessary to determine if a similar approach can be
applied to DWI and DCE images.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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5. Conclusions

The shearlet transform represents an evolution of the wavelet transform, and some
applications like denoising, image fusion, segmentation [22–28] are a confirmation. How-
ever, currently, the shearlet transform has rarely been used to increment the number of
radiomics features extracted [49–52] and, consequently, to enhance prediction models
aimed at supporting clinical decisions.

In this study, we utilized the shearlet transform to decompose MR images of the
prostate at various levels and orientations, conducting a radiomics analysis to differentiate
between non-neoplastic lesion and prostate cancer cases. We confine the analysis up to the
sixty level, following the approach adopted in some state-of-the-art studies that involve
the shearlet transform. Additionally, we opt for a number of orientations equals to 8 for
each level to maintain consistency with the number of detail images at the final level in
the SWT decomposition. Furthermore, we conducted a comparative analysis of prostate
cancer prediction performance using both the absolute shearlet transform and the classical
wavelet transform as image preprocessing techniques. The results we obtained indicate
that the absolute shearlet transform is more effective than the wavelet transform, which is
a more popular filter in radiomics, in discovering crucial features.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the receiver operating characteristic Curve
AST Absolute Shearlet Transform radiomics method
MR Magnetic Resonance
NSST Non-Subsampled Shearlet Transform
SVM Support Vector Machine
SWT Stationary Wavelet Transform
WT Wavelet Transform radiomics method

Appendix A

In this appendix we report more technical properties of the shearlet transform which
are recalled in the paper. As said in the introduction, in contrast to the wavelet transform,
the shearlet transform is able to precisely recognize the geometry of edges and, in particular,
this is described by the behavior of the shearlet transform for small values of a. More
precisely, let us consider this setting for a representation of a 2-D image: Ω = [0, 1]2 =
∪n

k=1Ωk ∪ Γ is the set of ’objects’ points, where Ωk is a connected open subset for k = 1, . . . , n
(representing an object) and Γ = ∪n

k=1∂Ωk is the set of the ’edges’ points, where ∂Ωk is the
boundary of Ωk. We model an image as function f : Ω → R satisfying

f =
n

∑
k=1

uk(x)χΩk (x), x ∈ Ω\Γ,
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for some functions uk : Ω → R, k = 1, . . . , n. Under this framework, the following result
has been proved in Theorem 4.1 [20] (see also Theorem II [21]).

Theorem A1. Let t ∈ Ω. If

1. t /∈ Γ (i.e., t is not a point of an edge) or
2. t ∈ Γ (i.e., t is a point of an edge), the edge can be parametrized in a neighborhood of t = (t1, t2)

as a regular curve (E(t2), t2) and s ̸= −E′(t2) (i.e., s does not correspond to the normal to
the edge in the point t),

then
lim
a→0

a−
3
4 Sψ f (a, s, t) = 0.

Finally, if t ∈ Γ, the edge can be parametrized in a neighborhood of t = (t1, t2) as a regular
curve (E(t2), t2) and s = −E′(t2) (i.e., s corresponds to the normal to the edge in the point t), then
there exist c1, c2 > 0 such that

c1|[ f ]t| ≤ lim
a→0

a−
3
4 |Sψ f (a, s, t)| ≤ c2|[ f ]t|, (A1)

where [ f ]t denotes the jump of f in t occurring in the normal direction to the edge.

By (A1), in presence of an effective jump, i.e., when [ f ]t ̸= 0, then
lim
a→0

a−
3
4 Sψ f (a, s, t) ̸= 0. In conclusion, by Theorem A1 the values of a−

3
4 |Sψ f (a, s, t)|,

for a near to zero, allow to distinguish the orientation of edges. For this reason, in our
application to radiomics we actually take the absolute shearlet transform in consideration
rather the shearlet transform itself.
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