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Abstract: Trajectory planning plays a crucial role in achieving unmanned excavator operations. The
quality of trajectory planning results heavily relies on the level of rules extracted from objects such as
scenes and optimization objectives, using traditional theoretical methods. To address this issue, this
study focuses on professional operators and employs machine learning methods for job trajectory
planning, thereby obtaining planned trajectories which exhibit excellent characteristics similar to
those of professional operators. Under typical working conditions, data collection and analysis are
conducted on the job trajectories of professional operators, with key points being extracted. Machine
learning is then utilized to train models under different parameters in order to obtain the optimal
model. To ensure sufficient samples for machine learning training, the bootstrap method is employed
to adequately expand the sample size. Compared with the traditional spline curve method, the
trajectories generated by machine learning models reduce the maximum speeds of excavator boom
arm, dipper stick, bucket, and swing joint by 8.64 deg/s, 10.24 deg/s, 18.33 deg/s, and 1.6 deg/s,
respectively; moreover, the error does not exceed 2.99 deg when compared with curves drawn by
professional operators; and, finally, the trajectories generated by this model are continuously differen-
tiable without position or velocity discontinuities, and their overall performance surpasses that of
those generated by the traditional spline curve method. This paper proposes a trajectory generation
method that combines excellent operators with machine learning and establishes a machine learning-
based trajectory-planning model that eliminates the need for manually establishing complex rules. It
is applicable to motion path planning in various working conditions of unmanned excavators.

Keywords: unmanned excavator; spline curve; bootstrap; machine learning; trajectory planning

MSC: 00A06; 68T07

1. Introduction

Trajectory planning is a crucial technology in unmanned excavators, and a well-
designed motion trajectory significantly influences the control effectiveness of these ma-
chines. Current research on trajectory generation primarily focuses on three aspects: (1) gen-
erating trajectories using high-order curves based on physical constraint points and other
constraints; (2) fitting artificial operation curves, with a particular emphasis on bucket tip
position trajectory fitting; and (3) generating trajectories based on force and torque feedback,
with an emphasis on excavation action trajectory planning. YOO et al. [1] proposed generat-
ing motion trajectories using B-spline curves constrained by the maximum pump flow rate.
ZOU et al. [2] also utilized B-spline curves combined with constraint conditions to generate
three types of excavation trajectories: shortest time, minimum energy, and minimum oper-
ating force. JUD et al. [3] achieved results similar to those of operators through end-effector
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force-torque path planning and later adopted cubic Hermite spline curves for continuous
excavation path planning [4]. KIM et al. [5] designed two different operational paths based
on the shortest operating time and the minimum torque, respectively. GROLL et al. [6] di-
vided the operational motion into segments and established sub-modules for each stage to
form a complete trenching process. LEE et al. [7] divided tasks into three stages, completed
path planning under global planner, and utilized model-predictive control (MPC) to update
local path information in real-time. ZHANG et al. [8] added acceleration jerk constraints
and used a sequential quadratic programming algorithm to calculate optimal decision-
making solutions; ZHAO et al. [9] established topologically equivalent paths to ensure
smooth excavation processes; and FENG H. et al. [10] decomposed trenching operations.

Due to its exceptional adaptability to nonlinear processes, machine learning has been
extensively employed in the domain of unmanned excavators. PARK et al. [11] utilized echo-
state networks for generating excavator models. ZHOU et al. [12] and OGUMA et al. [13]
employed neural networks for diagnosing excavator faults, and the mechanical performance
of excavators was predicted using a similar approach by Seker et al. [14]. KURINOV et al. [15]
accomplished the automatic loading of excavators through reinforcement learning within
a simulation environment, and the study conducted by Samtani et al. [16] also employed
reinforcement learning techniques to develop Dueling Double Deep-Q Networks and
extensively investigated the fracturing actions of excavators. Through data-driven ap-
proaches, task planning research was conducted by ZHAO et al. [9], and inverse motion
control of excavator models was conducted by Lee et al. [17]. EGLI et al. [18] trained
models using reinforcement learning techniques to accurately identify soil hardness, while
YU et al. [19] integrated physical and data-driven models for real-time soil resistance pre-
diction. Li et al. [20] also employed a hybrid approach that integrates kinematic modeling
and machine learning techniques to accurately predict resistance. GUO et al. [21], on the
other hand, simulated operator’s operating patterns using deep neural networks. By lever-
aging the well-established applications of image analysis in deep learning, OSA T et al. [22]
investigated mining tasks through deep image learning techniques, while Kim et al. [23] de-
veloped a visual-based model for recognizing mining actions in job statistics. On the other
hand, YAO et team [24] generated continuous excavation trajectories employing PINN.
Furthermore, ZHAO et al. [25] also discovered that, under optimally planned trajectories,
the fluctuation of excavation angles in unmanned excavators is greater than that observed
during manual operations.

Based on the comprehensive research mentioned above, the current challenge in
trajectory planning for work devices is as follows: the effectiveness of trajectory planning
relies solely on the quality of established planning rules, often limited to fulfilling specific
optimal objectives without considering holistic outcomes [26]. Presently, most studies
concentrate on singular objectives [27] (e.g., minimizing energy consumption) for job
trajectory planning, posing difficulties in balancing multiple objectives (such as minimizing
time, reducing energy consumption, and mitigating impact). Trajectory planning that
prioritizes specific objectives typically compromises other parameter characteristics and
encounters practical implementation challenges.

In response to the aforementioned issues, this study proposes a trajectory planning
method that integrates the exceptional operator’s operational trajectory with machine
learning. During long-term practical operations, skilled operators have developed an
operating style intuitive and challenging to precisely describe, which is continuously
fine-tuned to achieve a balance among multiple objectives. Therefore, it is imperative to
employ machine learning techniques for analyzing the operator’s operational trajectory
and establishing a model that generates optimal operation trajectories aligning with the
overall characteristics while considering multiple objectives. This paper initially describes
and models traditional trajectory generation methods, followed by collecting and analyzing
professional operator’s operational data while expanding the sample size using a bootstrap
method [28]. Subsequently, machine learning is applied for model training in order to
obtain the final trajectory-planning model. Finally, a comparative analysis of differences
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in the trajectory characteristics between machine learning model trajectories, professional
operator trajectories, and traditional spline curve-based trajectory planning is conducted.
The results demonstrate that, in terms of consistency and continuity, among other aspects,
the machine learning model can generate high-quality operating trajectories similar to
those of exceptional operators while surpassing conventional trajectory planning methods.

2. Sample Methods
2.1. Traditional Trajectory Generation

Excavator trajectory planning is a crucial part of motion planning for unmanned
excavators, and its core lies in accurately planning the movement trajectory of the excavator
arm from the starting position to the target position, as well as intermediate positions, based
on the task requirements. Typically, we use spline curves for representation. Spline curves
possess characteristics such as simplicity, ease of use, continuity, and controllability of start
and endpoints, making them highly suitable for generating excavation trajectories [29].
By treating n key points as the segment points and adding appropriate control points
to achieve the segmented fitting of joint movements [30,31], corresponding excavation
trajectories can be generated.

As an illustration of trajectory generation for dynamic boom joint angles, the break-
points are presented below.

Tboom = (t1, t2, . . . , tn−1, tn)
T

Θboom =
(

θboom(1), θboom(2), . . . , θboom(n−1), θboom(n)

)T (1)

Among them, Tboom represents the time coordinate points of the trajectory, while
Θboom denotes the angular coordinate points of the trajectory.

The calculation of trajectory control points can be formulated according to the follow-
ing equation:

Tboom−c = AboomTboom

Θboom−c = BboomTboom
(2)

Among them, Aboom and Bboom are control point matrix coefficients, with the specific
form shown below.

Aboom =




a11 0
a21 a22
a31 a32
0 a42

 (04×2) (04×2) . . . (04×2)

(04×2) (. . .) (04×2) . . . (04×2)
(04×2) (04×2) (. . .) . . . (04×2)

...
...

... (. . .)
...

(04×2) (04×2) (04×2) . . .


a(4n−3)(n−1) 0
a(4n−2)(n−1) a(4n−2)(n)
a(4n−1)(n−1) a(4n−1)(n)

0 a(4n)(n)





(3)
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Bboom =




b11 0
b21 b22
b31 b32
0 b42

 (04×2) (04×2) . . . (04×2)

(04×2) (. . .) (04×2) . . . (04×2)
(04×2) (04×2) (. . .) . . . (04×2)

...
...

... (. . .)
...

(04×2) (04×2) (04×2) . . .


b(4n−3)(n−1) 0
b(4n−2)(n−1) b(4n−2)(n)
b(4n−1)(n−1) b(4n−1)(n)

0 b(4n)(n)





(4)

Similarly, the control points for trajectory generation of the arm joint, bucket joint, and
swing joint can be obtained as illustrated below.

Tarm−c = Carm(t1, t2, . . . , tn, tn−1)
T

Θarm−c = Darm

(
θarm1, θarm2, . . . , θarm(n−1), θarm(n)

)T

Tbkt−c = Ebkt(t1, t2, . . . , tn, tn−1)
T

Θbkt−c = Fbkt

(
θbkt1, θbkt2, . . . , θbkt(n−1), θbkt(n)

)T

Tswg−c = Gswg(t1, t2, . . . , tn, tn−1)
T

Θswg−c = Hswg

(
θswg1, θswg2, . . . , θswg(n−1), θswg(n)

)T

(5)

The coefficient matrix exhibits the same structure as the dynamic arm matrix, and
its specific values should be suitably adjusted in accordance with practical circumstances.
However, further elaboration on this matter is beyond the scope of this discussion.

The excavation trajectory of each joint can be precisely fitted by employing a seg-
mented cubic Bézier spline curve. The operator’s operation trajectory can be effectively
segmented, enabling a seamless fit of all curve types, including straight lines, through the
utilization of cubic Bézier curves. Consequently, the expressions for each joint’s trajectories
can be standardized as cubic Bézier curves.

The mathematical representation of a third-order Bézier curve is as follows:

B(α) = ∑3
i=0 Pi

3!
i!(3 − i)!

(1 − α)3−iαi, 0 ≤ α ≤ 1 (6)

In addition to the two known endpoints, each segment of the trajectory that requires
fitting necessitates the inclusion of two additional intermediate points as the control points.
As these newly added points do not lie on the trajectory itself, it becomes imperative to
adjust the aforementioned control matrix coefficients based on both the trend of trajectory
changes and the characteristics inherent to Bézier curves. Once the key points are deter-
mined for a given operator excavation trajectory, the corresponding joint trajectories can be
generated using the aforementioned control point formula.

2.2. Professional Operator Data Collection and Analysis

The generation of excavation trajectories must consider multiple factors, including
power characteristics, workspace limitations, motion time, and path smoothness of the
excavators. However, commonly used point-fitting methods currently struggle to compre-
hensively account for these diverse factors. In practical operations, professional operators
often exhibit optimized and efficient characteristics when operating excavators, making
them suitable templates for unmanned excavators. In this section, we employ the bootstrap
method to expand their excavation trajectories as samples based on data from professional
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operators and utilize them as inputs for machine learning algorithms to generate excavation
trajectories.

In order to ensure the standardization and reproducibility of professional operators’
actions, this article presents comprehensive specifications for the operators, work scenarios,
and objects involved in the operations.

Two individuals engaged in the occupation of excavator-testing operators, with five
years of experience in operating excavators. They were 38 years old and male, reaching an
expert level in terms of operational skills.

Excavators are standardized batch products, devoid of any modifications or cus-
tomizations. Only when executing trajectory tracking control, additional computational
controller hardware is incorporated and integrated into the primary machine controller.
The parameters for each joint can be found in the table provided (Table 1).

Table 1. Relevant parameters of excavator joints.

θmin (deg) θmax/deg θrange/deg Note

Rotating 0 360 360 Rotate continuously
Boom −48 65 113 Relative to the water level
Arm −158 −35 123 Relative to boom

Bucket −150 49 199 Relative to arm

The task scenario involves excavation and loading on a high platform, with the angles
of excavation and unloading being approximately 90 degrees.

The target for the excavation is fine sand characterized by a low water content, absence
of compaction, and a uniform particle size. As depicted in Figure 1, the fine sand exhibits a
distinct morphology that is closely associated with the positioning of vehicles.
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Figure 1. Professional operator job scenario illustration.

To ensure the consistency of the operator data collected during the operations, it is
required that the operators refrain from moving the excavator tracks and only perform
rotation, excavation, and unloading actions. Operator 1 conducted a series of 20 consecu-
tive excavation and unloading operations before site restoration, followed by Operator 2
performing excavation operations under identical conditions. The real-time collection of
operational trajectory data was carried out for both operators. After eliminating significant
differences in the data curves, a final set of 19 valid excavation data points were obtained
for Operator 1, while Operator 2 yielded 12 valid sets.
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2.3. Sample Expansion

A substantial volume of raw data is imperative for attaining optimal training outcomes
in machine learning. However, amassing an extensive dataset of operator operation curves
proves to be neither cost-effective nor practical. Hence, a viable approach to tackle this
issue lies in sample augmentation. Currently, there exist several methods for augmenting
small samples, including the random sequence method, the recursive interpolation method,
the offset method, the SMOTE method, the Monte Carlo method, and the bootstrap resam-
pling method. Among these techniques, except for bootstrap resampling, other sample
augmentation methods have certain limitations, such as the requirement to determine
the distribution characteristics of the samples. However, unlike other approaches, boot-
strap resampling demonstrates a broader applicability as it does not necessitate specific
distribution characteristics of the samples.

The principle of bootstrap capacity expansion is briefly outlined as follows [32].
Firstly, arrange the initial samples in a sorted manner and subsequently generate

regenerated samples using the following formula:

pi = p∗i + ((n − 1)δ − ⌊(n − 1)δ⌋)
(

p∗i+1 − p∗i
)

(7)

Among them,
δ is uniformly distributed random numbers in [0, 1];
p∗i is the i-th original sample value.
After undergoing standardization processing using Matlab, this method has been

encapsulated into the bootstrp() function for direct implementation. The function exclu-
sively supports the expansion of one-dimensional samples, necessitating the conversion
of the operator’s two-dimensional data into a one-dimensional format. After analyzing
the operator’s operation curve, we have determined that utilizing two parameters, namely,
task cycle and joint angle range, would effectively reduce the data dimensions. Utilizing
the reduced dataset, we independently expand both the task cycle and joint angle range.
Subsequently, new sample curves are generated by applying the expanded data to the
original curve.

The dataset of job cycle samples and joint angle amplitude after expansion is shown
below (Figure 2).
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The new sample curve, depicted in the figure below, was obtained by combining
expanded samples with the original samples (Figure 3).
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Figure 3. Four expanded joint trajectory curves (The colors of the 3100 lines were randomly assigned).

2.4. Generate Mining Trajectories

Machine learning is currently an increasingly mature solution. Several scholars have
already conducted research on motion trajectory generation using machine learning tech-
niques [15,16,20,23,33,34]. However, this paper distinguishes itself by employing bootstrap
resampling [32] to augment the operator’s limited sample data, resulting in relatively
conservative yet diverse samples. Subsequently, training is carried out based on key points
to generate the final trajectory model.

2.4.1. Key Point Selection

The coordinate system of an excavator is defined as illustrated in the diagram. The
machine coordinate system (x0, y0, z0) has its origin located at the pivot center and at the
same height as the lower hinge point of the boom. Within this machine coordinate system,
distinct coordinate systems are established for the boom (x1, y1, z1), arm (x2, y2, z2), and
bucket (x3, y3, z3). The angles of the boom, arm, and bucket are all relative values that
increase in a counterclockwise direction. The swing angle is determined based on the
current posture, with positive increments considered when rotating clockwise (Figure 4).
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Figure 4. Definition of excavator coordinate system.

By analyzing the spatial motion trajectory of the excavator bucket tip in the machine
coordinate system, as well as the individual motion trajectories of its four joints, we have
chosen to focus our research on the most representative curves of these four joints. The
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accompanying diagram presents contour plots depicting these joint trajectories during
operations conducted by two skilled operators. From these motion trajectory curves, it can
be observed that both operators’ work paths exhibit overall similarity while also display-
ing distinct personal characteristics. For instance, in terms of arm trajectory, Operator 1
demonstrates a comparatively slower lifting speed compared to Operator 2; however, their
boom lowering speed is relatively faster. In contrast, Operator 2 exhibits a higher level of
consistency when reaching maximum angles—a quality noticeably absent in Operator 1’s
curve (Figure 5).
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Figure 5. Proficient operator maneuvering curve contours.

During excavation operations, the operator must precisely execute six key points while
allowing for flexible adjustments in intermediate steps as needed. The sequence of these
fixed key points includes the starting and ending excavation points, two obstacle avoidance
points, an unloading point, and the next excavation point. Although minor differences may
occur due to safety space considerations made by the operator during each operation cycle,
these six key points are relatively consistent. The diagram below illustrates their positions
(Figure 6).
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Figure 6. Diagram of six key point positions.

Based on the curves of the four joint angles, the positions of the six key points can be
determined, as illustrated in the diagram provided below (Figure 7).
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Figure 7. The key point lies in the position diagram of joint trajectories.

The spatial coordinates of each key point can be acquired through perception or pre-
determined methods and are presented as known conditions in this paper. The four joint
angle values corresponding to the coordinates of each key point can be obtained through
robot inverse kinematics solving, which will not be further expounded upon within the
scope of this paper.

The temporal coordinates of the key points are also crucial factors in acquiring a
reasonable trajectory; however, these temporal coordinates cannot be directly obtained.
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By observing the operational curves of two operators, certain principles can be inferred
to serve as the foundation for calculating the corresponding temporal coordinates of each
key point.

Guideline 1: The excavator arm should retract at a consistent speed from the excavation
point to the endpoint.

Guideline 2: Upon reaching the endpoint, the boom should briefly pause before lifting
uniformly towards obstacle avoidance point 1.

Guideline 3: The bucket should open evenly from obstacle avoidance point 1 to the
unloading point.

Guideline 4: From the unloading point to obstacle avoidance point 2, the excavator
should rotate at a relatively balanced pace.

Guideline 5: The boom should descend at a fixed rate from the obstacle avoidance
point to the next digging location.

The time coordinates of six key points can be obtained by setting appropriate param-
eters for the joint motion speed, based on the aforementioned five rules. The calculation
formula is presented below.

t1 = 0
t2 = t1 +

θarm2−θarm1
varmset

t3 = t2 +
θboom3−θboom2

vboomset1
+ tboomhalt

t4 = t3 +
θbkt4−θbkt3

vbktset

t5 = t4 +
θswg5−θswg4

vswgset

t6 = t5 +
θboom6−θboom5

vboomset2

(8)

2.4.2. Dataset Construction

By utilizing time, arm, boom, bucket, and swing angle values corresponding to six key
points as the feature inputs for machine learning, we represent them as a one-dimensional
vector of size 1 × 30. To establish the model labels, we uniformly sample 72 points from
each joint curve of the operator and represent it as a one-dimensional vector of size 1 × 360.
Following model prediction, the output is presented as a one-dimensional vector of size
1 × 360 according to Table 2.

Table 2. Machine learning model input, model label, and model output.

Symbol Variable Description Unit

Model
Input

x1~x6 tx1 ∼ tx6 Time of key point s
x7~x12 θxbo1 ∼ θxbo6 Angle values of the pivotal boom deg
x13~x18 θxar1 ∼ θxar6 Angle values of the pivotal arm deg
x19~x24 θxbu1 ∼ θxbu6 Angle values of the pivotal bucket deg
x25~x30 θxsw1 ∼ θxsw6 Angle values of the pivotal swing deg

Model
Label

y1~y72 t1 ∼ t72 Time of the operator curve s
y73~y144 θbo1 ∼ θbo72 Boom angle of the operator curve deg
y145~y216 θar1 ∼ θar72 Arm angle of the operator curve deg
y217~y288 θbu1 ∼ θbu72 Bucket angle of the operator curve deg
y289~y360 θsw1 ∼ θsw72 Swing angle of the operator curve deg

Model
Output

ŷ1 ∼ ŷ72 t̂1 ∼ t̂72 Time of the deep learn model s
ŷ73 ∼ ŷ144 θ̂bo1 ∼ θ̂bo72 Boom angle of the deep learn model deg
ŷ145 ∼ ŷ216 θ̂ar1 ∼ θ̂ar72 Arm angle of the deep learn model deg
ŷ217 ∼ ŷ288 θ̂bu1 ∼ θ̂bu72 Bucket angle of the deep learn model deg
ŷ289 ∼ ŷ360 θ̂sw1 ∼ θ̂sw72 Swing angle of the deep learn model deg

Here are the formats of the input vector and label vector.
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Input =
[

tx1 · · · tx6 θxbo1 ∼ θxbo6 θxar1 ∼ θxar6 θxbu1 ∼ θxbu6 θxsw1 ∼ θxsw6
]

Label =
[

t1 · · · t72 θbo1 ∼ θbo72 θar1 ∼ θar72 θbu1 ∼ θbu72 θsw1 ∼ θsw72
] (9)

The 3100 expanded samples will be randomly partitioned into a training set and a test
set in an 8:2 ratio for the purposes of model training and performance evaluation.

2.4.3. Model Construction and Evaluation Metrics

The present study employs a fully connected neural network as the fundamental model
for trajectory generation. This model comprises an input layer, hidden layers, and an output
layer. There are three key parameters that impact the performance of the fully connected
model: the total number of layers (i.e., model depth), the number of neurons in each in-
dividual fully connected layer (i.e., network width), and activation functions that enhance
the nonlinear expression capability. In theory, higher values for network width and model
depth yield a more intricate model with an enhanced learning ability. However, this may
also lead to overfitting, training challenges, and increased computational burden. Therefore,
when determining an appropriate network structure, it is crucial to thoroughly consider the
characteristics of the research object. Given the absence of a unified and effective method
for determining the optimal network structure presently available, this study will obtain a
relatively suitable trajectory generation network model through experimentation.

The present study employs a set of 30 feature values as the inputs, comprising a
combination of 5 elements and 6 key points. The input feature vector utilized by the model
is depicted in Equation (9).

The output of the hidden layer is illustrated below.

α(j) = f
(

W(j) ∗ α(j−1) + b(j)
)

(10)

Among them, f represents the rectified linear unit (ReLU) activation function, as
illustrated below.

f (z) =

{
z , z>0

0 , z ≤ 0
(11)

The weight matrix (W(j)) and bias vector (b(j)) represent the parameters of the jth
hidden layer.

By iteratively processing through neural networks, we can derive a control sequence
vector comprising 360 data points encompassing time, arm movement, boom angle, bucket
position, and rotation angle. The specific details are outlined as follows:

Y =
[
t̂1 · · · t̂72 θ̂bo1 ∼ θ̂bo72 θ̂ar1 ∼ θ̂ar72 θ̂bu1 ∼ θ̂bu72 θ̂sw1 ∼ θ̂sw72

]T (12)

The complete training process of the trajectory generation neural network is shown in
the following diagram (Figure 8).

The loss function plays a pivotal role in evaluating the performance of machine
learning models as it quantifies the disparity between the predicted and actual outcomes.
Commonly employed loss functions encompass the mean squared error, the cross-entropy
loss, the log-likelihood loss, and the absolute error. The selection of an appropriate loss
function should be guided by specific problem domains and requirements. Consequently,
the choice of an adequate loss function is crucial for assessing the efficacy of machine
learning models.

LMSE =
1
N ∑N

i=1(yi − ŷi)
2 (13)

Among them, N represents the number of samples; yi represents the true value label
for the i-th sample; and ŷi represents the predicted value of the model for the i-th sample.
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3. Results and Discussion

The models utilized in this article were tested under a standardized hardware and
software environment. The hardware configuration comprised an Intel(R) Xeon(R) CPU
E5-2678 v3@2.5GHz and NVIDIA RTX A5000 with a graphics memory capacity of 24 G and
a running memory of 16 G. The software platform was based on the Windows 10 operating
system, employing the Pytorch 1.2 framework.

3.1. Results

To achieve an optimal model structure, this study trained networks with varying
numbers of layers and neurons while keeping the training parameters consistent. The
specific outcomes are presented in Table 3.

Table 3. Comparison of neural network models with different parameters.

No. Network Layers Number of Neurons
per Layer Parameter Quantity Training Parameters

1 5 256 297,832 Training epochs: 15,000
Optimizer: Adam

Learning rate: 0.001
Learning rate strategy: Exponential decay

Loss function adjustment: Mean squared error

2 10 256 626,792
3 15 256 955,752
4 5 512 988,520
5 10 512 2,301,800
6 15 512 3,615,080

As depicted in the figure below, the training loss curves exhibit variations across different
network architectures. Upon careful examination of the chart, it becomes evident that a model
comprising 5 layers and 256 neurons per layer demonstrates rapid convergence and showcases
a performance consistency comparable to more intricate models on the test set (Figure 9).
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The set of mining curves generated using this model is shown in the following figure
(Figure 10).
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3.2. Discussion

We conducted a comparative analysis by utilizing pre-established reference test curves.
We randomly selected one of the curves and extracted its key points, followed by employing
a machine learning model (abbreviated as MLM in the image) and a spline curve model to
generate mining trajectories. The resulting trajectory curves are depicted in the figure below.
Utilizing the operator’s operational curve as a baseline, we calculated the error values between
the spline curve model and the machine learning model for comparative purposes (Figure 11).

Both the spline curve model and the machine learning model can generate mining
trajectories that are in good overall agreement with the operator’s operating curves. The
maximum deviation between the two methods is presented in the table below, indicating
that the machine learning model exhibit a superior performance compared to the spline
curves (Table 4).

Table 4. The maximum deviation of the joint angles between the spline curve model and the machine
learning model.

θboom/deg θarm/deg θbucket/deg θswing/deg

Spline curve model 4.22 4.97 −3.2 −4.98
Machine learning model 1.74 −2.99 −2.4 −2.6

The speed comparison between the operator-operated trajectory, the machine learning
model-generated trajectory, and the spline curve model-generated trajectory is illustrated
in the subsequent figure (Figure 12).

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 23 
 

 

3.2. Discussion 
We conducted a comparative analysis by utilizing pre-established reference test 

curves. We randomly selected one of the curves and extracted its key points, followed by 
employing a machine learning model (abbreviated as MLM in the image) and a spline 
curve model to generate mining trajectories. The resulting trajectory curves are depicted 
in the figure below. Utilizing the operator’s operational curve as a baseline, we calculated 
the error values between the spline curve model and the machine learning model for 
comparative purposes (Figure 11). 

 

 

0 2 4 6 8 10 12 14
t/s

0

10

20

30

40

50

60

A
ng

le
/d

eg

Boom

Driver
MLM
Spline

−10

0 2 4 6 8 10 12 14
t/s

0

5

10

A
ng

le
/d

eg

Boom Error

Spline
MLM

−5

−10

Figure 11. Cont.



Mathematics 2024, 12, 1298 16 of 22Mathematics 2024, 12, x FOR PEER REVIEW 17 of 23 
 

 

 

 

 

0 5 10 15
t/s

A
ng

le
/d

eg

Arm

Driver
MLM
Spline

−40

−60

−80

−100

−120

−140

0 5 10 15
t/s

0

5

10

A
ng

le
/d

eg

Arm Error

Spline
MLM

−10

−5

0 5 10 15
t/s

0

20

A
ng

le
/d

eg

Bucket

Driver
MLM
Spline−20

−40

−60

−80

−100

−120

Figure 11. Cont.



Mathematics 2024, 12, 1298 17 of 22Mathematics 2024, 12, x FOR PEER REVIEW 18 of 23 
 

 

 

 

 

Figure 11. Comparison between operator trajectory, spline curve model trajectory, and machine 
learning model trajectory. 

0 5 10 15
t/s

0

5

10

A
ng

le
/d

eg

Bucket Angle Error

Spline
MLM

−10

−5

0 5 10 15
t/s

0

20

40

60

80

Swing

Driver
MLM
Spline

0 5 10 15
t/s

0

5

10

A
ng

le
/d

eg

Swing Angle Error

Spline
MLM

−5

−10

Figure 11. Comparison between operator trajectory, spline curve model trajectory, and machine
learning model trajectory.

Based on the aforementioned comparison, it is evident that all three models exhibit a
consistent trend in terms of changes in their movement speeds. In contrast to the operator-
controlled trajectories, both the machine learning model and the spline curve model demon-
strate a decrease in the maximum speed; however, the machine learning model experiences
a more pronounced decline. This suggests that the control system enables target trajec-
tory tracking for the machine learning model with reduced energy consumption, thereby
highlighting its superiority over the control system (Table 5).
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Table 5. Comparison of maximum angular velocities for three trajectories.

ωmax boom
deg/s

ωmax arm
deg/s

ωmax bucket
deg/s

ωmax swing
deg/s

Operator’s trajectory −33.89 47.58 90.58 −41.38
Spline curve model −23.51 39.80 90.23 −43.27

Machine learning model −25.25 37.34 72.25 −39.78

Based on the table presented above, it can be inferred that the mining trajectory
generated by the machine learning model demonstrates a decrease in the maximum angular
velocities of the boom, arm, bucket, and swing joint by 8.64 deg/s, 10.24 deg/s, 18.33 deg/s,
and 1.6 deg/s, respectively. This outcome surpasses that of the spline curve model.
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Figure 12. Comparison of angular velocities between manual operation trajectory, spline curve model
trajectory, and machine learning model trajectory.

When employing conventional approaches for trajectory generation, it is imperative
to meticulously examine and formulate appropriate rules for trajectory planning. The com-
putational resources required for trajectory generation calculations are generally minimal
and do not necessitate a machine learning training phase. Hence, it becomes essential to
compare the cost of machine learning with traditional trajectory generation methods. We
generated 3100 planned trajectories on the same computer and conducted a comparative
analysis between the two methods in terms of memory usage, computation time, and
training time to assess their computational costs. The traditional method utilized MATLAB
tools for generating the trajectories. The specific outcomes are presented in the table below
(Table 6).

Table 6. Comparison of costs between traditional methods and ML models.

Memory Usage Computation Time Training Time

Spline curve model 768 Kb 1.5 s 0 s
Machine learning model 1014 Kb 0.14 s 0.231 s
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After conducting a thorough comparison, it was observed that traditional methods
exhibit advantages in terms of memory utilization and training duration. However, when
it comes to generating a substantial number of trajectories, their computational time ex-
periences a significant prolongation. Conversely, machine learning models demonstrate
an evident superiority in generating an extensive volume of trajectories, thereby implying
acceptable levels of memory usage and training time.

4. Conclusions

After collecting data from professional operators conducting high-platform excavation
operations with excavators, we constructed a preliminary sample of operator operation
curves and expanded the sample using bootstrap resampling techniques. Key features
were extracted as the inputs, and machine learning methods were employed to train the
samples. Consequently, we successfully established an excavation trajectory generation
model and validated it as an exceptional method for generating trajectories. By comparing
the trajectories generated by the machine learning model with those produced by spline
curve models and the actual operator trajectories in terms of angles and angular velocities,
we observed that the accuracy of the machine learning-generated trajectories significantly
surpassed that of the spline curve models. Furthermore, when examining speed variations
among the machine learning model trajectories, operator trajectories, and spline curve
trajectories, our findings revealed that the speed changes generated by the machine learning
model were smoother and exhibited superior adaptability within the control systems. In
the future, we will further investigate two aspects. Firstly, we aim to eliminate the need for
manually specifying key points in the trajectory and instead analyze professional operators’
operational trajectories directly using deep learning methods. This approach aims to
establish a trajectory planning method that is independent of subjective factors introduced
by researchers, thereby forming a rule-free trajectory planning approach. Secondly, we will
conduct machine learning research on additional working conditions based on professional
operators’ data and develop machine learning-based trajectory planning methods for the
automatic recognition and extraction of typical working conditions such as excavation,
ground leveling, slope repair, and trenching.
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