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Abstract: Input noise causes inescapable bias to the weight vectors of the adaptive filters during
the adaptation processes. Moreover, the impulse noise at the output of the unknown systems can
prevent bias compensation from converging. This paper presents a robust bias compensation method
for a sparse normalized quasi-Newton least-mean (BC-SNQNLM) adaptive filtering algorithm to
address these issues. We have mathematically derived the biased-compensation terms in an impulse
noisy environment. Inspired by the convex combination of adaptive filters’ step sizes, we propose a
novel variable mixing-norm method, BC-SNQNLM-VMN, to accelerate the convergence of our BC-
SNQNLM algorithm. Simulation results confirm that the proposed method significantly outperforms
other comparative works regarding normalized mean-squared deviation (NMSD) in the steady state.

Keywords: bias compensation; convex combination; impulse noise (IN); noisy inputs; process
innovation; variable mixed-norm adaptive filtering algorithm
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1. Introduction

Adaptive filtering algorithms play a pivotal role in signal processing, encompassing
tasks such as system identification, channel estimation, feedback cancellation, and noise
removal [1]. While literature commonly assumes a Gaussian distribution for system noise,
real-world scenarios, including underwater acoustics [2–5], low-frequency atmospheric
disturbances [6], and artificial interference [7–9], often exhibit sudden changes in signal or
noise intensity [10]. These abrupt variations can disrupt algorithms, serving as external
solid interference or outliers [11,12].

Recently, the sparse quasi-Newton least-mean mixed-norm (SQNLMMN) algorithm [13]
has emerged as a potential solution to mitigate the impact of both Gaussian and non-
Gaussian noises on the convergence behavior of adaptive algorithms [14]. This algorithm
introduces a novel cost function incorporating a linear combination of L2 and L4 norms
while promoting sparsity. Despite its promise, the SQNLMMN algorithm exhibits specific
weaknesses. Firstly, it overlooks the presence of input noise at the adaptive filter inputs,
leading to biased coefficient estimates [15,16]. Secondly, the fixed mixing parameter δ,
governing the balance between the two norms, fails to adapt dynamically. This rigidity in
parameter choice trades off convergence rate and mean squared deviation (MSD) concern-
ing the weight coefficients. Notably, the approach of employing a mixed step size for least
mean fourth (LMF) and normalized LMF algorithms [17] to address such trade-offs [18]
differs from the concept of a variable mixing parameter [19,20].

Based on the unbiased criteria, several methods have been reported to compensate the
biases caused by the noisy inputs, such as the bias compensation least mean square algo-
rithm (BC-LMS) [15,21], bias compensation normalized LMS algorithm (BC-NLMS) [22],
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bias compensation proportional normalized least mean square algorithm (BC-PNLMS) [23],
bias compensation normalized least mean fourth algorithm (BC-NLMF) [24], bias com-
pensated affine-projection-like (BC-APL) [25], and bias compensation least mean mixed
norm algorithm (BC-LMMN) [26]. However, the BC-LMMN algorithm used a fixed mixing
factor, which resulted in a higher misadjustment. In [27], the authors proposed using a
biased-compensated generalized mixed norm algorithm and cooperating with correntropy-
induced metric (CIM) as the sparse penalty constraint for sparse system identification
problems. Unlike the conventional mixed norm approach, they mixed norm with p = 1.1
and q = 1.2 to better combat non-Gaussian noise as well as impulse noise. A modified cost
function that considered the cost caused by the input noise was used to compensate for the
bias [27]. Hereinafter, we refer to it as the BC-CIM-LGMN algorithm. Yet, estimating the
input noise power might be adversely affected by impulse noise present at the output of the
unidentified system. The same trick that adopted CIM as the sparse penalty constraint is
applied in [23], which is referred to as BC-CIM-PNLMS hereinafter. On the other hand, an
L0 norm cost function was used to accelerate the convergence for the sparse systems. In [28],
the authors combined it with an improved BC-NLMS, referred to as the BC-ZA-NLMS
algorithm. Unfortunately, the BC-ZA-NLMS algorithm fails to consider the impact of the
impulse noise. Researchers have proposed combining the variable step-size (VSS) method
with BC-LMS to the direction of arrival (DOA) estimation problem [29].

However, few studies have comprehensively addressed all impairments, including
noisy input, impulse noise in observations (measurements), and sparse unknown systems.
Building upon the SQNLMMN algorithm, this paper introduces a robust bias compensation
method for the sparse normalized quasi-Newton least-mean with variable mixing-norm
(BC-SNQNLM-VMN) adaptive filtering algorithm. The key contributions of this research
are as follows. Firstly, we introduce a normalized variant of the SQNLMN algorithm and
incorporate it with the Huber function to alleviate the impact of impulse noise. Secondly,
we develop a bias compensation method to counteract the influence of noisy input on
the weight coefficients of the adaptive filter. Thirdly, we introduce a convex combination
approach concerning the mixing parameter, enabling the utilization of the variable mix-
ing parameter in the mixed norm approach. Consequently, our proposed method can
simultaneously achieve rapid convergence and low misadjustment.

The rest of this paper is organized as follows. Section 2 describes the system model we
considered in this work. Section 3 briefly reviews the SQNLMMN algorithm and outlines
the proposed BC-SNQNLM-VMN adaptive filtering algorithm. Section 4 validates the ef-
fectiveness of our proposed BC-SNQNLM-VMN algorithm by using computer simulations.
Conclusions and future prospects are drawn in Section 5.

2. System Models

The system with finite impulse represented by the vector w ∈ RM×1 to be identified
that considers both input noise and observation noise is depicted in Figure 1. The outputs
from this system are subject to corruption by two types of noise. The observable desired
signal d(n) can be mathematically defined as follows:

d(n) = y(n) + [v(n) + Ω(n)] = uT(n)w(n) + [v(n) + Ω(n)], (1)

where (·)T is the transpose symbol; the weight vector w(n), with components
w0(n), w1(n), . . . , wM−1(n), arranged in column form, represents the unknown system
to be identified. w(n) = [w0(n), w1(n), . . . , wM−1(n)]

T represents the weight vector of the
unknown system; u(n) = [u(n), u(n − 1), . . . , u(n − M + 1)]T denotes the input regres-
sor vector. Note that the measurement noise is assumed to consist of two components:
background additive Gaussian white noise (AGWN) denoted as v(n) and impulse noise
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denoted as Ω(n). The AGWN noise v(n) has a zero mean and variance σ2
v . This variance is

related to the signal-to-noise ratio (SNR) as follows:

SNRv = 10 log10(σ
2
y /σ2

v ), (2)

where σ2
y represents the variance of y(n). In addition, impulse noise is accounted for in the

system model. Two conventional models are employed in this study. The first one is the
Bernoulli Gaussian (BG) model [30], defined as follows:

Ω(n) = b(n) · vΩ(n), (3)

where, b(n) takes the value of one with a probability of Pr and zero with a probability of
(1 − Pr). Additionally, vΩ(n) represents a Gaussian white process characterized by a mean
of zero and a variance of σ2

Ω. The strength of this impulse noise is SNRΩ is used to quantify
its strength as follows:

SNRΩ = 10 log10(σ
2
y /σ2

Ω). (4)

Another model utilized is the alpha-stable impulse noise model [13], which can be char-
acterized by the parameter vector V = (αs, βs, Γs, ∆s). Here αs ∈ (0, 2] represents the
characteristic factor, βs ∈ [−1, 1] denotes the symmetry parameter, Γs ≥ 0 stands for the
dispersion parameter, and ∆s indicates the location parameter. A reduced αs value signifies
a heightened presence of impulse noise.

Figure 1. Model of system identification with the proposed BC-SNQNLM-VMN algorithm.

In this paper, we consider the noisy input case, i.e., the input of the adaptive filter ū(n)
differs from that of the unknown system. We assume an AGWN input noise η(n) with
zero-mean and variance σ2

η is added to the original input u(n), i.e., ū(n) = u(n) + η(n).
The strength of η(n) is determined by the SNRη as follows:

SNRη = 10 log10(σ
2
u/σ2

η), (5)

where σ2
u denotes the variance of u(n). The weights of the adaptive filter, denoted by ŵ(n),

are updated iteratively through an adaptive algorithm, which computes correction terms
based on ŷ(n). These corrections rely on the error signal, expressed as:

ē(n) = d(n)− ŷ(n) = d(n)− ūT(n)ŵ(n), (6)

where ū = [ū(n), ū(n − 1), . . . , ū(n − M + 1)]T denotes the input regressor vector linked to
the adaptive filter.



Mathematics 2024, 12, 1310 4 of 17

3. Proposed BC-SNQNLM-VMN Adaptive Filtering Algorithm
3.1. Review of SQNLMMN Algorithm [13]

The cost function of the SQNLMMN algorithm is expressed as:

J(w(n)) =
δ

2
J2w(n) +

1 − δ

4
J4w(n) + γS(w(n)), (7)

where J2 ≜ E[e2(n)] and J4 ≜ E[e4(n)] are the cost functions for least mean square (LMS)
and LMF algorithms, respectively; a fixed mixing parameter 0 ≤ δ ≤ 1 is used to control
the mixture of the two cost functions; S(·) denotes the sparsity-promoting term, which is
regulated by a positive parameter γ. According to [13], we have the resulting updating
recursion of the sparse quasi-Newton least-mean mixed-norm (SQNLMMN) algorithm
as follows:

ŵ(n + 1) = ŵ(n) + µ1P(n)u(n)e(n) + µ2P(n)u(n)e3(n)− pP(n)g(n), (8)

where the step size is chosen as µ1 = δµ and µ2 = (1 − δ)µ that controls the conver-
gence rate for LMS and LMF algorithms, respectively. Note that µ is a common step size;
pP(n)g(n) denotes the sparsity penalty term, and p denotes the parameter that controls
zero-attraction [13]. The matrix P(n) ∈ RM×M that approximates the inverse of the Hessian
matrix of the cost function can be expressed as follows:

P(n) = B(n)[I − αγ(I − H(n − 1)B(n)αγ)H(n − 1)B(n)], (9)

where B(n) ∈ RM×M is described as follows:

B(n) =
1

1 − α

P(n − 1)
PT(n − 1)u(n)uT(n)P(n − 1)

1−α
α1+α2e2(n) + uT(n)P(n − 1)u(n)

 (10)

with α1 = δα and α2 = 3(1 − δ)α. Note that H(n) ∈ RM×M is the Hessian matrix for
S(ŵ(n)). Let S(·) be the L0 norm and approximate as follows:

S(ŵ(n)) ≈
M−1

∑
i=0

(
1 − e−β|ŵi(n)|

)
, (11)

where the parameter β > 0 is used to determine the region of zero attraction [31].
The derivation of the gradient for this penalty term is as follows:

g(n) = [t(ŵ0(n)), t(ŵ1(n)), . . . , t(ŵM−1(n))]
T , (12)

where
t(ŵi(n)) = βsgn(ŵi(n))e−β|ŵi(n)|, ∀ 0 ≤ i ≤ (M − 1), (13)

and the operator sgn(·) denotes the sign function. In order to streamline Equation (13),
we utilize the first-order Taylor approximation of the exponential function in the follow-
ing manner:

e−β|u| ≈
{

1 − β|u|, |u| ≤ β−1

0, otherwise
. (14)
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Therefore, we can approximate Equation (13) as follows:

t(ŵi(n)) =


−β(1 + βŵi(n)),−β−1 ≤ ŵi(n) < 0
β(1 − βŵi(n)), 0 < ŵi(n) ≤ β−1

0, otherwise

. (15)

The Hessian of Equation (11) can be derived as:

H(n) = diag
(

t
′
(ŵ0(n)), t

′
(ŵ1(n)), . . . , t

′
(ŵM−1(n))

)
(16)

with

t
′
(ŵi(n)) =

{
−β2 , |ŵi(n)| ≤ β−1

0 , otherwise
. (17)

3.2. Normalized SQNLMMN

Inspired by the design of normalized LMS and normalized LMF [32], we propose a
normalized version of SQNNLMMN algorithm by modifying Equation (8) that considers
the noisy inputs ū(n) as follows:

ŵ(n + 1) = ŵ(n) +
µ1P̄(n)ū(n)ē(n)

∥ū(n)∥2 +
µ2P̄(n)ū(n)ē3(n)

∥ū(n)∥2(∥ū(n)∥2 + ē2(n))
− pP̄(n)g(n) (18)

where ū(n) = u(n)+ η(n) denotes the noisy input regressor vector and η(n) = [η(n), η(n−
1), ..., η(n − M + 1)]T represents the input noise vector. The noisy error signal ē(n) is
calculated as follows:

ē(n) = d(n)− ūT(n)ŵ(n) = e(n)− ηT(n)ŵ(n). (19)

Note that the matrix P̄(n) is a contaminated version of P(n) (see Equation (9)) defined
as follows:

P̄(n) = B̄(n)− B̄(n)αγ(I − H(n − 1)B̄(n)αγ)H(n − 1)B̄(n), (20)

where γ = p/µ > 0 governs the impact of the penalty term; 0 < α ≤ 0.1 denotes a
forgetting factor [13]; the matrix B̄(n) is a contaminated version of B(n) (see Equation (10))
defined as follows:

B̄(n) =
1

1 − α

P̄(n − 1)
P̄T(n − 1)ū(n)ūT(n)P̄(n − 1)

1−α
α1+α2 ē2(n) + ūT(n)P̄(n − 1)ū(n)

. (21)

Note that the difference between ē(n) and e(n), i.e., ηT(n)ŵ(n), results in the biases
during the weight updating process.

3.3. Bias Compensation Design

To compensate for the bias of the normalized SQNLMMN algorithm, we introduce a
bias compensation vector b(n) ∈ RM×1 into the weight-updating recursion and rewrite
Equation (18) as follows:

ŵ(n + 1) = ŵ(n) + ∆ŵ(n) + b(n), (22)
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with

∆ŵ(n) =
µ1P̄(n)ū(n)ē(n)

∥ū(n)∥2 +
µ2P̄(n)ū(n)ē3(n)

∥ū(n)∥2(∥ū(n)∥2 + ē2(n))
− pP̄(n)g(n). (23)

We further define the weight estimation error vector as follows:

w̃(n) = ŵ(n)− w(n). (24)

By combining Equations (22) and (24), we then have the following recursion

w̃(n + 1) = w̃(n) + ∆ŵ(n) + b(n). (25)

It has been reported that the sparsity terms in Equation (23), i.e., pP̄(n)g(n), should
be ignored when deriving the bias compensation term b(n); otherwise the derived vector
b(n) will compensate for the bias caused by both the input noise and this term [28]. Hence,
the recursion for weight updating can be formulated as follows:

w̃(n + 1) = w̃(n) +
µ1P̄(n)ū(n)ē(n)

ūT(n)ū(n)
+

µ2P̄(n)ū(n)ē3(n)
∥ū(n)∥2(∥ū(n)∥2 + ē2(n))

+ b(n). (26)

Given the noisy input vector ū(n), we then derive b(n) based on the unbiased criterion
as follows:

E[w̃(n + 1)|ū(n)] = 0 whenever E[w̃(n)|ū(n)] = 0. (27)

Furthermore, to simplify the analysis, two commonly used assumptions have been em-
ployed [33] as follows:

Assumption 1. The input noise η(n) and background noise are zero-mean AGWN noises and the
ratio ρ = σ2

v /σ2
η is a prior knowledge.

Assumption 2. The signals η(n), v(n), Ω(n), u(n), and w̃(n) are statistically independent.

By taking expectation on both sides of Equation (26) for the given ū(n) and assuming
E[w̃(n)|ū(n)] = 0, we have

E[w̃(n + 1)|ū(n)] = E
[

µ1P̄(n)ū(n)ē(n)
ūT(n)ū(n)

∣∣∣∣ū(n)]
+ E

[
µ2P̄(n)ū(n)ē3(n)

∥ū(n)∥2(∥ū(n)∥2 + ē2(n))

∣∣∣∣ū(n)]+ E[b(n)|ū(n)].
(28)

By replacing ū(n) and ē(n) in the first term of the right-hand side (RHS) of Equation (28),
we have

E
[

µ1P̄(n)ū(n)ē(n)
ūT(n)ū(n)

∣∣∣∣ū(n)] = E
[

µ1P̄(n)u(n)e(n)
ūT(n)ū(n)

∣∣∣∣ū(n)]
− E

[
µ1P̄(n)η(n)ηT(n)ŵ(n)

ūT(n)ū(n)

∣∣∣∣ū(n)],
(29)

where

E
[

µ1P̄(n)u(n)e(n)
ūT(n)ū(n)

∣∣∣∣ū(n)] =
µ1E[P̄(n)|ū(n)]

ūT(n)ū(n)
E
[

u(n)
(
−uT(n)w̃(n) + v(n)

)∣∣∣ū(n)]
=

µ1E[P̄(n)|ū(n)]
ūT(n)ū(n)

{
−E

[
u(n)uT(n)|ū(n)

]
E[w̃(n)|ū(n)] + E[u(n)v(n)|ū(n)]

}
= 0

(30)
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and

E
[

µ1P̄(n)η(n)ηT(n)ŵ(n)
ūT(n)ū(n)

∣∣∣∣ū(n)] =
µ1E[P̄(n)|ū(n)]

ūT(n)ū(n)
E
[
η(n)ηT(n)

]
E[ŵ(n)|ū(n)]

=
µ1E[P̄(n)|ū(n)]σ2

η

ūT(n)ū(n)
E[ŵ(n)|ū(n)].

(31)

Note that as the condition ∥ū(n)∥2 ≫ ē2(n) and the deviation of ∥ū(n)∥2 being small
hold, the the second term of the RHS of Equation (28) can be approximated as follows [33]:

E
[

µ2P̄(n)ū(n)ē3(n)
∥ū(n)∥2(∥ū(n)∥2 + ē2(n))

∣∣∣∣ū(n)] ≈
E
[
µ2P̄(n)ū(n)ē3(n)|ū(n)

]
E[∥ū(n)∥2(∥ū(n)∥2 + ē2(n))|ū(n)] . (32)

Thus, we can rewrite the nominator of Equation (32) as follows:

E
[
µ2P̄(n)ū(n)ē3(n)|ū(n)

]
= E

[
µ2P̄(n)ū(n)

(
e(n)− ηT(n)ŵ(n)

)3
∣∣∣∣ū(n)]

= E
[
µ2P̄(n)ū(n)e3(n)|ū(n)

]
+ E

[
µ2P̄(n)ū(n)3e(n)

(
ηT(n)ŵ(n)

)2
∣∣∣∣ū(n)]

− E
[

µ2P̄(n)ū(n)
(

ηT(n)ŵ(n)
)3

∣∣∣∣ū(n)]
= σ4

η E
[

µ2P̄(n)ŵ(n)ŵT(n)ŵ(n)
∣∣∣ū(n)].

(33)

Furthermore, we can rewrite the denominator of the RHS of Equation (32) as follows:

E
[
∥ū(n)∥2(∥ū(n)∥2 + ē2(n))

∣∣∣ū(n)]
= E

[
∥ū(n)∥2

(
∥ū(n)∥2 + e2(n)− 2e(n)ηT(n)ŵ(n) +

(
ηT(n)ŵ(n)

)2
)∣∣∣∣ū(n)]

= ∥ū(n)∥2
(
∥ū(n)∥2 + E

[
e2(n)|ū(n)

]
+ E

[(
ηT(n)ŵ(n)

)2
∣∣∣∣ū(n)]),

(34)

where

E
[
e2(n)|ū(n)

]
= E

[(
uT(n)w̃(n)

)2
− 2uT(n)w̃(n)v(n) + v2(n)

∣∣∣∣ū(n)] = σ2
v (35)

and

E
[(

ηT(n)ŵ(n)
)2

∣∣∣∣ū(n)] = E
[
ŵT(n)η(n)ηT(n)ŵ(n)|ū(n)

]
= σ2

η E
[
ŵT(n)ŵ(n)|ū(n)

]
. (36)

Combining the results Equations (29) to (36) and substituting them into Equation (28),
we obtain the following results:

E[b(n)|ū(n)] =
µ1E[P̄(n)|ū(n)]σ2

η

ūT(n)ū(n)
E[ŵ(n)|ū(n)]

+ µ2

σ4
η E

[
P̄(n)ŵ(n)ŵT(n)ŵ(n)|ū(n)

]
∥ū(n)∥2

(
∥ū(n)∥2 + σ2

η E
[
ŵT(n)ŵ(n)|ū(n)

]) .

(37)
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By using the stochastic approximation [34], we derive the bias-compensation vector
as follows:

b(n) = µ1
E[P̄(n)|ū(n)]σ2

ηŵ(n)

ūT(n)ū(n)
+ µ2

E[P̄(n)|ū(n)]σ4
ηŵ(n)ŵT(n)ŵ(n)

∥ū(n)∥2
(
∥ū(n)∥2 + σ2

v + σ2
ηŵT(n)ŵ(n)

) (38)

with

E[P̄(n)|ū(n)] := Pbias(n)

= Bbias(n)[I − αγ(I − H(n − 1)Bbias(n)αγ)H(n − 1)Bbias(n)],
(39)

where

Bbias(n) := E[B̄(n)|ū(n)]

=
1

1 − α

Pbias(n − 1)
PT

bias(n − 1)ū(n)ūT(n)Pbias(n − 1)
1−α

α1+α2(σ2
v+σ2

η ŵT(n)ŵ(n))
+ ūT(n)Pbias(n − 1)ū(n)

.
(40)

3.4. Variable Mixing Parameter Design

For the conventional SQNLMMN algorithm, it was suggested to use a fixed mixing
parameter δ = 0.8 to achieve the best performance in terms of the convergence rate. How-
ever, a small mixing parameter, say δ = 0.2, could slowly achieve a lower misadjustment in
the steady state than that with a large δ. This inspires us to use a variable mixing parameter
to attain a fast convergence rate and small misadjustment simultaneously.

Figure 2 depicts the block diagram of the variable mixing parameter scheme design.
Two adaptive filters are combined as follows:

ŵ(n + 1) = ŵ1(n + 1)λC(n + 1) + ŵ2(n + 1)[1 − λC(n + 1)], (41)

where ŵ1(n) and ŵ2(n) are the fast and slow filters, respectively, i.e., δ1 > δ2; λ(n + 1) is
the smoothed combination factor. Referring to Equation (18), the adaptation recursion for
each filter can be expressed as follows:

ŵi(n + 1) = ŵi(n) + ∆ŵi(n) + κbi(n), (42)

with

∆ŵi(n) =
µ1,iP̄i(n)ū(n)ēi(n)

∥ū(n)∥2 +
µ2,iP̄i(n)ū(n)ē3

i (n)
∥ū(n)∥2(∥ū(n)∥2 + ē2

i (n))
− pP̄i(n)gi(n), (43)

where gi(n) can be calculated by Equation (12) for ŵi(n), and

P̄i(n) = B̄i(n){I − αγ[I − Hi(n − 1)B̄i(n)αγ)]Hi(n − 1)B̄i(n)}, (44)

where Hi(n − 1) can be calculated by Equation (16) for ŵi(n − 1) and the scaling factor
0 ≪ κ < 1 in Equation (42) is used to mitigate the interaction between ∆ŵi(n) and bi(n);
µ1,i = µδi and µ2,i = µ(1 − δi); the matrix B̄(n) is a contaminated version of B(n) (see
Equation (10)) defined as follows:

B̄i(n) =
1

1 − α

P̄i(n − 1)
P̄T

i (n − 1)ū(n)ūT(n)P̄i(n − 1)
1−α

α1,i+α2,i ē2
i (n)

+ ūT(n)P̄i(n − 1)ū(n)

, (45)

where α1,i = δiα and α2,i = 3(1 − δi)α. The bias compensation vector bi(n) associated with
ŵi(n) can be expressed as follows:
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bi(n) = µ1,i
E[P̄i(n)|ū(n)]σ2

ηŵi(n)

ūT(n)ū(n)
+ µ2,i

E[P̄i(n)|ū(n)]σ4
ηŵi(n)ŵ

T
i (n)ŵi(n)

∥ū(n)∥2
(
∥ū(n)∥2 + σ2

v + σ2
ηŵT

i (n)ŵi(n)
) (46)

with

E[P̄i(n)|ū(n)] := Pbias,i(n)

= Bbias,i(n)− Bbias,i(n)αγ(I − Hi(n − 1)Bbias,i(n)αγ)Hi(n − 1)Bbias,i(n),
(47)

where

Bbias,i(n) =
1

1 − α

Pbias,i(n − 1)
PT

bias,i(n − 1)ū(n)ūT(n)Pbias,i(n − 1)
1−α

α1,i+α2,i(σ2
v+σ2

η ŵT
i (n)ŵi(n))

+ ūT(n)Pbias,i(n − 1)ū(n)

. (48)

Figure 2. The design of variable mixing parameter scheme.

The smoothed combination equation for λC is given by

λC(n + 1) =
1
C

n+1

∑
k=n−C+2

λ(k), (49)

where C is the length used to smooth the combination factor λ, which can be calculated as
follows [35]:

λ(n + 1) = sgm[a(n + 1)] =
1

1 + e−a(n+1)
(50)

with
a(n + 1) = a(n) + µasgn(ē(n))[ŷ1(n)− ŷ2(n)]λ(n)[1 − λ(n)], (51)

where µa is the step size for adjusting the recursion of a(n); sgm(·) and sgn(·) denote the
sigmoid and sign function, respectively. Note that we confine |a(n+ 1)| ≤ a+, and we check
if the condition holds every N0 iterations. We force λ(n + 1) = 0 when a(n + 1) ≤ −a+

and set λ(n + 1) = 1 when a(n + 1) ≥ a+ [36].

3.5. Robustness Consideration

To obtain the impact of impulse noise Ω(n) on the convergence of the adaptive filter
ŵi(n) in the proposed BC-SNQNLM-VMN algorithm, we propose applying the modified
Huber function ψ(·) on ēi(n) as follows [37]:

ψ(ēi(n)) =

{
ēi(n), for − ξi ≤ ēi(n) ≤ ξi

0, otherwise
, (52)



Mathematics 2024, 12, 1310 10 of 17

where ξi is a threshold as follows:

ξi = kξ σ̂ēi(n), (53)

with kξ = 2.576.

σ̂ēi(n) = λσσ̂ēi(n−1) + c1(1 − λσ) + med(Aēi (n)), (54)

where med(·) denotes the median operation; Aēi (n) is an observation vector for ē2
i (n) with

length Nw defined as follows:

Aēi (n) =
[
ē2

i , . . . , ē2
i (n − Nw + 1)

]
. (55)

Note that we choose c1 = 2.13, Nw = 9, and λσ = 0.99 in the computer simulations.
Furthermore, the estimation of σ2

η is required to calculate the bias compensation
vector bi(n). Concerning robustness, it has been reported that σ2

η can be estimated as
follows [22,24]:

σ̂2
η,i =

{
ē2

i (n)/(∥wi(n)∥2
2 + ρ), if ē2

i ≤ 2∥wi(n)∥2
2∥ū(n)∥2

2

σ̂2
η,i, otherwise

(56)

where ρ, which is the ratio of σ2
v and σ2

η , is assumed to be available as in [38].

3.6. Computational Cost Analysis

Table 1 lists the major computational cost for the proposed BC-SNQNLM-VMN algo-
rithm in terms of the required number of adders (Adds) and multipliers (Muls). Moreover,
Table 2 compares the dominating computational costs with other comparative works. Note
that we focus on the dominating terms of the total number of required adders and mul-
tipliers for simplicity consideration. Due to the high computational costs caused by the
original SQNLMMN algorithm, the proposed method incurs much higher computational
costs than comparative works.

Table 1. Computational analysis for the proposed method.

No. Operations Adds Muls

1 ŷi(n) = ŵT
i (n)ūi(n) M − 1 M

2 ēi(n) = d(n)− ŷi(n) 1 -
3 B̄i(n) in Equation (45) M3 + M2 − M + 2 M3 + 4M2 + M + 7
4 P̄i(n) in Equation (44) 2M3 2M3 + 4M2

5 ∆ŵi(n) in
Equation (43) 3M2 3M2 + 4M + 7

6 Pbias,i(n) in
Equation (47) 2M3 − M2 2M3 + 4M2 + 1

7 Bbias,i(n) in
Equation (48) M3 + 2M2 + 3 M3 + 4M2 + 2M + 4

8 bi(n) in Equation (46) M2 + M M2 + 4M + 6

9 ŵi(n + 1) in
Equation (42) 2M M

10 ŵ(n + 1) in
Equation (41) M + 1 2M
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Table 2. Dominating computational costs comparisons.

Methods Adds Muls

BC-NLMS [22] 2M 4M
BC-NLMF [24] 2M 5M
BC-LMMN [26] 3M 5M

BC-CIM-LGMN [27] 3M M2

BC-CIM-PNLMS [23] 3M2 3M2

Proposed 6M3 6M3

4. Simulation Results
4.1. Setup

Computer simulations evaluated the effectiveness of the proposed algorithm. The
unknown sparse system w comprises 32 taps (M = 32), which has K = 8 nonzero taps,
i.e., the sparsity is 0.75. We randomly choose the positions of the nonzero taps among M
taps, and their values follow a standard Gaussian distribution. A standard AGWN models
the input signal. The signal-to-noise ratio (SNR) for the input signal SNRη = 10 dB (see
Equation (5)) and the SNR of the observed signal SNRv = 30 dB (see Equation (2)). For the
BG impulse noise model, we choose the SNR of the additive impulse noise SNRΩ = −30 dB
(see Equation (4)). Moreover, we designate the occurrence probability of BG impulse as
Pr = 10−3 for weak BG noise and Pr = 6 × 10−2 for strong BG noise. For the alpha-
stable impulse noise model, we define V = (1.8, 0, 0.1, 0) for weak alpha stable noise and
V = (1.5, 0, 0.1, 0) for strong alpha stable noise [11]. Other main parameters are setting
as follows: γ= 2 × 10−6, µ = 0.5, p = 10−6, κ = 0.8, β = 5, a+ = 8, µa = 5, N0 = 2, and
α = 0.01.

The fast filter ŵ1(n) with δ1 = 0.8 and the slow filter ŵ2(n) with δ2 = 0.2 were used
to combine the filter ŵ(n) (see Equation (41)). We used a vector with length C to store the
C consecutive values of instantaneous λ(k) (see Equation (49)). The initial value of each
element in this vector was 1. This makes the value of λC lean to 1 during the adjustment
phase, i.e., the combined filter behaves like the fast filter. The performance metric is the
normalized mean-square deviation (NMSD), which can be calculated as follows:

NMSD(n) = 10 log10

(
||w − ŵ(n)||2

||w||2

)
. (57)

We employed MATLAB® R2022a installed on a Windows 10 64-bit operating system
to conduct simulations on a computer equipped with an Intel® Core™ i7-13700K CPU from
Santa Clara, CA, United States, and 128GB DDR4 RAM. We plotted the NMSD learning
curves and the evolution of mixing parameters in the simulation results by averaging over
100 independent Monte Carlo trials. The comparative works were BC-NLMS [22], BC-
NLMF [24], BC-LMMN [26], BC-CIM-LGMN [27], and BC-CIM-PNLMS [23] algorithms.

4.2. Results
4.2.1. Baseline: No Impulse Noise

We compare the NMSD learning curves concerning various bias-compensated adap-
tive filtering algorithms in the absence of impulse noise. As shown in Figure 3, our proposed
method can achieve the lowest NMSD during the steady state, outperforming the com-
parative works by 2.5–3.5 dB. Note that C = 1 (see Equation (49)) implies no smoothing
was applied. The results confirmed that combining two filters with a smoothed factor
(see Equation (41)) exhibits a more smooth convergence behavior in the transient stage
(0.5 × 104 ≤ n ≤ 0.9 × 104) during the simulation. Note that: (1) the step sizes are chosen
so that the convergence rate is at the same level for all algorithms to have a fair comparison;
(2) the NMSD loss is about 12 dB without bias compensation.
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Figure 3. Comparisons of NMSD learning curve without impulse noise.

4.2.2. Evaluation of Variable Mixing Parameter Method

As shown in Figure 4, we evaluate the effectiveness of the proposed variable mixing
parameter scheme. In Figure 4a,b, the additive impulse noise corresponds to the weak and
strong BG impulse noise, respectively. The results exhibit that our proposed combining
mixing parameter δ scheme worked well in both types of additive impulse noise. Referring
to Figure 4a, we can observe the variation of the mixing parameter in the weak BG impulse
noise case as follows:

1. First, λC keeps at 1 in the early stage (n ∈ [0, 0.5 × 104]), which implies the proposed
method behaves like δ = 0.8.

2. Then, λC decreases gradually during the transient stage (n ∈ (0.5 × 104, 1.25 × 104]),
which implies the proposed method behaves changing from δ = 0.8 to δ = 0.2.

3. Finally, λC keeps around 0 in the steady-state stage (n ∈ (1.25 × 104, 2.5 × 104]).

Note that because the initial values for the vector with length C used to calculate λC
are all set to 1, we observed a slight decrease followed by an increase in λC at the beginning
of the adaptation process. Similar results were observed in the strong BG impulse noise
case (see Figure 4b).

(a)

Figure 4. Cont.
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(b)

Figure 4. NMSD learning curves (left) and evolution of λC (right) for BG impulse noise mode:
(a) weak (Pr = 0.001) and (b) strong (Pr = 0.06).

In Figure 5, we evaluated the impact of the additive alpha-stable impulse noise in both
weak (Figure 5a) and strong (Figure 5b) cases. In this scenario, we observe that the strong
alpha stable impulse noise makes the NMSD learning curves exhibit more fluctuations in
the steady state. In addition, we observe that the evolution of λ shows more fluctuations
at the beginning of the transient stage and quickly reaches its steady state. This implies
the proposed method behaves by changing from δ = 0.8 to δ = 0.2 earlier than in the case
of weak impulse noise. Compared with the baseline, the smoothed combination method
exhibits fewer fluctuations, especially in the strong impulse noise cases. Thus, we choose
C = 103 without an explicit statement in the following simulation. The results have shown
the impact of the noisy input on the resulting NMSD. Without bias compensation, the
NMSD loss in the steady status is about 12 dB, the same as the baseline. Therefore, we can
confirm the robustness of our proposed method.

(a)

Figure 5. Cont.
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(b)

Figure 5. NMSD learning curves (left) and evolution of λC (right) for alpha stable impulse noise
mode: (a) weak (αs = 1.8) and (b) strong (αs = 1.5).

4.2.3. Performance Comparisons in the Presence of Impulse Noise

As shown in Figure 6, we compare our proposed method with other comparative
works for the BG impulse noise case. In the weak BG impulse noise case (see Figure 6a),
our proposed method achieves the lowest NMSD and improves by 3 dB to 15 dB compared
to comparative works. Note that the BC-CIM-PNLMS did not consider the impact of
impulse noise, which resulted in the worst NMSD performance. However, BC-CIM-LGMN,
BC-LMMN, and BC-NLMF algorithms diverged in the strong BG impulse noise case (see
Figure 6b). In this case, only the BC-NLMS and our proposed method still function well,
and our method improves the NMSD by 3 dB in the steady state.

(a) (b)

Figure 6. NMSD learning curve under BG impulse noise: (a) weak (Pr = 0.001) and (b) strong
(Pr = 0.06).

As shown in Figure 7, we compare our proposed method with other comparative
works for the alpha stable impulse noise case. In the weak alpha stable impulse noise case
(see Figure 7a), our proposed method achieves the lowest NMSD and improves by 4.5 dB
to 7 dB compared to comparative works. Note that the BC-CIM-PNLMS did not consider
the impact of impulse noise, exhibiting some NMSD learning curve spikes. In addition, the
comparative works exhibit poor performance in the strong alpha stable impulse noise case
(see Figure 7b). In this case, the BC-CIM-PNLMS exhibits stronger spikes than that in the
weak alpha stable impulse noise case. However, our proposed method shows the lowest
NMSD loss (about 0.9 dB) compared to other comparative works in the steady state.
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(a) (b)

Figure 7. NMSD learning curve of AGWN input under alpha stable impulse noise: (a) weak (αs = 1.8)
and (b) strong (αs = 1.5).

5. Conclusions and Future Prospects

The noisy input signals result in a significant NMSD loss even in the absence of an
impulse noise scenario. In this paper, we have presented a robust bias compensation
method for the SNQNLM algorithm. Furthermore, we have proposed a variable mixing-
norm method to attain a high convergence rate and low misadjustment during adaptation.
Simulation results have confirmed that our proposed BC-SNQNLM-VMN algorithm out-
performs the comparative works by 3 to 15 dB for BG impulse noise and 4.5 to 7 dB for
alpha stable impulse noise in terms of NMSD, respectively. Additionally, we illuminate
potential pathways for overcoming remaining challenges and broadening the applicability
of our methodologies:

1. The interaction between weight-vector correction term ∆ŵi(n) and bias compensation
term κbi(n) (see Equation (42)): We have employed a constant scaling factor, κ, to
mitigate the interaction between the weight-vector correction term, ∆ŵi(n), and the
bias compensation term, κbi(n). Nonetheless, devising a dynamic algorithm for
adapting κ would enhance the robustness of bias compensation methods to varying
input noise over time or in scenarios involving time-varying unknown systems.

2. Extension to general mixed-norm algorithms: While our study focused on L2 and
L4 norms, the methodology can be extended to encompass bias compensation in
adaptive filtering algorithms utilizing a mix of Lp and Lq norms, where p and q are
positive parameters.

3. Bias compensation for non-linear adaptive filtering systems: Addressing bias com-
pensation becomes notably intricate in non-linear adaptive filtering systems. A future
avenue of research involves developing techniques to estimate biases induced by
noisy inputs in such non-linear contexts.
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