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Abstract: Missing data problems arise in randomized trials, which complicates the inference of
causal effects if the missing mechanism is non-ignorable. We tackle the challenge of identifying
and estimating the complier average causal effect parameters under non-ignorable missingness
by increasing the covariates to mitigate the sensitivity to the violation of specific identification
assumptions. The missing data mechanism is assumed to follow a logistic model, wherein the
absence of the outcome is explained by the outcome itself, the treatment received, and the covariates.
We establish the identifiability of the models under mild conditions by assuming that the outcome
follows a normal distribution. We develop a computational method to estimate model parameters
through a two-step likelihood estimation approach, employing subgroup analysis. The bootstrap
method is employed for variance estimation, and the effectiveness of our approach is confirmed
through simulation. We applied the proposed method to analyze the household income dataset from
the Chinese Household Income Project Survey 2013.

Keywords: complier average causal effect; non-ignorable missingness; identifiability; likelihood;
subgroup analysis
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1. Introduction

Non-compliance and missing data are phenomena which usually occur in studies of
economics, medicine, and public health. Non-compliance arises when certain participants
do not adhere to their prescribed treatments, while the problem of missing data arises when
the study’s researchers are unable to gather information for some participants [1]. These
unmeasured confounding variables may complicate the inference of causal effects if the
missing mechanism is non-ignorable [2,3]. The missingness is named ignorable if it depends
on the observed data only; otherwise, it is named non-ignorable [4,5]. Identifying the
complier average causal effect becomes challenging in the presence of both non-compliance
and non-ignorable missing values, as it is impossible to identify the full data distribution
or the causal effect without additional assumptions.

To address non-compliance, one can assume that the response in the dataset follows a
specific distribution, such as exponential families, and use maximum likelihood estimation.
The authors in [6–8] presented the estimation of the complier average causal effect (CACE)
with the maximum likelihood estimation method with the EM algorithm [9]. The maximum
likelihood method provides the advantage of relaxing the exclusion restrictions, which can
often be unrealistic, particularly in natural experiment scenarios [10]. Another approach to
addressing non-compliance is the instrumental variable method [11]. Utilizing instrumental
variables is a viable method when stringent assumptions about the response distribution
could result in mis-specification.
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The shadow variable strategy is a mainstream solution for establishing identifiability in
cases of non-ignorable missingness [12]. Analogous approaches also employ instrumental
variables, as suggested by [13]. Nonetheless, the selection of appropriate instrumental or
shadow variables poses challenges, particularly among a multitude of covariates [14]. The
authors of [15] illustrate that stronger assumptions regarding the response mechanism enable
the establishment of identifiability derived from the distribution of the observed data. When
the response adheres to exponential families, as noted by [16,17], the identifiability under
non-ignorable missingness is readily attainable without the use of instrumental variables.

It is critically important to integrate causal inference with research on non-ignorable
missing data [18,19]. The authors of [20–22] introduced estimators for the complier average
causal effect parameters, assuming that the missing data are ignorable. However, if the
missingness is non-ignorable, these methods may yield biased estimators. The recent litera-
ture has introduced strategies for addressing missing covariates or outcomes in the context
of non-ignorable missingness, which includes but is not limited to the following papers.
The study in [1] initially explored the identifiability of parameters in randomized clinical tri-
als characterized by non-compliance and non-ignorable missing binary outcome variables.
The study in [2] examined semi-parametric identifiability and developed an estimation
method for the complier average causal effect in randomized clinical trials, addressing
the challenge of non-ignorable missingness in continuous outcomes. The study in [23]
formulated a method using a shadow variable to identify and estimate the complier average
causal effect parameters arising from outcomes that represent non-ignorable missingness.
The study in [19] tackled the challenge of non-ignorable missingness confounders in causal
analysis from observational data, demonstrating that causal effects are ascertainable in
scenarios wherein the missingness mechanism is outcome-independent, conditional on the
treatment and potential missing confounders. The study in [24] developed semi-parametric
estimators to determine the average causal effect, accounting for non-ignorable missing
confounders, based on the premise that the missingness of data is independent of the out-
come. The study in [25] addressed the problem of identifying the treatment benefit rate and
treatment harm rate in scenarios wherein treatment, endpoints, or covariates are missing.
The study in [26] investigates a treatment-independent missingness assumption, which
facilitates the identification of causal effects in situations wherein confounders represent
non-ignorable missingness.

In the existing literature, limited attention has been given to situations wherein a
general missing mechanism model is selected to address non-ignorable missingness. The
study in [2] utilized an outcome-dependent non-ignorable missingness model without
incorporating an auxiliary variable. The study in [3] proposed using an auxiliary variable
that serves as both a shadow variable for non-ignorable missingness and an instrumental
variable for causal effects. However, the models used in the above approach assume the
absence of covariates, despite their common presence in practical applied research. In this
paper, we examine the complier average causal effect parameters under non-ignorable
missingness by including covariates to mitigate the sensitivity to the violation of specific
identification assumptions. The missing data mechanism is assumed to follow a logistic
model, wherein the absence of the outcome is explained by the outcome itself, the treatment
received, and the covariates. We establish the identifiability of the models under mild
conditions by assuming that the outcome follows a normal distribution. We develop
a computational method to estimate model parameters through a two-step likelihood
estimation approach, employing subgroup analysis. The bootstrap method is employed for
variance estimation, and the effectiveness of our approach is confirmed through simulation.
The proposed method is applied to analyze the household income dataset from the Chinese
Household Income Project Survey 2013.

The rest of this article is organized as follows. Section 2 introduces the general model-
ing framework, with notation and assumptions. In Section 3, we give the theoretical results
on the identifiability of the parameters and the estimation approach. The performance of
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the proposed method is evaluated through simulation studies in Section 4. The application
to CHIP data is presented in Section 5. Concluding remarks are provided in Section 6.

2. Notation and Assumptions

Let Yi denote the individual outcome and let Xi represent the individual covariate
vector, where Yi ∈ R, X ≡ (1, X1,i, . . . , Xp,i)

⊤ ∈ Rp+1. Zi denotes the randomized treatment
assignment for the ith unit in the study, where i ranges from 1 to n. We assign Zi = 1
if the ith individual is allocated to the treatment group and Zi = 0 if it is assigned to
the control group. Moreover, Di represents the treatment received by the ith individual,
with Di = 1 indicating treatment and Di = 0 indicating no treatment. D(z) and Y(z)
denote the potential treatment received and the potential outcome under the assigned
treatment Z = z, respectively. We define R(z) as the binary response indicator for Y(z),
where R(z) = 1 if Y(z) is observed and R(z) = 0 if Y(z) is missing. Additionally, we define
Y(z, d) as representing the potential outcome under the assigned treatment Z = z and
actual treatment D = d.

Following [6], we define Ui as the compliance status of the ith patient, which is
determined as follows:

Ui =


c if Di(0) = 0 and Di(1) = 1
n if Di(0) = 0 and Di(1) = 0
a if Di(0) = 1 and Di(1) = 1
d if Di(0) = 1 and Di(1) = 0

where the potential intermediate outcomes c, n, a, and d stand for complier, never-taker,
always-taker, and defier, respectively. The complier average causal effect gives the predic-
tors X = x, which equals

CACE(x) = E{Y(1)− Y(0)|U = c, X = x}

Next, we provide the necessary assumptions to ensure the identifiability of CACE(x) under
the non-ignorable missingness. These are formalized by the following assumptions [1,11]:

Assumption 1 (Stable unit treatment value assumption, SUTVA). If zi = z′i, then Di(z) =
Di(z′). And, if zi = z′i, di = d′i, then Yi(z, d) = Yi(z′, d′).

Assumption 2 (Randomization). The treatment assignment Z is randomization.

Assumption 3 (Exclusion restrictions). P(Y(1, d) = Y(0, d)|X = x) = 1 for d ∈ {0, 1}.

Assumption 4 (First-stage). Given X = x, there is a non-zero average causal effect of Z on D, i.e.,
E{D(1)|X = x} ̸= E{D(0)|X = x}.

Assumption 5 (Monotonicity). Di(1) ≥ Di(0) for all i = 1, . . . , N. Defining ωu = P(U = u)
where u ∈ {c, n, a, d}, we then have ωd = 0.

Assumption 6 (Compound exclusion restrictions). P[{Y(1, d), R(1)} = {Y(0, d),
R(0)}|X = x] = 1 for d ∈ {0, 1}.

Assumption 7 (Non-ignorable missingness). E{R(z)|Y(z) = y, D(z) = d, U = u, X =
x} = E{R(z)|Y(z) = y, D(z) = d, X = x} and E{R(1)|Y(1) = y, D(1) = d, X = x} =
E{R(0)|Y(0) = y, D(0) = d, X = x}.

Assumption 8 (Subgroup). U is independent of variable X.
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Assumption 9 (Normal). The conditional density of the outcome variable Y has the following
normal form:

p(y|x; θzu) = p(y|Z = z, U = u, X = x; βzu, σ2
zu)

=
1√

2πσzu
exp

{
− (y − β⊤

zux)2

2σ2
zu

}
where u ∈ {c, n, a} is the compliance status and θzu = (β⊤

zu, σ2
zu)

⊤.

Assumption 1 posits that Yi = DiYi(z, 1) + (1 − Di)Yi(z, 0) and Di = ZiD(1) + (1 −
Zi)D(0), indicating that the observed outcome equals the potential outcome evaluated at
the observed treatment value, and the observed treatment equals the potential treatment
evaluated at the assigned treatment [27]. This assumption is typically reasonable when deal-
ing with randomly sampled units. Assumption 2 [1] means that Z is as good as randomly
assigned. Assumption 3 asserts that, given X, Y(d) = Y(1, d) = Y(0, d). This concept
encapsulates the fundamental principle of instrumental variable procedures, indicating
that any influence of Z on Y must be channeled through an impact of Z on D [28]. Under
Assumption 3, with X fixed, the conditional density of Y remains independent of Z for
never-takers and always-takers. Assumption 4 stipulates that, for every stratum defined
by X = x, ωc is strictly positive. Assumption 5 asserts the absence of defiers within the
population. Assumptions 1–5 are standard assumptions in causal effect models.

Assumption 6 [2] is credible in a double-blinded clinical trial, as patients are unaware
of the treatment assigned to them, and the treatment assignment is performed through
randomization. Assumption 7 suggests that the absence of an outcome variable is ac-
counted for by the outcome itself, the treatment received, and the covariates. It implies
that the expectation of R(z) given Y(z) = y, D(z) = d, U = u, and X = x is equal to the
expectation of observing R given Y = y, D = d, and X = x. The missing data mechanism
is assumed to follow a logistic model, expressed as E(R|Y = y, D = d, X = x) = Ed(R|Y =
y, X = x) = logit−1

d (αdy + ϕ⊤
d x) = πd(α, ϕ), d ∈ {0, 1}, logit−1(·) ≡ exp(·)/{1 + exp(·)}.

Assumption 8 incorporates the independence between X and U into the computational
method for estimating model parameters. This inclusion enhances the robustness and
validity of the estimation procedure, particularly through a two-step maximum likelihood
estimation approach using subgroup analysis. The purpose of Assumption 9 is to estab-
lish the identifiability of the models under mild conditions, facilitating the creation of a
computational method to estimate model parameters.

3. Identifiability and Estimation

In this section, we initially construct a model for non-compliant data and missing
data, outlining the steps to solve the model. Subsequently, we theoretically establish the
identifiability of the model involved in each step. Given that the second step entails a
system of non-linear equations and integral operations, which can be challenging to handle
analytically, we present a numerical calculation method to address this complexity.

We introduce a convenient two-stage estimation process based on the random sample
(Ri, Di, Zi, Xi, Yi), i = 1, . . . , N. Given X = x, the joint density function with respect to
variables (y, z, u) can be expressed as follows:

f (y, z, u|x) = f (z|x) f (u|z, x) f (y|z, u, x) = f (z) f (u|z) f (y|z, u, x)

Assumptions 2 and 8 ensure the validity of the equation above. Let ξ = P(Z =
1), ωa = P(U = a) = P(D = 1|Z = 0), ωn = P(U = n) = P(D = 0|Z = 1), ωc = 1 −
ωn − ωa, and denote η = (ξ, ωa, ωn)⊤. Assumption 3 implies that f (y|x; θ1a) = f (y|x; θ0a),
denoted as f (y|x; θa), and f (y|x; θ1n) = f (y|x; θ0n), and denoted as f (y|x; θn). Let nz =
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#{i : Zi = z}, nzd = #{i : Zi = z, Di = d} for z ∈ {0, 1} and d ∈ {0, 1}. As stated in [2], the
full likelihood for (η, α, ϕ, θ) can be expressed as

L(η, α, ϕ, θ) ∝ L(η)L(α1, ϕ1, θa, θ1c)L(α1, ϕ1, θa)L(α0, ϕ0, θn, θ0c)L(α1, ϕ1, θn) (1)

where

L(η) = ξn1(1 − ξ)n0(1 − ωn)
n11 ω

n10
n ω

n01
a (1 − ωa)

n00 (2)

L(α1, ϕ1, θa, θ1c)

= ∏
i:(Zi ,Di)=(1,1)

[
π1(α1, ϕ1)

{ ωa

ωa + ωc
p(Yi|Xi; θa) +

ωc

ωa + ωc
p(Yi|Xi; θ1c)

}]Ri

[ ∫
{1 − π1(α1, ϕ1)}

{ ωa

ωa + ωc
p(y|Xi; θa) +

ωc

ωa + ωc
p(y|Xi; θ1c)

}
dy

]1−Ri
(3)

L(α1, ϕ1, θa)

= ∏
i:(Zi ,Di)=(0,1)

{
π1(α1, ϕ1)p(Yi|Xi; θa)

}Ri
{ ∫

{1 − π1(α1, ϕ1)}p(y|Xi; θa)dy
}1−Ri

(4)

L(α0, ϕ0, θn)

= ∏
i:(Zi ,Di)=(1,0)

{
π1(α0, ϕ0)p(Yi|Xi; θn)

}Ri
{ ∫

{1 − π1(α0, ϕ0)}p(y|Xi; θn)dy
}1−Ri

(5)

L(α0, ϕ0, θn, θ0c)

= ∏
i:(Zi ,Di)=(0,0)

[
π1(α0, ϕ0)

{ ωn

ωn + ωc
p(Yi|Xi; θn) +

ωc

ωn + ωc
p(Yi|Xi; θ0c)

}]Ri

[ ∫
{1 − π1(α0, ϕ0)}

{ ωn

ωn + ωc
p(y|Xi; θn) +

ωc

ωn + ωc
p(y|Xi; θ0c)

}
dy

]1−Ri
(6)

It is evident from (2) that the maximum likelihood estimator for η is (ξ̂, ω̂a, ω̂n) =
(n1/n, n01/n1, n10/n0), which is equivalent to the moment estimator, thus ensuring its
identifiability. Next, we propose a two-stage estimation process (αd, ϕd, θzu) and establish
the identifiability of the models involved in these two steps.

Step 1. Based on Assumptions 3 and 7, the conditional density of the outcome Y for
never-takers and always-takers, as well as the missing data models, are independent of
Z. The likelihood function computed on never-takers with (Zi, Di) = (0, 1) is (4) and
the likelihood function computed on always-takers with (Zi, Di) = (1, 0) is (5). We can
maximize (4) and (5) to obtain that the maximum likelihood estimators for (α1, ϕ1, θa) and
(α0, ϕ0, θn) are (α̂1, ϕ̂1, θ̂a) and (α̂0, ϕ̂0, θ̂n).

Step 2. We substitute (ξ̂, ω̂a, ω̂n), (α̂0, ϕ̂0, θ̂n), and (α̂1, ϕ̂1, θ̂a) into (3) and (6) and
consider the numerical characteristics of the mixed normal distribution and the inverse
probability weighting method (more details can be found in [29]) to obtain the estimators
of θ1c and θ0c, denoted as θ̂1c and θ̂0c.

Non-ignorable missingness in Y presents challenges to the identifiability of the ob-
served likelihood function (4) and (5), as emphasized by [12]. The next theorem shows that
the parameters are all identifiable under mild conditions.

Theorem 1. Suppose there exists one continuous covariate; if the sign of some element of (αd, ϕ⊤
d )

⊤

is known, then the vector of parameters (αd, ϕd, θzu) is identifiable, where d ∈ {0, 1} and zu ∈
{1c, 0c, n, a}.
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Proof. (i) First, we establish the identifiability of parameters (α1, ϕ1, θa). Suppose there
exist two sets of parameters (α1, ϕ1, θa) and (α∗1 , ϕ∗

1 , θ∗a) such that

log π(y, x; α1, ϕ1) + log p(y|x, θa) = log π(y, x; α∗1 , ϕ∗
1) + log p(y|x; θ∗a) (7)

which holds for all (y, x). The authors in [12] accounted that (α1, ϕ1, θa) is identifiable if (7)
implies that

α = α∗, ϕ1 = ϕ∗
1 , θa = θ∗a

Without a loss of generality, suppose X1 is a continuous variable and can take any
real values, and let covariates X2, . . . , Xp be omitted since we can consider X2, . . . , Xp as
fixed, while X1 varies. Due to the fact that the proof for the case ϕ1 = 0 can be obtained by
mimicking the following process, here, we consider the case ϕ1 ̸= 0. Let g(·) = log π(·);
then, g(α1y + ϕ⊤

1 x) + log p(y|x; θa) = g(α∗1y + ϕ∗
1
⊤x) + log p(y|x; θ∗a) can be transformed

into the following form:

g(α1y + ϕ1,0 + ϕ1,1x1) + log p(y|x1; βa,0, βa,1, σ2
a )

= g(α∗1y + ϕ∗
1,0 + ϕ∗

1,1x1) + log p(y|x1; β∗
a,0, β∗

a,1, σ2
a
∗
) (8)

Applying operation ∂/∂x1 on both sides of (8) yields

g′(α1y + ϕ1,0 + ϕ1,1x1)ϕ1 +
y − βa,0 − βa,1x1

σ2 βa,1

= g′(α∗1y + ϕ∗
1,0 + ϕ∗

1,1x1)ϕ
∗
1 +

y − β∗
a,0 − β∗

a,1x1

σ2∗ β∗
a,1 (9)

Applying operation ∂2/∂y2 on both sides of (9) yields

g(3)(α1y + ϕ1,0 + ϕ1,1x1)ϕ1,1α2
1 = g(3)(α∗1y + ϕ∗

1,0 + ϕ∗
1,1x1)ϕ

∗
a,1α∗1

2. (10)

If ϕ∗
1,1 = 0 or α∗1 = 0, then (10) reduces to g(3)i (α1y + ϕ1,0 + ϕ1,1x1)ϕ1,1α2

1 = 0 and then
ϕ1,1α2

1 = 0, which contradicts the assumption ϕ1,1 ̸= 0 and α1 ̸= 0. Now, we consider
the case ϕ∗

1,1 ̸= 0 and α∗1 ̸= 0. Due to the fact that g(·) = log logit−1(·), the roots of the
derivatives of g(t) are as follows:

g′(t) has no roots
g′′(t) has no roots
g(3)(t) has one root 0
g(4)(t) has two roots log(2 +

√
3), log(2 −

√
3)

g(5)(t) has three roots 0, log(5 + 2
√

6), log(5 − 2
√

6)

If ϕ1,1α∗1 ̸= ϕ∗
1,1α1, then this leads to a contradiction. Assume the line α1y+ϕ1,0 +ϕ1,1x1

intersects with α∗1y + ϕ∗
1,0 + ϕ∗

1,1x1 at (ẋ1, ẏ); then, we have α1ẏ + ϕ1,0 + ϕ1,1 ẋ1 = α∗1 ẏ +
ϕ∗

1,0 + ϕ∗
1,0 ẋ1 = t. If t = 0, by applying operation ∂/∂y and ∂/∂x1 on both sides of (10)

at (ẋ1, ẏ), we have ϕ1,1α3
1 = ϕ∗

1,1α∗3
1 and ϕ2

1,1α2
1 = ϕ∗2

1,1α∗2
1 , then ϕ1,1α∗1 = ϕ∗

1,1α1, which is a
contradiction. If t is equal to log(2+

√
3) or log(2−

√
3), by (10) and by applying operation

∂2/∂x1∂y on both sides of (10) at (ẋ1, ẏ) and ϕ1,1α2
1 = ϕ∗

1,1α∗2
1 and ϕ2

1,1α3
1 = ϕ∗2

1,1α∗3
1 , then

ϕ1,1α∗1 = ϕ∗
1,1α1, which is a contradiction. If t ̸= b, b ∈ {0, log(2+

√
3), log(2−

√
3)}, by (10)

and by applying operation ∂/∂y on both sides of (10) at (ẋ1, ẏ), then ϕ1,1α2
1 = ϕ∗

1,1α∗2
1 and

ϕ1,1α3
1 = ϕ∗

1,1α∗3
1 , which means that {ϕ1,1 = ϕ∗

1,1, α1 = α∗1}; then, ϕ1,1α∗1 = ϕ∗
1,1α1, which is a

contradiction. Thus, ϕ1,1α∗1 = ϕ∗
1,1α1.
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Let ϕ1,1/ϕ∗
1,1 = α/α∗ = k, and (10) reduces to

g(3)(ks + ϕ1,0)k3 = g(3)(s + ϕ∗
1,0) (11)

with s = α∗1y + ϕ∗
1,1x1. If k ̸= 1, assume the line ks + ϕ1,0 intersects with s + ϕ∗

1,0 at ṡ; then,
kṡ + ϕ1,0 = ṡ + ϕ∗

1,0 = t. If t ̸= 0, let s = ṡ in (11); then, k = 1, which is a contradiction. If
t = 0, by applying operation ∂/∂s on both sides of (11) at ṡ, we have k4 = 1, that is, k = 1 or
k = −1. If k = −1, then α1 = −α∗1 , ϕ1,1 = −ϕ∗

1,1, and −ṡ+ ϕ1,0 = ṡ+ ϕ∗
1,0 = 0, which means

that ϕ1,0 = −ϕ∗
1,0, that is, (α∗1 , ϕ∗

1,0, ϕ∗
1,1) = −(α1, ϕ1,0, ϕ1,1). Recall the condition that the sign

of any element of (α1, ϕ1,0, ϕ1,1) is assumed to be known. Therefore, the case according to
which t = 0 and k = −1 is impossible. Therefore, we have k = 1; then, (11) reduces to

g(3)(t + ϕ1,0) = g(3)(t + ϕ∗
1,0)

and we have ϕ1,0 = ϕ∗
1,0 because g(3)(·) has only one maximum point. Now, we have

(α∗1 , ϕ∗
1,0, ϕ∗

1,1) = (α1, ϕ1,0, ϕ1,1), and the condition in (8) reduces to

log p(y|x1; βa,0, βa,1, σ2
a ) = log p(y|x1; β∗

a,0, β∗
a,1, σ2

a
∗
) (12)

We can readily obtain (βa,0, βa,1, σ2
a ) = (β∗

a,0, β∗
a,0, σ2

a
∗
) from (12). Thus, (α1, ϕ1, θa) is

identifiable. In an analogous manner to the above, (α0, ϕ0, θn) is identifiable.
(ii) Similar to the proof of the above, we now only need to demonstrate the following: if

g(α1, ϕ1) + log
{ ωa

ωa + ωc
p(y|x; θa) +

ωc

ωa + ωc
p(y|x; θ1c)

}
(13)

= g(α∗1 , ϕ∗
1) + log

{ ωa

ωa + ωc
p(y|x; θ∗a) +

ωc

ωa + ωc
p(y|x; θ∗1c)

}
(14)

we can obtain θ1c = θ∗1c, and then the θ1c is identifiable. We now substitute (α1, ϕ1, θa) =
(α∗1 , ϕ∗

1 , θ∗a) into (13); then, (13) reduces to

p(y|x; θ1c) = p(y|x; θ∗1c) (15)

and we can readily obtain θ1c = θ∗1c; then, θ1c is identifiable. Likewise, θ0c is identifiable.
Therefore, the conclusion of Theorem 1 follows.

The sign of some element of (αd, ϕ⊤
d )

⊤ is easy to verify. According to [30], factors such
as respondents’ cognitive level, motivation, and social status influence non-response proba-
bility. Leveraging this insight, we can speculate on the trend of non-response probability
and infer the sign of the parameters in the missing mechanism model. For example, in a
household income survey, low-income individuals may be less inclined to disclose their
true income, implying α > 0.

Given the similarity between the methods for estimating (α0, ϕ0, θn) and θ0c and those
for estimating α1, ϕ1, θa and θ1c, we will delineate the estimation methods for estimating
(α1, ϕ1, θa) and θ1c separately in two steps. The likelihood function computed on always-
takers with (Zi, Di) = (1, 0) is (4). Thus, the maximization problem in (4) with respect to
parameters (α1, ϕ1, θa) is equivalent to finding α1, ϕ1, and θa to maximize

ln(α1, ϕ1, θa) =
n

∑
i=1

lni(α1, ϕ1, θa) (16)

with

lni(α1, ϕ1, θa) = ri log π(Yi, Xi; α1, ϕ1) + ri log pa(Yi|Xi; θa)

+(1 − ri) log
∫
{1 − π(y, Xi; α1, ϕ1)}pa(y|Xi; θa)dy
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and

pa(Yi|Xi; θa) =
1√

2πσa
exp

{
− (Yi − β⊤

a Xi)
2

2σ2
a

}
where θa = (β⊤

a , σ2
a )

⊤.
For convenience, we denote π(y, Xi; α1, ϕ1) by π1,i. The score equations can be derived

by means of taking the derivatives of (16) with respect to α1, ϕ1 and θa, yielding

n

∑
i=1

Ui(α1, ϕ1, θa) =



n
∑

i=1
Uα1,i(α1, ϕ1, θa)

n
∑

i=1
Uϕ1,i(α1, ϕ1, θa)

n
∑

i=1
Uβa ,i(α1, ϕ1, θa)

n
∑

i=1
Uσ2

a ,i(α1, ϕ1, θa)


= 0 (17)

where

Uα1,i(α1, ϕ1, θa) = Ri(1 − π1,i)Yi − (1 − Ri)
E{π1,i(1 − π1,i)Yi}|Xi

E(1 − π1,i|Xi)

Uϕ1,i(α1, ϕ1, θa) =
[

Ri(1 − π1,i)− (1 − Ri)
E{π1,i(1 − π1,i)}|Xi

E(1 − π1,i|Xi)

]
Xi

Uβa ,i(α1, ϕ1, θa) =
1
σ2

a

[
Xi

{
RiYi − (1 − Ri)

E{(1 − π1,i)Yi}|Xi}
E(1 − π1,i|Xi)

}
− XiX⊤

i βa

]
and

Uσ2
a ,i(α1, ϕ1, θa) =

1
2σ4

a

[{
Ri(Yi − X⊤

i βa)
2 +

(1 − Ri)
E{(1 − π1,i)(Yi − X⊤

i βa)
2|Xi}

E(1 − π1,i|Xi)

}
− σ2

a

]
However, computing the integral involved in (17) is challenging. To circumvent this

difficulty, we propose utilizing Monte Carlo approximation. Given θa, we can straightfor-
wardly sample Y directly from the conditional distribution with density function p(y|Xi; θa).
Let Yi1, Yi2, . . . , Yim denote a sample of size m. For convenience, we denote

E{(1 − π1,i)Yi|Xi}
E(1 − π1,i|Xi)

≈
∑m

j=1(1 − π1,i)Yij

∑m
j=1(1 − π1,i)

≡ I1,i(α1, ϕ1)

E{π1,i(1 − π1,i)|Xi}
E(1 − π1,i|Xi)

≈
∑m

j=1 π1,ij(1 − π1,ij)

∑m
j=1(1 − π1,i)

≡ I2,i(α1, ϕ1)

E{(1 − π1,i)Y2
i |Xi}

E(1 − π1,i|Xi)
≈

∑m
j=1(1 − π1,ij)Y2

1,ij

∑m
j=1(1 − π1,i)

≡ I3,i(α1, ϕ1)

As stated in [17], the introduced additional variability becomes ignorable when the
resample size m is sufficiently large; for example, m = O(n1+ϵ), where ϵ is a small positive
constant, so we use ≈ here. We record the parameters of t iterations as (αt

1, ϕt
1, θt

a) and then
obtain the estimated value of (αt+1

1 , ϕt+1
1 , θt+1

a ) times as follows:



Mathematics 2024, 12, 1300 9 of 16

n

∑
i=1

[Ri(1 − π1,i)Yi − (1 − Ri)Ii,1(α
t
1, ϕt

1)] = 0

n

∑
i=1

[Ri(1 − π1,i)− (1 − Ri)Ii,2(α
t
1, ϕt

1)]Xi = 0

n

∑
i=1

[Xi{RiYi − (1 − Ri)Ii,1(α
t
1, ϕt

1)} − XiX⊤
i βa] = 0

and

n

∑
i=1

[Ri(Yi − X⊤
i βa)

2 + (1 − Ri){Ii,3(α
t
1, ϕt

1)

−2Ii,1(α
t
1, ϕt

1)X
⊤
i βa + (X⊤

i βa)
2} − σ2

a ] = 0

The above formula is iterated through until the following is satisfied:

∥{αt
1 − αt+1

1 , (ϕt
1 − ϕt+1

1 )⊤, (θt
a − θt+1

a )⊤}⊤∥ < tol

where tol is a given constant that can be arbitrarily small. Ultimately, we obtain (α̂1, ϕ̂1, θ̂a)
for the parameters (α1, ϕ1, θa). In the same manner, we can obtain (α̂0, ϕ̂0, θ̂n), where θ̂a =

(β̂
⊤
a , σ̂2

a )
⊤, θ̂n = (β̂

⊤
n , σ̂2

n)
⊤. In practice, the above computation procedure is straightforward

to implement, as it relies on the use of the empirical distribution. Moreover, it is attractive
because the introduced additional variability becomes ignorable when the resample size m
is sufficiently large; for instance, m = O(n1+ϵ), where ϵ is a small positive constant.

According to the assumption of Condition 7, the absence of Y is unrelated to Z. Then,
we can focus on the individuals having (Zi, Di) = (1, 1) and, using the inverse probability
weighting method, the estimated equation is as follows:

n

∑
i=1

Yi − X⊤
i βM

π(y, Xi; α̂1, ϕ̂1)
= 0

n

∑
i=1

(Yi − X⊤
i βM)2

π(y, Xi; α̂1, ϕ̂1)
− σ2

M = 0

We can readily obtain that the estimators for βM and σ2
M are β̂M and σ̂2

M from the
above estimation equation, and considering the numerical characteristics of the mixed
normal distribution, we have

β̂M =
ω̂a

ω̂a + ω̂1c
β̂a +

ω̂1c
ω̂a + ω̂1c

β1c

σ̂2
M =

ω̂a

ω̂a + ω̂1c
σ̂2

a +
ω̂1c

ω̂a + ω̂1c
σ2

1c +
ω̂aω̂1c

ω̂a + ω̂1c
{(β̂a − β1c)

⊤EX}2

By solving the two equations above, we can derive estimators for β1c and σ2
1c, denoted

as β̂1c and σ̂2
1c. In the same manner, we can obtain θ̂0c. Here, θ̂1c = (β̂

⊤
1c, σ̂2

1c)
⊤, θ̂0c =

(β̂
⊤
0c, σ̂2

0c)
⊤. By denoting βc = β1c − β0c, we arrive at the complier average causal effect

given the predictors X = x as

CACE(x) = E{Y(1)− Y(0)|U = c, X = x} = (β̂1c − β̂0c)
⊤X = β̂

⊤
c X (18)

Considering the variance of the mixed normal distribution, the estimator for the
corresponding variance σ2

c = κσ2
1c + (1− κ)σ2

0c + κ(1− κ)(µ1c − µ0c)
2, where κ = 0.5, µ1c =

β⊤
1cX, µ0c = β⊤

0cX. Thus,
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σ̂2
c = 0.5σ̂2

1c + 0.5σ̂2
0c + 0.25(β̂

⊤
c EX)2

In practice, we can utilize the bootstrap method to approximate the sampling variance
of the estimator of CACE.

4. Simulations

In this section, we perform simulations to assess the effectiveness of the outlined esti-
mation procedure. Assuming P(Z = 1) = ξ = 0.5 and P(U = a) = ωa = 0.3, P(U = n) =
ωn = 0.3, we divide all samples into six groups based on (Z = z, U = u), with the number
in each group denoted as nzu. The covariates X in all groups are two-dimensional normal
distributions, with the mean vector and the covariance matrix as follows, respectively:

µ =

(
1
0

)
, Σ =

(
1 1
1 2

)
Conditional on X, if (Zi, Ui) = (1, a) or (0, a), the response Y is generated from

Y|X ∼ N(βa,0 + βa,1X1 + βa,2X2, σ2
a )

where (βa,0, βa,1, βa,2, σ2
a )

⊤ = (1, 1, 2, 1)⊤. Instead, if (Zi, Ui) = (1, n) or (0, n), we use

Y|X ∼ N(βn,0 + βn,1X1 + βn,2X2, σ2
n)

where (βn,0, βn,1, βn,2, σ2
n)

⊤ = (−1,−1, 2, 1)⊤. If (Zi, Ui) = (1, c), we simulate Y via the
conditional distribution

Y|X ∼ N(β1c,0 + β1c,1X1 + β1c,2X2, σ2
1c)

where (β1c,0, β1c,1, β1c,2, σ2
1c)

⊤ = (0.5, 1.5, 2, 1)⊤, while if (Zi, Ui) = (0, c), we have

Y|X ∼ N(β0c,0 + β0c,1X1 + β0c,2X2, σ2
0c)

where (β0c,0, β0c,1, β0c,2, σ2
0c)

⊤ = (−0.5,−1.5, 2, 1)⊤. The missing mechanism model in the
group with D = 1 is as follows:

P(R = 1|Y, X) = logit−1{α1Y + ϕa,0 + ϕa,1X1}

where logit−1(·) = exp(·)/{1 + exp(·)} and (α1, ϕ1,0, ϕ1,1)
⊤ = (0.2, 1.5, 0.3)⊤. Instead, if

Di = 0, we use

P(R = 1|Y, X) = logit−1{α0Y + ϕ0,0 + ϕ0,1X1}

where (α0, ϕ0,0, ϕ0,1)
⊤ = (0.2, 2, 0.2)⊤. The missing rate for the outcome is 13.4% in group

D = 1 and 15.7% in group D = 0.
The Monte Carlo samples have a size of n = 3000. Tables 1 and 2 report the em-

pirical bias, standard deviation obtained by means of non-parametric bootstrap with
B = 1000 replications, and coverage of 95% Wald-type confidence intervals. The numerical
results of Table 1 demonstrate a highly accurate estimation of η, the missing mechanism
models parameters, the always-taker parameters, and the never-taker parameters, which
means that the proposed method can still accurately estimate the parameters in the causal
model under the non-ignorable missingness. The numerical results in Table 2 demonstrate
a highly accurate estimation of the complier parameters and CACE components. However,
there is some under-coverage in the Wald confidence intervals for β1c,0 and βc,0.
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Table 1. Empirical bias (Bias), bootstrap standard deviation (Std. dev.) and 95% Wald coverage
probability (95% Cover) of the estimators for η, the missing mechanism models parameters, the
always-taker parameters, and the never-taker parameters.

Parameter Bias Std. dev. 95% Cover

η
ξ 0.0004 0.009 0.983

ωa 0.0001 0.012 0.915
ωn 0.0001 0.012 0.906

D = 1
α1 −0.0009 0.074 0.972

ϕ1,0 0.0115 0.205 0.978
ϕ1,1 0.0231 0.270 0.992

D = 0
α0 0.0035 0.073 0.957

ϕ0,0 0.0329 0.311 0.991
ϕ0,1 −0.0038 0.148 0.985

U = a

βa,0 0.0035 0.093 0.926
βa,1 −0.0014 0.073 0.944
βa,2 −0.0006 0.050 0.960
σ2

a −0.0084 0.071 0.933

U = n

βn,0 −0.0020 0.089 0.937
βn,1 0.0012 0.072 0.923
βn,2 0.0003 0.054 0.952
σ2

n −0.0047 0.074 0.918

Table 2. Empirical bias (Bias), bootstrap standard deviation (Std. dev.) and 95% Wald coverage
probability (95% Cover) of the estimators for the compliers parameters and the CACE components.

Parameter Bias Std. dev. 95% Cover

(Z, U) = (1, c)

β1c,0 −0.059 0.258 0.947
β1c,1 −0.0026 0.139 0.881
β1c,2 0.0014 0.107 0.937
σ2

1c 0.0025 0.074 0.987

(Z, U) = (0, c)

β0c,0 0.0039 0.134 0.949
β0c,1 −0.0040 0.110 0.969
β0c,2 −0.0001 0.077 0.989
σ2

0c −0.0031 0.124 0.907

CACE

βc,0 −0.0065 0.193 0.883
βc,1 0.0054 0.155 0.936
βc,2 0.0025 0.106 0.991
σ2

c −0.0559 0.166 0.908

The estimators for η exhibit significantly smaller bias and variance compared to other
parameters, attributed to the larger sample size used for their estimation. Conversely, the
estimators for the always-taker and never-taker parameters show similar bias and variance
due to their comparable missing rates. The subpar estimation results for the compliers
parameters arise from various factors, including the numerical characteristics of the normal
distribution, which we aim to optimize in future iterations.

5. Real Data Analysis

The CHIP study monitors income distribution and economic factors among rural,
rural-to-urban migrant, and urban households in China [31]. The purpose of this study is
to investigate whether there is a significant change in the return rate of education when
the male population transitions from rural to migrant status. The survey captures details
such as employment status, education level, age, income, and other relevant information.
Data collection involves systematic random sampling from various regions to ensure
geographic representation. The survey includes data from cities and towns in fifteen
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provinces, representing different regions across the country. These provinces include
Liaoning, Shanxi, Jiangsu, Shandong, Guangdong, Anhui, Henan, Sichuan, Hunan, Hubei,
Gansu, Xinjiang, Yunnan, Beijing, and Chongqing, covering the north, eastern coastal areas,
interior regions, and western regions of China.

Each respondent’s actual annual income serves as a proxy for the individual’s earnings
E, utilized in the response of the Mincer earnings function [32]. We compute the number
of years since leaving school as age − years of schooling − 6, as Chinese children typically
start school at 7 years old. The years since the onset of labor market experience are
calculated as age − 16, as Chinese individuals who have reached the age of 16 can legally
participate in the labor market.

The rural population’s migration for work primarily depends on two factors: the
economic development status of the region and the distance between their home and
work. If the region’s economic development is favorable, migration may be less likely.
Conversely, shorter distances between the home and work place increase the likelihood of
migration. Hence, leveraging Chinese administrative division data, we assign Zi = 1 if the
individual’s household head’s registered residence is Beijing, Shanxi, Guangdong, Hubei
Chongqing, or Liaoning , and Zi = 0 otherwise. The sample sizes of the observed data
are shown in Table 3. In the 2013 wave of the study, the rural and migrant sub-samples
accounted for 62.97% and 4.54% of the dataset, respectively, including urban individuals.
However, in China in 2013, the percentages of rural and migrant households were of 45.77%
and 13.30%, respectively [33]. To align with this distribution, we adjust the sample weights.
Specifically, each migrant respondent is weighted four times as much as a rural one, since
(62.97/4.54)/(45.77/13.30) ≈ 4.

Table 3. Sample sizes of different groups. The initials in brackets identify never-takers (n), always-
takers (a), and compliers (c).

(Z, D) = (1, 1) (Z, D) = (1, 0) (Z, D) = (0, 1) (Z, D) = (0, 0)

R = 1 472 (a, c) 229 (n) 4052 (a) 5464 (c, n)
R = 0 37 (a, c) 13 (n) 1059 (a) 1857 (c, n)

The Mincer earnings function is a single-equation model that explains wage income
as a function of education and work experience, which can be expressed as follows:

log (1 + E) = β0 + β1S + β2Exper + β3Exper2 + ε (19)

In the specification, E represents earnings (in CNY), S indicates years of schooling,
and Exper stands for potential work experience. ε is an unobserved normal random error
with mean 0 and variance σ2 > 0. Without considering the cost of schooling, the returns
to education are given by ∂ log (1 + E)/∂S = β1. The missing data mechanism is modeled
using the following model:

P(R = 1|E, S, Exper) = logit−1(α log(1 + E)

+θ0 + θ1 log S + θ2 log Exper + θ3 log Exper2) (20)

Using the Assumption 9 described in Section 2 in this setting, model (19) implies a
normal distribution of the outcome Y = log(1 + E):

p(y|x; θzu) =
1√

2πσzu
exp

[
− {y − βzu,0 − βzu,1s − βzu,2exper − βzu,3exper2}2

2σ2
zu

]
(21)
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where x = (s, exper)⊤ is the realization of the covariates vector X = (S, Exper)⊤. Thus, the
complier average causal effect which captures the causal effect of migrant work on the
earnings of compliers is estimated by

CACE
(

s, exper; β̂c

)
= β̂c,0 + β̂c,1s + β̂c,3exper + β̂c,3exper2

with β̂c = (β̂c,0, β̂c,1, β̂c,2, β̂c,3)
⊤ = (β̂1c,0 − β̂0c,0, β̂1c,1 − β̂0c,1, β̂1c,2 − β̂0c,2, β̂1c,3 − β̂0c,3)

⊤.
Specifically, the coefficient β̂c,1 gives the estimated causal effect of migrant work on the
returns to education of a complier.

The analysis of the 2013 CHIP data conducted in R version 4.3.2, which invented in
August 1993 by statisticians Ross Ihaka and Robert Jetman of the University of Auckland,
New Zealand. Utilizing the estimation methods outlined in Section 3 of this paper, yielded
results presented in Tables 4 and 5. The results from Table 4 show that log-income has a
significant positive effect on the probability of missingness, as evidenced by α1 = 0.4130
and α0 = 0.5284. Table 5 illustrates that the estimated returns to education are β̂1c,1 =

2.81% for migrant compliers and β̂0c,1 = −0.85% for rural compliers. The difference,
β̂c,1 = 3.66%, indicates that migrant work enhances the returns to education for compliers.
Additionally, based on the observation that β0 > 0, we infer that the initial wages of migrant
compliers are notably higher than those of rural compliers. This suggests that migrant
work also contributes to higher initial wages for individuals. In conclusion, the estimated
returns to education vary significantly among different target groups. However, it is
noteworthy that the estimated returns to education of migrant workers and rural residents
are consistently lower than those of urban residents across the board, with an average
difference of 8.4%, as documented by [34]. This finding scientifically validates the social
and economic significance of migrant work from a human capital perspective, offering a
basis for decision-making aimed at enhancing the condition of Chinese rural labor.

Table 4. Parameter estimators, bootstrap standard deviation (Std. dev.), and empirical 95% Wald con-
fidence intervals (95% CI) along with the estimators for η, the missing mechanism model parameters,
the always-taker parameters, and the never-taker parameters.

Parameter Estimator Std. dev. 95% CI

η
ξ 0.1946 0.0031 [0.1886, 0.2006]

ωa 0.1169 0.0027 [0.1117, 0.1222]
ωn 0.7154 0.0060 [0.7036, 0.7271]

D = 1

α1 0.4130 0.1521 [0.1150, 0.7111]
ϕ1,0 −7.0218 1.5790 [10.1167, −3.9269]
ϕ1,1 0.3597 0.0627 [0.2369, 0.4826]
ϕ1,2 0.3003 0.0391 [0.2238, 0.3769]
ϕ1,3 −0.0060 0.0008 [−0.0076, −0.0045]

D = 0

α0 0.5284 0.2365 [0.0647, 0.9920]
ϕ0,0 −5.2175 2.2725 [−9.6715, −0.7635]
ϕ0,1 0.2046 0.0707 [0.0659, 0.3432]
ϕ0,2 0.0624 0.0335 [−0.0032, 0.1281]
ϕ0,3 −0.0018 0.0006 [−0.0031, −0.0006]

U = a

βa,0 9.1899 0.1464 [8.9029, 9.4771]
βa,1 0.0356 0.0084 [0.0191, 0.0521]
βa,2 0.0894 0.0079 [0.0739, 0.1050]
βa,3 −0.0020 0.0002 [−0.0023, −0.0016]
σ2

a 0.5331 0.0282 [0.4777, 0.5884]

U = n

βn,0 9.3902 0.1468 [9.1024, 9.6780]
βn,1 0.0498 0.1011 [0.0300, 0.0696]
βn,2 0.0393 0.0072 [0.0252, 0.0534]
βn,3 −0.0009 0.0001 [−0.0012, −0.0006]
σ2

n 0.5513 0.0382 [0.4764, 0.6262]
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Table 5. Parameter estimators, bootstrap standard deviation (Std. dev.), and empirical 95% Wald
confidence intervals (95% CI) along with the estimators for the complier parameters and the CACE
components.

Parameter Estimator Std. dev. 95% CI

(Z, U) = (1, c)

β1c,0 10.2684 0.1981 [9.8800, 10.6567]
β1c,1 0.0281 0.0131 [0.0023, 0.0537]
β1c,2 0.0149 0.0132 [−0.0111, 0.0408]
β1c,3 −0.0005 0.0003 [−0.0011, 0.0001]
σ2

1c 0.5972 0.0518 [0.4958, 0.6987]

(Z, U) = (0, c)

β0c,0 9.0075 1.1509 [6.7518, 11.2633]
β0c,1 −0.0085 0.1009 [−0.2063, 0.1893]
β0c,2 0.0310 0.0472 [−0.0616, 0.1236]
β0c,3 −0.0012 0.0011 [−0.0033, 0.0009]
σ2

0c 2.2993 1.0110 [0.3177, 4.2809]

CACE

βc,0 1.2609 1.1994 [−1.0899, 3.6116]
βc,1 0.0366 0.1026 [−0.1646, 0.2378]
βc,2 0.0162 0.0490 [−0.1122, 0.0799]
βc,3 0.0007 0.0011 [−0.0015, 0.0029]
σ2

c 2.2835 0.5075 [1.2888, 3.2782]

6. Conclusions

In this study, the challenge of identifying and estimating complier average causal
effect parameters under non-ignorable missingness is tackled by increasing covariates to
mitigate the sensitivity to the violation of specific identification assumptions. The missing
data mechanism is assumed to follow a logistic model, wherein the absence of the outcome
is explained by the outcome itself, the treatment received and the covariates, giving it
an advantage over the assumptions proposed by [2,3]. The identifiability of the models
is established under mild conditions by assuming that the outcome follows a normal
distribution. A computational method is developed to estimate model parameters through
a two-step likelihood estimation approach, utilizing subgroup analysis.

Some studies in the literature discuss the consistency of parameter estimation in the
presence of non-ignorable missing and non-compliant data. The authors of [23] demon-
strated that parameter estimators are consistent under the assumption of a correct missing
mechanism model. The authors of [26] obtained the consistency of parameters of interest
even when confounders are missing not at random. The authors of [3] established the
asymptotic results of the estimators when the missing outcome depends only on itself. Esti-
mating the parameters of interest based on subgroup analysis poses significant challenges
when the absence of the outcome is explained by the outcome itself, the treatment received,
and the covariates. We plan to address this aspect in future research endeavors to enhance
our methodologies.

There are many directions worthy of further research. A possible extension in this
research area involves utilizing instrumental variables to transform the identifiability of
the observation likelihood into the identifiability of the parameters of interest. Indeed, we
propose a relaxation of the exclusion restriction based on likelihood analysis, resulting
in a parametric model characterized by mixtures of distributions. Furthermore, we can
adopt a semi-parametric model for theoretical modeling, incorporating more sophisticated
structures into the missing mechanism models and regression models.
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