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Abstract: In electric machine design, efficient methods for the optimization of the geometry and
associated parameters are essential. Nowadays, it is necessary to address the uncertainty caused
by manufacturing or material tolerances. This work presents a robust optimization strategy to
address uncertainty in the design of a three-phase, six-pole permanent magnet synchronous motor
(PMSM). The geometry is constructed in a two-dimensional framework within MATLAB®, employing
isogeometric analysis (IGA) to enable flexible shape optimization. The main contributions of this
research are twofold. First, we integrate shape optimization with parameter optimization to enhance
the performance of PMSM designs. Second, we use robust optimization, which creates a min–max
problem, to ensure that the motor maintains its performance when facing uncertainties. To solve
this bilevel problem, we work with the maximal value functions of the lower-level maximization
problems and apply a version of Danskin’s theorem for the computation of generalized derivatives.
Additionally, the adjoint method is employed to efficiently solve the lower-level problems with
gradient-based optimization. The paper concludes by presenting numerical results showcasing the
efficacy of the proposed robust optimization framework. The results indicate that the optimized
PMSM designs not only perform competitively compared to their non-robust counterparts but also
show resilience to operational and manufacturing uncertainties, making them attractive for industrial
applications.

Keywords: robust PDE constrained design optimization; isogeometric analysis; electrical machines;
bilevel optimization

MSC: 65K10

1. Introduction

The growing importance of electric machines in transportation and other applications
necessitates highly optimized designs. This trend is clearly seen in the shift towards electric
vehicles in the automotive industry. This has become especially significant in efforts to
mitigate climate change and promote environmental sustainability. Over the past decade,
the development of electric machines has shifted from physical to virtual prototypes, driven
by advancements in numerical simulation. This change has resulted in cost savings and
reduced material usage, improving sustainability. To further exploit these benefits, the
current trend is to move from a purely numerical simulation-based procedure to one that
improves the performance through optimization methods that are able to handle many
design variables.

Such optimization processes in the design of electric machines aim to balance compet-
ing objectives such as high torque capacity, operational smoothness and
cost-effectiveness [1,2]. However, one major challenge is uncertainties during manufactur-
ing, which can affect the performance and efficiency in a negative way or even lead to the
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failure [3] of the electric machine. In order to ensure a reliable design, it is advisable to ac-
count for these uncertainties in the design optimization process using robust optimization
methods that account for these variations.

The field of electric machine optimization encompasses a wide range of specialized
studies. In the optimization of electric machines, there exist two main approaches: gradient-
based algorithms and gradient-free methods, like particle swarm optimization (PSO). The
latter are non-intrusive but require many simulation runs and are thus time-consuming [4].
In this paper, we choose a gradient-based optimization approach and seek to obtain robust
optima with a moderate number of optimization runs. In the field of gradient-based
optimization, much research has been devoted to advancing free-form optimization using
the finite element method (FEM) and variants thereof (such as isogeometric analysis (IGA)),
which has led to a reduction in torque ripple [1,5]. Alongside these, there has been a
focus on parameter optimization with different performance metrics, such as the magnet
mass [6,7]. However, there is a noticeable gap in research that concurrently addresses both
free-shape and parameter optimization and their combined effects on electric machine
performance. Only a few studies have appeared at this intersection, using FEM for their
investigations [8]. In contrast to these methods, our study [9] introduces a gradient-based
optimization framework within the IGA context, combining both parameter and shape
optimization. This approach, supported by numerical evidence, outperforms the sequential
optimization, which first addresses the parameters and then the shape. Additionally, the
discretization technique employed in [9] provides several benefits, particularly for free-form
optimization [10].

The objective of this paper is to build on these results and extend our previously
established gradient-based optimization methodology, which combines parameter and
free-shape design variables in IGA, by introducing a robustoptimization formulation. We
deal with uncertainties using the worst-case optimization method originally proposed
by Ben-Tal [11]. In the literature, the worst-case approach for robustification against
uncertainties has been already successfully applied for a three-phase, six-pole PMSM,
where both uncertainties and optimization variables are parameters [3]. Notably, these
studies employed the standard FEM for their discretization and only addressed parameter
optimization; they did not consider free-form optimization. In contrast, the present study
generalizes this robust optimization approach by allowing a wider set of design variables
on an electric motor that is simulated with state of the art techniques to handle rotation, i.e.,
mortaring [12].

A novel aspect of this research is the inclusion of uncertainties in both the motor
parameters and its shape, and the consideration of both as variables in the optimization
process. To improve the efficiency, we utilize IGA instead of the conventional FEM in dis-
cretizing the PDE. The robust approach results in a min–max optimization problem, where
objective function and critical constraints are replaced by the maximum over an uncertainty
set. To solve this, we employ a generalization of Danskin’s theorem [13], which yields
an efficient tool to compute generalized derivatives of the resulting robustified objective
function and constraints under mild assumptions. The approach’s advantage is that it
only requires first derivatives. However, it is crucial to note that the outer minimization
problem can become non-smooth. This property necessitates the use of a non-smooth opti-
mization solver to ensure convergence to a non-smooth optimum; see also the discussion
in Bertsimas et al. [14].

The rest of this paper is structured as follows. Section 2 introduces the mathematical
and physical foundations with a focus on the relevant aspects for the optimization. In
Section 3, the robust optimization method and its application to the optimal design of
a PMSM are described. Section 4 presents numerical results for the robust shape and
parameter optimization of a PMSM. Section 5 summarizes the main results and explores
possible directions for future research.
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2. Physical Model
2.1. Geometry Representation

This section introduces the physical model and the computational methods that we
use for our optimization techniques. Figure 1 shows the motor model that will be used in
this paper. The colors of the motor represent the materials used, i.e., gray for iron, blue
for air, red for copper and green for the magnet, where the magnetization direction is
shown by the arrows. The copper represents stranded conductor windings, where the
phase and current direction are indicated. Note that the motor is modeled with two small
air gaps at the rotor iron bridges to represent saturation effects and allowing linear material
properties to be used. In 2005, Hughes et al. introduced IGA, which we use to discretize
the physical domain and the PDE [15]. Unlike the standard FEM, which uses polynomials
as basis functions, IGA uses B-splines and non-uniform rational B-splines (NURBS) [16].
The flexibility provided by spline functions is essential in accurately representing conic
sections while maintaining computational efficiency. This feature is particularly useful in
simulating rotating machines.
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Figure 1. Geometry of 1/6 of a PMSM constructed in MATLAB® 9.14.0 R2023a using IGA and the
open-source package GeoPDEs.

The formulation of the univariate B-spline basis functions Np
i of degree p is expressed

by a knot vector:
Ξ = {ξ1, ξ2, . . . , ξn+p+1},

where the knots ξi define the support of the basis functions. These functions are computed
through a recursive process, utilizing Cox–de Boor’s recursion formula [17], which is
given by

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1

i+1 (ξ), (1)



Mathematics 2024, 12, 1299 4 of 18

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.

These basis functions have useful mathematical properties, such as the partition of
unity, compact support of the basis function and pointwise positivity, which make them
suitable for approximating geometries. A comprehensive discussion of these properties can
be found in the work of Hughes et al. [15]. The two-dimensional domain in our work is
constructed using the tensor-product method, which allows for the creation of multivariate
B-splines or NURBS. This method involves the multiplication of individual basis functions
from each parametric coordinate, thus forming a set of multivariate basis functions. This
approach provides an efficient framework and can be also extended for the construction
of three-dimensional domains [15]. To precisely map the parametric domain Ω̂ ∈ (0, 1)d

to the physical domain Ω ⊆ Rr, where r ≥ d, we use geometric basis functions Ĝk, which
can be either B-splines or NURBS. Each of these basis functions Ĝk is multiplied with the
corresponding control point Ck. This leads to the mapping F : Ω̂ → Ω defined by

F(x̂) = ∑
k

Ĝk(x̂)Ck. (2)

Here, x̂ is located within the parametric domain Ω̂ and F(x̂) is the corresponding point in
the physical domain Ω. The mapping defined in (2) must satisfy some regularity conditions,
e.g., it must be a diffeomorphism, which is required for the application of the transformation
formula for integrals [18]. A visual representation of the relationship between the control
points and the model’s geometry is shown in Figure 2.

Figure 2. Geometry model of the PMSM with highlighted control points as described in (2) and patch
boundaries. The model was originally based on [19].

Shifting the position of a control point Ck results in a corresponding change in the
geometry according to the mapping (2). Therefore, the transformation (2) can be used
directly for shape optimization, which is a convenient feature of IGA. For geometries that
are complex in their topology or material distribution, such as the rotor and stator in
Figure 1, multipatch decomposition is necessary. This method divides the overall domain
into several contiguous patches and couples the control points of neighboring patches to
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ensure continuity; see [20]. The grey lines in Figure 1 indicate the boundaries of the images
of the patches.

2.2. Governing Equations

In this subsection, we describe the physical system governing PMSMs [12]. It is based
on the magnetostatic approximation of Maxwell’s equations. This simplification is justified
and often used when electric machines operate at a low frequency, since, in this case, the
displacement currents and eddy currents are negligible compared to the source current.
This assumption simplifies our model to an elliptic PDE, which can be expressed in terms
of the magnetic vector potential A as follows:

∇× (ν∇× A) = Jsource +∇× (νBr). (3)

In (3), the term B = ∇ × A denotes the magnetic flux density, while ν represents the
material’s linear reluctivity. The term Jsource is the density of the current source, and Br
is the remanent magnetic flux density from the permanent magnets, which follows from
the constitutive material law [21]. For a more detailed understanding of these physical
principles, see [22,23]. According to Helmholtz’s theorem, A is not uniquely determined
by the PDE. To simplify the model, ensure its uniqueness and reduce the computational
cost, it is common to reduce (3) to a two-dimensional problem by assuming a substantial
axial length of the motor. This step divides the computational area into the 2D rotor and
2D stator sections, ΩR and ΩS, respectively, and leads to the elliptic PDE in 2D,

∇ · (ν∇Az,R) = ν∇ · B⊥
r , in ΩR

∇ · (ν∇Az,S) = −Jz,source in ΩS,
(4)

where only the Az-component of the magnetic vector potential is considered. This com-
ponent is separated for the rotor and stator, denoted as Az,R and Az,S. In electric machine
modeling, boundary conditions play a critical role. For the Dirichlet boundary, denoted as
Γd, which is located at the outer boundaries of the stator and rotor—see Figure 1—the con-
dition Az = 0 is imposed. On the boundary Γap, antiperiodic conditions are implemented
due to the simulation and optimization being applied to only one pole of the entire motor.
For the coupling interface Γag between the rotor and stator, the following conditions must
be met:

Az,S(θ) = Az,R(θ − α),

Hθ,S(θ) = Hθ,R(θ − α),
(5)

where H = νB denotes the magnetic field strength, with B as the magnetic flux density, and
both Az and Hθ are evaluated in their respective rotor or stator local coordinate systems
in dependence on the rotation angle α. This ensures the continuity of the magnetic vector
potential Az and the azimuthal magnetic field strength Hθ across Γag [24]. A visualization
of the the boundary conditions can be found in Figure 1. From the 2D reduction, the
reduced remanence B⊥

r is expressed as

B⊥
r = Br

(
− sin(ϕ)
cos(ϕ)

)
, (6)

where Br is the remanence magnitude and ϕ is the magnet direction angle, defining the
orientation of the magnet’s remanence in the two-dimensional plane. The source current
density in the k-th winding is defined as

J(k)z,source =
Iappnwind

Acoil
sin
(

Pα + θcurrent +
2π

3
k
)

, k ∈ {0, 1, 2}, (7)

and is zero outside the k-th winding. The synchronous operation of the motor implies that
the time dependency in (7) is represented by the rotor angle α, adjusted by the number of
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pole pairs P. In (7), nwind denotes the number of windings in each coil. Iapp represents
the application current, which is the primary source of electromagnetic field generation
in the system, and Acoil refers to the cross-sectional area of the coil, which affects both the
material usage and electromagnetic performance. The total current density Jz,source is the
sum over all windings,

Jz,source = ∑
k

J(k)z,source

and is assumed to be evenly distributed within the coils.

2.3. Discretization

In this subsection, we focus on the IGA discretization of the governing Equation (4).
To apply a Ritz–Galerkin method, we introduce ansatz and test spaces, both spanned by a
basis N(x), which is defined in (1):

Az(x) ≈ u(x) = ∑
j

Nj(x)uj, v(x) = ∑
i

Ni(x)vi. (8)

Deriving the weak formulation of (4) and inserting the ansatz and test function expansions
from (8), we obtain the system of equations KR 0 −GR

0 KS GSRα

−G⊤
R R⊤

α G⊤
S 0

 uR,α
uS,α
λα

 =

 bR,α
bS,α

0

. (9)

Equation (9) is a coupled system of discretized elliptic PDEs. The stiffness matrices KR,
KS and right-hand sides bR, bS for the rotor and stator are obtained in a standard way
from the weak formulation of the elliptic PDEs (4). The coupling matrices GR and GS
result from the application of harmonic (Fourier) test functions in a mortaring approach
to discretize the coupling conditions (5), as detailed in [12]. For distinct rotation angles
α ∈ {α0, α1, . . . , αN−1}, the stator coupling matrix GS is multiplied by a rotation matrix
Rα. This matrix contains block diagonal entries of sine and cosine functions, thereby
eliminating the need for the reassembly of the coupling matrix for each α. This improves
the computational efficiency when evaluating multiple rotation angles [24]. For more details
about the discretization procedure, see [9]. In (9), the right-hand side and the rotation
matrix depend on the rotation angle α and consequently also the solution (uR,α, uR,α, λα).
Taking advantage of the symmetry of the three-phase current, we consider only the angles
α ∈ {0, 1, . . . , 19} degrees.

In order to evaluate the performance of the system, we solve (9) and compute the
torque Tα(u) based on energy conservation principles [24] by

Tα(u) = −Lu⊤
S,αGSR′

αλα. (10)

Here, R′
α is the derivative of the rotation matrix Rα with respect to the rotation angle α.

Since the computation is done in 2D, we include the axial length L directly in the calculation
of the torque Tα(u). To determine the average torque performance, we need to solve the
linear system (9) for each angle α, since satisfying a predefined average torque will be a
constraint in the optimization.

3. Optimization

In the literature on the optimization of electric machines, various performance aspects
are important. We summarize the most important objective functions that are considered
in [19]. A major focus, especially for industrial applications, is the cost-effective use of
materials. For machines using permanent magnets, reducing the size of the magnet is
a critical goal, because these magnets are made of rare earth materials, which are costly
and have large environmental footprints [25]. A critical constraint is to keep the average
torque at a certain level because the cost and environmental impact increase as more
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permanent magnet material is used. Another important goal is to reduce torque ripple,
which helps to lower vibration and noise. These objectives have, for example, been studied
in [2,5,6]. However, in the optimization of electric machines, the focus has been on either
parameter optimization or free-form optimization. There is less work on combining these
two approaches, e.g., [8,9]. However, combining the two promises better results because it
offers more design freedom.

For practical design optimization problems, often, several objective functions are
of interest, which leads to a multiobjective optimization problem. Here, we consider
two competing objective functions and apply the weighted sum approach; see [26]. The
first objective function is the area of the permanent magnets Amag, contributing mainly to
parameter optimization, and the second is the standard deviation T̂ of the torque, associated
with free-shape optimization. The area Amag of the permanent magnet is computed as the
product of the width and the height of the region highlighted in green in Figure 1. For
the torque evaluation, the standard deviation T̂ and the mean torque Tmean are calculated
based on the torque (10) for a discrete set of rotation angles α by

Tmean =
1
N ∑

α

Tα, T̂ =

√
1
N ∑

α

(Tα − Tmean)
2. (11)

In our optimization, the mean torque Tmean is constrained to be at least a predetermined
minimum level Tdesired. This constraint affects the required size of the permanent magnet.
Altogether, the combined parameter and shape optimization problem is defined as

min
u,p

F(u, p) = m1 Amag + m2T̂

s.t. e(u, p) = 0, (State Equation)

Tmean ≥ Tdesired, (Torque Constraint)

0 ≤ p ≤ 1, (Design Bounds)

g(p) ≤ 0. (Geometric Feasibility)

(12)

Here, m1 and m2 are weighting factors introduced to balance the components of the ob-
jective function. The state equation e(u, p) = 0 represents the governing equations of
the system (9). p are the optimization variables, including both shape and further design
parameters. In our case, p will consist of control points located on the air gap, the geometric
parameters of the permanent magnet and the electric phase angle. Further explanation of
the optimization variables is given in Section 4. Numerical results for another electric ma-
chine and without the consideration of uncertainty are presented in [9,27] and demonstrate
that the combined parameter and shape optimization is able to reduce the torque ripple
significantly while also reducing the size of the magnets.

Robust Optimization

As described in Section 1, the goal of this paper is to make the optimization
problem (12) robust to uncertainties. Uncertainties are inevitable in real-world scenar-
ios and can affect the model parameters q as well as the design variables p. In our case,
we consider uncertainty in the application current Iapp and in the position of the control
points that define the shape of the machine’s air gap. Therefore, we introduce the vector
w = (δp, q) ∈ Rnp ×Rnq to represent the uncertainty in the system and apply a robust
optimization approach [11]. A comprehensive overview of robust nonlinear optimization
can be found in [28].

We define a closed, convex and bounded uncertainty set that contains all relevant
realizations of the uncertain quantities. This set accounts for uncertainties in both param-
eters and optimization variables. During optimization without uncertainties, the model
parameters are fixed. However, the fixed values impact the optimized design. Individual
sets represent uncertainties, and the combined uncertainty set is the Cartesian product of
these individual sets.
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• Uncertainty set for parameters:

Up,2 =
{

δp ∈ Rnp | δp = Rpvp, ∥vp∥2 ≤ 1
}

with Rp ∈ Rnp ,mp , mp ≤ np, rank(Rp) = mp.
• Uncertainty set for design variables:

Uq,2 =
{

q ∈ Rnq | q = q̂ + Rqvq, ∥vq∥2 ≤ 1
}

with Rq ∈ Rnq ,mq , mq ≤ nq, rank(Rq) = mq.

The combined uncertainty set results from the Cartesian product:

Ww,2 = Up,2 × Uq,2. (13)

The uncertainty sets Up,2 and Uq,2 are ellipsoids. Rpvp and Rqvq represent the allowable
deviation and can be chosen by prior knowledge or based on statistical considerations.
Moreover, there exist approaches based on machine learning algorithms to adaptively learn
the optimal uncertainty set for robust optimization. The advantages and disadvantages of
using a learned uncertainty set versus a predefined one are discussed in [29]. Therefore,
our goal in making the optimization problem robust to uncertainty is to ensure that the
solution remains feasible and competitive with the optimized solution from (12), regardless
of the uncertainties that can occur within the defined uncertainty set Ww,2.

For this, we derive the robust optimization formulation. We consider the following
class of optimization problems that include problem (12). We denote by u the state, by p
the optimization variables and by q the parameters. The nominal problem is given by

min
u,p

F0(u, p, q)

s.t. e(u, p, q) = 0, (state equation)

Fi(u, p, q) ≤ 0, i ∈ I. (inequality constaints)

(14)

Under the assumption that the state equation can be uniquely solved for the state u, we
can eliminate u and obtain with

fi(p, q) := Fi(u(p, q), p, q), i ∈ I ∪ {0}, where e(u(p, q), p, q) = 0

the reduced problem

min
p

f0(p, q) s.t. fi(p, q) ≤ 0, i ∈ I. (15)

See also [3]. Since p, q are uncertain, we consider the following robust
formulation [3,14,30,31]:

min
p

max
(δp,q)∈Up,2×Uq,2

f0(p + δp, q) s.t. max
(δp,q)∈Up,2×Uq,2

fi(p + δp, q) ≤ 0, i ∈ I, (16)

where Up,2 × Uq,2 is defined in (13). Compared to [30], where also the robust optimization
of electric machines has been considered, the uncertainty here is not only in the model
parameters but also in the design variables, including the control points.

We propose next an algorithm to solve the robust counterpart (16). To this end, it
is convenient to introduce the value functions of the robustified objective function and
constraints given by

φi(p) = max
(δp,q)∈Up,2×Uq,2

fi(p + δp, q) for i ∈ I. (17)
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Then, one can rewrite the robust counterpart (16) as

min
p

φ0(p) s.t. φi(p) ≤ 0, for i ∈ I. (18)

Since all arising functions are potentially non-convex, a global solution of (18) is usually
intractable.

To obtain tractability, (δp, q) 7→ fi(p + δp, q) in (17) is usually approximated by a
linear or quadratic approximation; see, for example, [3,31,32]. However, it can be shown
that a linear approximation as applied in [31] cannot be used if the uncertainty extends to
the optimization variables. This problem could be fixed by using a quadratic approximation,
but this requires derivatives up to the third order. In the present case of PDE constraints,
this is expensive to implement.

Therefore, we work directly with the problem (18), apply a non-smooth optimization
algorithm and use the fact that a generalization of Danskin’s theorem yields Clarke’s
generalized gradient of the worst-case functions φi under quite general assumptions
requiring only first derivatives [13,33]. A related approach is used in [14,34], where the
descent directions of the worst-case functions are used.

We use the following generalization of Danskin’s theorem, which follows
from ([13], Theorem 2.1).

Theorem 1. Let Up,2 × Uq,2 ⊂ Rnp ×Rnq be compact and fi : Rnp × Uq,2 → R be continuous
and continously differentiable with respect to p. Then, the following holds for φi given by (17).

1. φi is locally Lipschitz continuous and directionally differentiable.
2. If W∗

w,2(p) denotes the set of maximizers (δp∗, q∗) in (17) and Clarke’s generalized gradient
of φi is given by

∂φi(p) = conv
{
∇p fi(p + δp∗, q∗) | (δp∗, q∗) ∈ W∗

w,2(p)
}

. (19)

3. If W∗
w,2(p) contains a single element, then φi(p) is differentiable at p, and (19) yields the

classical gradient.

Proof. The proof can be found in ([13], Theorem 2.1).

Hence, the advantage of solving (18) by using a non-smooth optimization method
using generalized derivatives obtained by (19) has the advantage that only first deriva-
tives are required. However, the computation of a maximizer (δp∗, q∗) ∈ W∗

w,2(p) for
is required.

This motivates the following strategy. We apply a non-smooth optimization method
to (18). If the algorithm requests in iteration j value φi(pj) and generalized derivative
gj

i ∈ ∂φi(pj) of φi, then an approximate maximizer (δpj
i , qj

i) of (17) is computed by applying
a few iterations of an optimization method to (17) with the previous approximate maximizer
(δpj−1

i , qj−1
i ). Then, (δpj

i , qj
i) is used to compute the approximate values of φi(pj) and

gj
i ∈ ∂φi(pj).

The proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 Robust Optimization Algorithm Using Danskin’s Theorem

Require: Initial point p0, initial worst cases (δp0
i , q0

i ) ∈ Up × Uq, i ∈ I ∪ {0}.
1: Apply a non-smooth solver to (18). Initiate iteration counter j = 0.
2: while Outer stopping criterion not satisfied by pj do
3: Apply an iteration of the non-smooth solver for (18).
4: if φi(pj) and gj

i ∈ ∂φi(pj), i ∈ I ∪ {0}, is requested then

5: Apply inner solver to (17) with starting point (δpj−1
i , qj−1

i )

6: until a stopping criterion is met. Result (δpj
i , qj

i)
7: Return approximate values
8: φi(pj) = fi(pj + δpj

i , qj
i), gj

i = ∇p fi(pj + δpj
i , qj

i)
9: end if

10: Generate new outer iterate pj+1

11: Update outer counter j = j + 1
12: end while

A critical step involves computing the derivatives with respect to the control points to
be able to solve (17) efficiently. We provide an adjoint-based approach in Appendix A.

4. Numerical Results

This section presents a numerical validation of the robust optimization approach. The
IGA discretization (9) of the state equation and the corresponding adjoint-based deriva-
tive computation is based the open-source package GeoPDEs [35]. Harmonic mortaring
between the rotor and stator domains is applied. The approximate solution of the inner
maximization problems (17) is performed with fmincon and the solution of the non-smooth
robust formulation (18) by using GRANSO (GRadient-based Algorithm for Non-Smooth
Optimization) [36].

Our goal is to optimize the geometry of the rotor of an electric machine, as shown
in Figure 1. In (7), the current density is Iapp = 9 and the winding number nwind = 12.
The optimization variables p are the electric phase angle and the geometric parameters,
consisting of the width (MW), height (MH) and distance from the air gap (MAG) of the
permanent magnet, as shown in Figure 1, as well as five control points located at the air gap.
Uncertainties are considered in the application current Iapp, as well as in the radial offsets
of the five optimized control points. The uncertainty set for the parameter Iapp is one-
dimensional and given by 5.5% of the nominal value 9. The uncertainty set for the control
points is a five-dimensional sphere with radius 0.25 mm, which is 0.56% of the rotor radius.
A summary of the starting point for the optimization and the bounds on the optimization
variables can be found in Table 1. The parameters required to describe the geometry of
the machine can be found in ([12], Figure A.1). The weights in the objective function are
chosen as m1 = 3000 and m2 = 130 to balance the competing optimization goals. The
torque is evaluated at discrete angles of rotation α ∈ {0, 1, . . . , 19}. The mean torque has
the lower bound Tdesired = 1.55 Nm. The rotor is constructed from 12 distinct patches,
and the stator shape is constructed from 79 patches. This results in a total of 160 control
points that define the rotor’s shape, and another 669 control points that define the stator’s
shape. We have in total 792 degrees of freedom for the rotor and 2783 for the stator. The
magnetic flux density for the initial design is depcted in Figure 3. Figure 4a shows the
initial design, Figure 4b the nominal optimized design for the optimization problem (12)
and Figure 4c the robust optimized design that accounts for uncertainties in parameters
and shape.
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Table 1. Lengths in millimeters and angles in degrees are provided for the initial motor parameters
and bounds for the optimization.

Parameter Name Initial Min Max

Height of magnet
(MH) 7 1.5 12

Width of magnet
(MW) 19 7 23

Distance to air gap
(MAG) 7 5 15

Operating angle 0 −10 10

Figure 3. Plot of the solution to (9), representing the magnetic flux density.

(a) Initial Design (b) Nominal Optimized Design (c) Robust Optimized Design

Figure 4. A visual representation of the optimization results: the initial design (a), the optimized
design under nominal conditions (b) and the robust optimized design (c).

Starting from an initial magnet geometry with width MW = 19 mm and height
MH = 7 mm, the nominal optimization achieves a reduction in the magnet’s material
usage by approximately 26%, while the desired average torque is maintained. In addition,
the torque ripple is decreased by 96%, as seen also in Figure 5. The robust design, which
optimizes the worst-case behavior and satisfies the constraints for all realizations of the
uncertain quantities in the uncertainty set, still shows an improvement over the initial
configuration. Here, a reduction in the magnet material by about 8% is achieved, as well
as a torque ripple reduction of approximately 92% (see Figure 5). This is also represented
in the values of the objective function, where the nominal optimization reaches a value
of 0.766 from initially 13.53, whereas the robust optimization approach reaches a value of
1.464. In addition, the robust optimization ensures the feasibility of the critical constraint,
which is the lower bound on the average torque, for all realizations in the uncertainty set.
On the other hand, if we compute the worst case of the average torque for the nominal
optimized design over the uncertainty set, then it violates the lower bound, in contrast to
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the robust optimal design, as shown in Table 2. This is because the nominal optimization
problem (12) does not take uncertainties into account and chooses the area of the magnet
to be too small, so that it does not achieve a sufficient average torque when uncertainties
occur. However, the robust problem (18) resolves the uncertainties and accordingly selects
a larger area of the magnet, achieving a sufficient average torque that is feasible even in
the worst case. In summary, robust optimization can handle uncertainties and still achieve
comparable performance.

For the nominal optimization problem, the computation is completed in about
21 min and requires 102 function evaluations. A comparison of the nominal optimization
method with an evolutionary algorithm can be found in [9]. In [27], it is shown that the
nominal optimization method can simultaneously reduce several objectives relevant to
electric machines, such as the cost, torque ripple and losses, even with a large number of
optimization variables.

The robust optimization requires 79 min for a similar number of iterations. This is
primarily due to the iterative determination of worst-case scenarios, which results in an
increased number of 405 function evaluations. However, as the optimization progresses,
the number of iterations required to compute the worst case decreases. After only a few
iterations, the number of iterations is quickly reduced, as observed in Figure 6. This is
mainly for the following reason. During the outer loop, the optimization variables of the
robust optimization problem (18) converge and thus also the solutions of the worst-case
problems (17) converge. Since we start the solution of (17) in each iteration with the solution
obtained in the previous outer iteration, we have already a good starting point and require
only a few iterations to solve the worst-case problems (17). The fact that the robust problem
is solved at about four times the cost of the nominal problem underlines the efficiency of
the proposed approach. The details are summarized in Tables 2 and 3.

Table 2. Comparing the iteration numbers for the nominal and robust optimization.

Optimization
Type Iterations Function

Evaluations
Computation

Time

Torque Avg.
Worst Case at

Optimal
Design

Interval of
Torque

Ripple at
Worst Case

Nominal
Optimization 60 + 0 102 + 0 21 min 1.445 Nm [1.42, 1.62]

Robust
Optimization 55 + 123 184 + 221 1 h 19 min 1.561 Nm [1.551, 1.568]

Table 3. Comparing the optimization objectives.

Optimization Magnet Area Torque Std Objective
Function Value Mean Torque

Initial Setting 133.0 mm2 0.101 Nm 13.53 1.517 Nm

Nominal
Optimization 98.08 mm2 0.0038 Nm 0.766 1.564 Nm

Robust
Optimization 124.41 mm2 0.0084 Nm 1.464 1.563 Nm
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(a) Torque curves during optimization for nominal optimization
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(b) Torque curves during optimization for robust optimization

Figure 5. Optimization history of the torque ripple for nominal optimization (a) and robust opti-
mization (b). The nominal optimization and robust optimization show a significant reduction in the
torque ripple at the end of the optimization.

Figure 6. Number of iterations to determine the worst-case scenario during the robust optimization
process. The number of needed iterations decreases with increasing optimization iterations.
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Since the current implementation is done in MATLAB®, the code is not yet optimized
for performance. Calculating the derivatives and solving the problem for different rotation
angles is, for example, not yet parallelized. One limitation to note is that the calculations
do not account for saturation (nonlinear material behavior), which is essential for accurate
design. Therefore, we provide a comparison for the magnetic flux density for the optimized
design and the robust optimized design in Figure 7. The magnetic flux density for the
initial design is shown in Figure 3.

(a) Nominal Optimized Design (b) Robust Optimized Design

Figure 7. Resulting magnetic flux density of the the nominal design (a) and the robust design (b).

We focus next on the achieved reduction in the torque ripple. By applying free-shape
optimization at the air gap by moving the control points, as shown in Figure 4b,c, we are
able to reduce the torque ripple significantly. Figure 5 shows the torque profiles during
nominal and robust optimization. In Figure 5a, a significant reduction in torque ripple
is observed after only 20 iterations, similar to the results in [9]. In Figure 5b, we observe
at iteration zero that the mean torque from the nominal design is initially insufficient for
the robust design due to uncertainties in the optimal design. To address this, the mass of
the magnet is increased to satisfy the torque requirements. This early adjustment phase
is typical for robust optimization methods and highlights that solutions that are feasible
under nominal conditions may not be as feasible under uncertainty. For the first iteration
of the robust optimization, assuming the worst case for every parameter even yields torque
ripples comparable to the initial design. After several iterations, the optimizer manages to
reduce the torque again quite significantly, but not as much as the nominal optimization.
Overall, both the nominal and robust optimization methods show a reduction in torque
ripple within the first few iterations, which is also the main contributor to the rapid decrease
in the objective function value.

5. Conclusions and Discussion

In this paper, we have proposed an algorithm for the robust optimization of complex
PDE-constrained problems. We have applied the method to the combined shape and
parameter optimization, with uncertainties incorporated in both. The underlying PDEs are
discretized using IGA. This yields a precise representation of the geometry and provides
a convenient framework for shape optimization. While the focus has been on the context
of electric machine design, the principles and techniques employed are not limited to
this application and can be applied to a wide range of robust optimal design problems.
The additional costs for robust optimization are small compared to nominal optimization.
In future research, we plan to extend the optimization framework to three-dimensional
problems, including nonlinearity and hysteresis. Moreover, we plan to apply our methods
to robust topology optimization.
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Appendix A

Calculating the derivatives with respect to the control points can be achieved via two
methods: the sensitivity method and the adjoint method [3,37]. We choose the adjoint
method because it efficiently deals with the high dimensionality of the variables. We
describe a general framework for the computation of derivatives with respect to control
points, which can be applied to any elliptic problem by following [38,39]. This approach to
derivative computation has been already successfully applied in [9].

Proposition A1 (Derivative with respect to control points). Let F : Ω̂ → Ω be the mapping
function defined as in (2). Assume that Fi for i ∈ I is differentiable with respect to the control points.
Moreover, let the state equation be formulated as in (12). Then, the derivative of Fi with respect to
Ckd, which denotes coordinate d (d = x or d = y) of the k-th control point, is given by

dFi
dCkd

=
∂Fi

∂Ckd
+ ∑

i
λi

(
∑

j

dKij

dCkd
uj −

dbi
dCkd

)
, (A1)

where λ represents the adjoint variable, which is given by

K⊤λ = −∂Fi
∂u

. (A2)

Proof of Proposition A1. The gradient (A1) can be obtained directly by applying the ad-
joint formula to calculate the gradient for PDE-constrained optimization
problems [37].

The derivative in (A1) can be efficiently computed using the tensor product structure
provided by MATLAB® [40]. In addition, the adjoint solution requires only a single matrix
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solution, reducing the computational cost. In order to compute the gradient in (A1), one

needs to determine the derivatives of the stiffness matrix
dKij
dCkd

and the right-hand side dbi
dCkd

with respect to the control points Ckd.

Theorem A1. Let the mapping function F : Ω̂ → Ω be defined according to (2). Assume that the
stiffness matrix K is differentiable with respect to Ckd, which denotes coordinate d (d = x or d = y)
of the k-th control point. Further, assume that the material coefficient ν is a constant. Then, the
derivative of K with respect to Ckd can be decomposed into three components as follows:

dKij

dCkd
= K(1)

ij,kd + K(1)
ji,kd + K(2)

ij,kd, (A3)

where the individual components K(l)
ij,kd for l = 1, 2 are calculated based on the integrals over the

parametric domain Ω̂:

K(1)
ij,kd =

∫
Ω̂
−ν
(

J−⊤
F D̂kd∇Ni

)
· ∇Nj |JF|dΩ̂, (A4)

K(2)
ij,kd =

∫
Ω̂

ν∇Ni · ∇Nj |JF|Tr
(

J−1
F D̂⊤

kd

)
dΩ̂. (A5)

Here, D̂kd and JF are defined as

D̂kd =


(
∇̂Ĝk 0

)
if d = x,(

0 ∇̂Ĝk

)
if d = y,

(A6)

JF =

(
∑k
(
∇̂Ĝk

)⊤
Ckx

∑k
(
∇̂Ĝk

)⊤
Cky

)
, (A7)

which is derived from (2).

Proof of Theorem A1. The stiffness matrix Kij for an elliptic problem (9) is defined as

Kij =
∫

Ω
ν∇Ni · ∇Nj dΩ.

We transform this equation in the parametric space Ω̂. Using the mapping F as described
in (2), the stiffness matrix is transformed into

Kij =
∫

Ω̂
ν
(

J−⊤
F ∇̂N̂i

)
·
(

J−⊤
F ∇̂N̂j

)
|JF|dΩ̂, (A8)

where the Jacobian matrix JF is given by (A7). To obtain (A8), we use the transformation
rule ∇Ni = J−⊤

F ∇̂N̂i for H1 functions, because the mapping F fulfills the required regularity
assumptions; see, for example, [41]. To calculate the derivative of (A8) with respect to the
control points Ckd, we have to differentiate the terms that depend on the control points:

1. The term J−⊤
F ∇̂N̂i (and analogously J−⊤

F ∇̂N̂j);
2. The determinant of the Jacobian, |JF|.
Consequently, we apply the product rule to these terms, leading to (A4) and (A5).
Detailing K(1)

ij,kd: The derivative of ∇Ni with respect to Ckd is given by

∂

∂Ckd
(∇Ni) =

∂

∂Ckd

(
J−⊤

F ∇̂N̂i

)
=

∂

∂Ckd
(J−⊤

F )∇̂N̂i + J−⊤
F

∂

∂Ckd
(∇̂N̂i).
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Since the second term on the right-hand side vanishes, we deduce

∂

∂Ckd
(∇Ni) =

∂

∂Ckd
(J−⊤

F )∇̂N̂i.

Employing matrix calculus, we obtain

∂

∂Ckd
(J−⊤

F ) = −J−⊤
F

(
∂JF

∂Ckd

)
J−⊤

F .

and thus
∂

∂Ckd
(∇Ni) = −J−⊤

F D̂kdJ−⊤
F ∇̂N̂i.

This leads to (A4).
Detailing K(2)

ij,kd: We employ the Jacobi formula from matrix calculus, which allows us to
express the derivative of |JF| with respect to Ckd as

∂

∂Ckd
(|JF|) = |JF|Tr

(
J−1

F
∂JF

∂Ckd

)
.

We can further simplify this to

∂

∂Ckd
(|JF|) = |JF|Tr

(
J−1

F D̂⊤
kd

)
.

This shows (A5).

The above approach can be used to calculate the derivative of the stiffness matrix with
respect to the control points for an elliptic problem, discretized using IGA. To calculate the
derivative of the right-hand side dbi

dCkd
with respect to the control points Ckd that also appear

in (A1), we can use the same approach as in Theorem 2.
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