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Abstract: In this research, we introduce and analyze a mathematical model for online social networks,
incorporating two distinct delays. These delays represent the time it takes for active users within the
network to begin disengaging, either with or without contacting non-users of online social platforms.
We focus particularly on the user prevailing equilibrium (UPE), denoted as P∗, and explore the role
of delays as parameters in triggering Hopf bifurcations. In doing so, we find the conditions under
which Hopf bifurcations occur, then establish stable regions based on the two delays. Furthermore,
we delineate the boundaries of stability regions wherein bifurcations transpire as the delays cross
these thresholds. We present numerical simulations to illustrate and validate our theoretical findings.
Through this interdisciplinary approach, we aim to deepen our understanding of the dynamics
inherent in online social networks.
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1. Introduction

The emergence of online social networks (OSNs) has significantly reshaped the land-
scape of information dissemination and interpersonal connectivity over the last two decades.
Platforms like Facebook, Twitter, and Instagram have revolutionized how individuals ex-
change ideas and interact, profoundly influencing daily life. OSNs serve as virtual spaces
where users can present themselves, engage with others, and forge connections irrespective
of geographical boundaries. Their widespread adoption, particularly among tech-savvy
generations, has had far-reaching implications across various domains, such as education,
elections, and information dissemination. Understanding the intricate ways in which OSNs
influence societal, political, and economic realms, as well as individual behaviors, has
become increasingly imperative.

To better comprehend the dynamics of OSNs, mathematical models have been devel-
oped, offering profound insights into how social networks shape opinions and behaviors.
Noteworthy contributions include seminal works by, for example [1–11]. Many of these
models draw inspiration from SIR/SEIR disease-type models, providing a framework to
study OSN dynamics effectively. Interested readers can delve into classic and advanced
results on SIR/SEIR mathematical models and SIR/SEIR mathematical models with delays
in works such as those by [12–24] and references therein. Most recently, Barman and
Mishra [25,26] introduced a graph Laplacian diffusion into SIR/SEIR type network models
and carried out Hopf bifurcation analysis.

In the realm of OSN modeling, the total population N(t) at time t is often partitioned
into three distinct sub-classes representing key populations within OSN dynamics: poten-
tial users, active users, and individuals opposed to OSNs, denoted by x(t), y(t), and z(t),
respectively. Cannarella and Spechler [2] introduced the “infectious recovery” SIR-type
model to analyze user adoption and abandonment of OSNs, later extended in ordinary,
fractional, and stochastic differential equation models as given in [3,5,6]. Graef et al. [5] ex-
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plored the following OSN model with demography to examine adoption and abandonment
dynamics, conducting both local and global stability analyses.

x′ = Λ − αxy − µx,
y′ = αxy − ηyz − (µ + δ)y,
z′ = ηyz + δy − µz.

(1)

Motivated by existing research and the nuanced complexities of OSNs, Wang and
Wang [27] proposed a dynamic mathematical model capturing unique characteristics such
as users’ varying interests and the impact of time delays. Their model accounts for the
transition of potential users to active ones and the eventual abandonment of OSNs by
active users due to disinterest or interaction with those opposed to OSNs. This interaction
is described by a system of differential equations as follows:

x′ = A − αxy − µx,
y′ = αxy − ηy(t)z(t)− δy(t − τ)− µy,
z′ = B + ηy(t)z(t) + δy(t − τ)− µz,

(2)

where the parameters A > 0 and B ≥ 0 represent the rates that newcomers come into the
community as either potential online network users or as people who are never interested
in OSNs. α > 0 denotes the contact rate between the potential and active OSN users;
µ > 0 is the death rate for all people; η > 0 is the contact rate between active users and
people who are opposed to OSNs; δ > 0 is the transferring rate describing the rate the
active users lose their interest and become opposing to OSNs; and τ ≥ 0 is the time delay
that represents the time for active users to starting abandoning the network. Wang and
Wang [27] performed a detailed analysis for System (2), including local and global analysis
for user free equilibrium (UFE) and UPE. Hopf bifurcation was also carried out using
the delay τ as the bifurcating parameter. Conditions and critical values were found that
guarantee the occurrence of Hopf bifurcation.

Building upon prior work, considering the fact that it will take some time for active
users to disengage after interacting with non-users, we introduce the following refined
model that accounts for this time delay. Our proposed system of equations incorporates a
time delay ρ, representing the period for active users to abandon OSNs after contact with
non-users. This addition of a new time delay can indeed make it more representative of real-
world situations and more accurately representing real-world dynamics and improving the
reliability of predictions and control strategies. Notably, our model encompasses previous
formulations as special cases, offering a comprehensive framework to study the evolving
dynamics of OSNs

x′ = A − αxy − µx,
y′ = αxy − ηy(t − ρ)z(t − ρ)− δy(t − τ)− µy,
z′ = B + ηy(t − ρ)z(t − ρ) + δy(t − τ)− µz.

(3)

For System (3), define

f (z) = Aα(δ + ηz) (4)

and

g(z) = µη(α + η)z2 + [µ(µ + δ)(α + η) + η(µδ − Bα)]z + (µ + δ)(µδ − Bα). (5)

Let R0 be the basic reproduction number defined by

R0 =
Aα

Bη + µ(µ + δ)
. (6)
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The following results are established by Wang and Wang [27].

Theorem 1. Let R0 be defined by (6). If R0 ≤ 1, then System (3) has a unique user free equilibrium
P0 = (A/µ, 0, B/µ) and it exists for all parameter values. If R0 > 1, then System (3) has two
equilibria: P0 and a unique user prevailing equilibrium P∗ = (x∗, y∗, z∗), where z∗ is the unique
positive root of the equation f (z) = g(z), such that z∗ > B/µ, and x∗ and y∗ are given by

x∗ =
µ + δ

α
+

η

α
z∗, (7)

and
y∗ =

µz∗ − B
δ + ηz∗

. (8)

Theorem 2. Let R0 be defined by (6) and assume that τ = ρ = 0. If R0 < 1, P0 is locally
asymptotically stable; if R0 = 1, P0 is neutrally stable; and if R0 > 1, P0 becomes unstable, and P∗

emerges and it is locally asymptotically stable.

The following result was established by Ruan and Wei [28] and will be used in this research.

Lemma 1. Consider the following exponential polynomial:

P(λ, τ1, τ2, · · · , τm) = λn + a(0)1 λn−1 + · · ·+ a(0)n

+ [a(1)1 λn−1 + · · ·+ a(1)n ]e−λτ1

+ · · ·
+ [a(m)

1 λn−1 + · · ·+ a(m)
n ]e−λτm ,

where τi ≥ 0 (i = 1, 2, · · · , m) and a(i)j (i = 0, 1, 2, · · · , m; j = 1, 2, · · · , n) are constants.
As (τ1, τ2, · · · , τm) changes, the sum of the orders of the zeros of P in the open right half plane can
change only if a zero appears on or crosses the imaginary axis.

In this research, we were interested in finding out what network user dynamics the
new model presents, in particular, whether or not a Hopf bifurcation will occur for this
new OSN model after adding a time delay. In doing so, we performed a Hopf bifurcation
analysis for System (3) using two delays τ and ρ as bifurcating parameters. We investigated
the Hopf bifurcations at the unique user prevailing equilibrium point when R0 > 1. Stability
regions were established in terms of two delays τ and ρ. Conditions and critical curves
were obtained so that the Hopf bifurcation occurs as (τ, ρ), passing through the boundary
of the stability regions.

The remainder of the manuscript is structured as follows: In Section 2, we delve
into Hopf bifurcation analysis concerning the interplay of two delays. We explore the
establishment of stability regions and identify critical values under scenarios where either
one delay is absent, or both delays are concurrently present. Our investigation delves into
the conditions conducive to Hopf bifurcations and delineates the associated implications.
To augment our theoretical insights, we present numerical simulations aimed at illustrating
the dynamics of the system under consideration.

Finally, Section 3 encapsulates our findings and conclusions drawn from the preceding
analyses. We synthesize the key insights gleaned from our study and discuss their broader
implications in understanding the dynamics of online social networks.

2. Hopf Bifurcation

From Wang and Wang [27], we know that the dynamics of System (3) is completely
determined by the basic reproduction number R0 when delays ρ = τ = 0. In particular, we
know that when R0 > 1, the unique user prevailing equilibrium P∗ is locally asymptotically
stable. We are interested in the question of whether the delays ρ and τ could cause the
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stability of the UPE P∗ to switch as they increase. In this section, we study the occurrence of
Hopf bifurcations using the delays ρ and τ as the bifurcation parameters. Note that when
R0 > 1 there is a unique UPE P∗ = (x∗, y∗, z∗). For this section, we always assume that
R0 > 1.

The characteristic equation of System (3) at the unique equilibrium P∗ when ρ, τ ≥ 0
is the determinant of the matrix

J∗ =

 λ + αy∗ + µ αx∗ 0
−αy∗ λ + µ − αx∗ + ηz∗e−λρ + δe−λτ ηy∗e−λρ

0 −ηz∗e−λρ − δe−λτ λ + µ − ηy∗e−λρ

,

which is
(λ + µ)(λ2 + aλ + b + η(cλ + d)e−λρ + δ(λ + h)e−λτ) = 0, (9)

where

a = 2µ + αy∗ − αx∗,

b = µ(µ + αy∗ − αx∗),

c = z∗ − y∗, (10)

d = (z∗ − y∗)(µ + αy∗) + αx∗y∗,

h = µ + αy∗,

and x∗, y∗, and z∗ are given in Theorem 1.

One root of Equation (9) is λ = −µ < 0. The other roots are determined by the
transcendental equation:

λ2 + aλ + b + η(cλ + d)e−λρ + δ(λ + h)e−λτ = 0. (11)

We know that if R0 > 1 and ρ = τ = 0, all roots of Equation (11) have negative real
parts and P∗ is locally asymptotically stable. Our interest is to see whether or not the delays
ρ and τ cause the stability of P∗ to switch as ρ and τ increase while R0 remains larger than
the unity. Due to Lemma 1, we need to investigate if a zero of Equation (11) appears on or
crosses the imaginary axis as ρ and τ increases. Keep in mind that when R0 > 1, z∗ > B/µ,
see [27].

From (10) and using the expressions given in (7) and (8), we can obtain

b + ηd + δh =
(µz∗ − B)

(
α
(
η
(

B + η(z∗)2)+ δ2 + δ(µ + 2ηz∗)
)
+ η(δ + ηz∗)2)

(δ + ηz∗)2 > 0

since z∗ > B/µ. Therefore, λ = 0 is not a root of (11). Therefore, there are no zero-
Hopf bifurcations.

2.1. Hopf Bifurcation When ρ = 0

For the case that ρ = 0, the Hopf bifurcation analysis was carried out completely by
Wang and Wang [27]. For completeness, we only cite key definitions and results here. We
refer readers to [27] for a detailed analysis. When ρ = 0, Equation (11) becomes

λ2 + a1λ + b1 + (δλ + c1)e−λτ = 0, (12)

where
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a1 = 2µ + αy∗ + ηz∗ − αx∗ − ηy∗,

b1 = µ2 + µ(αy∗ + ηz∗ − αx∗ − ηy∗) + αηy∗(x∗ + z∗ − y∗), (13)

c1 = δ(µ + αy∗).

Now, let λ = ωi (ω > 0) be a root to Equation (12). Plug it into (12), then ω has to
satisfy the following equation:

ω4 + (a2
1 − δ2 − 2b1)ω

2 + b2
1 − c2

1 = 0.

Let p = w2 and denote a2 = a2
1 − δ2 − 2b1 and b2 = b2

1 − c2
1. Then, the above equation

can be rewritten as:
p2 + a2 p + b2 = 0. (14)

The following result is well known.

Lemma 2. For Equation (14), we have

(a) If b2 < 0 or if b2 = 0 and a2 < 0, then it has a unique positive root.
(b) If a2 ≥ 0 and b2 ≥ 0, then it has no positive roots.
(c) If a2 < 0 and b2 > 0, then it has no positive roots if a2

2 − 4b2 < 0; one positive root if
a2

2 − 4b2 = 0; and two positive roots if a2
2 − 4b2 > 0.

Plug a1, b1, c1, given in (13) and x∗, and y∗, given in (7) and (8), into a2 and b2, and we have

a2 =a2
1 − δ2 − 2b1 =

1
(δ + ηz∗)2 P1(z∗), (15)

b2 =b2
1 − c2

1 =
(µz∗ − B)
(δ + ηz∗)4 P2(z∗)P3(z∗), (16)

where

P1(z) = −2η2µ(α + η)z3 + (2Bη2(α + η) + µ(α2µ − 4αδη − 2αδη2))z2

+(B(4αδη + 2δη2 − 2αµ)− 2αδ2µ)z

+B2(η2 + α2) + δ2µ2 + 2Bδ(αδ + ηµ), (17)

P2(z) = (αη2 + η3)z2 + (2αδη + 2δη2)z + αδ2 + αδµ + αBη + δ2η,

P3(z) = (αη2µ + η3µ)z3 − (αBη2 + Bη3)z2

+(−αδ2µ + αδµ2 + αBηµ − 2Bδη2 − 3δ2ηµ)z

−αB2η + αBδ2 − αBδµ − Bδ2η − 2δ3µ. (18)

We then have the following results; see Wang and Wang [27].

Theorem 3. Let R0 > 1, and let a2, b2, P1 and P3 be defined by (15), (16), (17), and (18). Assume
that P1 and P3 have unique positive roots z1 and z2, respectively.

(I) When any of the following conditions is satisfied, Equation (14) has no positive roots.

(1) z1 = z2 and z∗ = z1;
(2) z1 > z2 and z2 ≤ z∗ ≤ z1;
(3) z∗ > max{z1, z2} and a2

2 − 4b2 < 0.

(II) When any of the following conditions is satisfied, Equation (14) has a unique positive root.

(1) z1 < z2 and z∗ ≤ z2;
(2) z1 ≥ z2 and z∗ < z2;
(3) z∗ > max{z1, z2} and a2

2 − 4b2 = 0.

(III) Equation (14) has two positive roots if z∗ > max{z1, z2} and a2
2 − 4b2 > 0.
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Now assume that R0 > 1 and Equation (14) has at least one positive root. Solving p
from Equation (14) for the positive roots gives

p± =
1
2

[
− (a2

1 − δ2 − 2b1)±
√
(a1 − δ2 − 2b1)2 − 4(b2

1 − c2
1)

]
.

Note that if Equation (14) has a unique positive root, then it is p+. Let ω± =
√

p±
and define

f1(ω) =
c1ω2 − a1δω2 − b1c1

c2
1 + δ2ω2

and

f2(ω) =
ω(a1c1 − b1δ + δω2)

c2
1 + δ2ω2

.

Also define τ±
n , n = 0, 1, 2, · · · , as

τ±
n =


1

ω± (arccos f1(ω
±) + 2nπ) if f2(ω

±) > 0,

1
ω± (2π − arccos f1(ω

±) + 2nπ) if f2(ω
±) ≤ 0.

(19)

Hence, τ±
n > 0 and Equation (11) has a pair of purely imaginary roots ±iω± when τ = τ±

n
for n = 0, 1, 2, · · · .

Theorem 4. Assume that R0 > 1 and let a2, b2, P1, P3, z∗, ω+, τ+
0 be defined above. Assume that

P1 and P3 have unique positive roots z1 and z2, respectively. We then have the following results.

(I) All roots of Equation (12) have negative real parts for all delay τ ≥ 0, if

(1) z1 = z2 and z∗ = z1, or
(2) z1 > z2 and z2 ≤ z∗ ≤ z1, or
(3) z∗ > max{z1, z2} and a2

2 − 4b2 < 0.

Therefore, P∗ is locally asymptotically stable for all τ ≥ 0.
(II) There is a τ+

0 > 0, such that all roots of Equation (12) have negative real parts for all
τ ∈ [0, τ+

0 ). It has a pair of purely imaginary roots ±iω+, and all other roots have negative
real parts when τ = τ+

0 , if

(1) z1 < z2 and z∗ ≤ z2, or
(2) z1 ≥ z2 and z∗ < z2, or
(3) z∗ > max{z1, z2} and a2

2 − 4b2 ≥ 0.

Therefore, P∗ is locally asymptotically stable for all τ < τ+
0 . Hopf bifurcation occurs as τ

passes through τ = τ+
0 .

We use one numerical simulation to illustrate the above theoretical results. If we choose
A = 10, B = 0.2, α = 0.1, η = 0.5, µ = 0.2, δ = 0.4. Then we have
P∗ = (43.239, 0.3127, 7.4479), i.e., z∗ = 7.4479. Calculations show that R0 = 4.54545 > 1, and

a1 = 0.325082, b1 = 0.682603, c1 = 0.092508.

Two polynomials P1 and P3 can be found:

P1(z) = 0.0392 + 0.0488z + 0.0044z2 − 0.06z3,

P3(z) = −0.042 − 0.0876z − 0.03z2 + 0.03z3.

By Descartes’ Rule of Signs, both P1 and P3 have a unique positive root and they are

z1 = 1.20208, z2 = 2.43518.

We also find that
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a2 = −1.41953, b2 = 0.457389.

Thus
a2

2 − 4b2 = 0.185503 > 0.

Therefore, Condition (II)(3) of Theorem 4 is satisfied and a τ+
0 > 0 exists. Using (19), we

find that
τ+

0 = 0.440535.

According to Theorem 4, all roots of Equation (11) have negative real parts for all
τ < τ+

0 , thus P∗ is locally asymptotically stable for all τ < τ+
0 . When τ = τ+

0 , Equation (11)
has a pair of purely imaginary roots, and all other roots have negative real parts. Hopf
bifurcation occurs as τ passes across τ = τ+

0 . See Figure 1 for solutions to converge to P∗

for τ = 0.2 < τ+
0 , Figure 2 for Hopf bifurcations to occur and periodic solutions to appear

when τ = τ+
0 = 0.440535, and Figure 3 for solutions blow out when τ moves to the right of

τ+
0 = 0.440535.
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Figure 1. τ = 0.2 < τ+
0 . Solutions converge to P∗.
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Figure 2. τ = τ+
0 = 0.440535. Periodic solutions appear.
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Figure 3. τ = 0.4406 > τ+
0 . Solutions go to infinity.
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2.2. Hopf Bifurcation When τ = 0

When τ = 0, Equation (11) becomes

λ2 + a3λ + b3 + η(c3λ + d3)e−λρ = 0, (20)

where

a3 = 2µ + δ + αy∗ − αx∗,

b3 = µ(µ + αy∗ − αx∗) + δ(µ + αy∗), (21)

c3 = z∗ − y∗,

d3 = (z∗ − y∗)(µ + αy∗) + αx∗y∗.

Now, let λ = ωi (ω > 0) be a root to Equation (20). When plugged into (20), separating
the real and imaginary parts gives

d3η cos(ωρ) + ηc3ω sin(ωρ) = ω2 − b3, (22)

ηc3ω cos(ωρ)− d3η sin(ωρ) = −a3ω. (23)

Squaring both sides and adding them together yields

ω4 + (a2
3 − η2c2

3 − 2b3)ω
2 + b2

3 − η2d2
3 = 0.

Let q = ω2 and denote a4 = a2
3 − η2c2

3 − 2b3 and b4 = b2
3 − η2d2

3. Then, the above
equation can be rewritten as:

q2 + a4q + b4 = 0. (24)

Plug a3, b3, c3 and d3 given in (21) and x∗ and y∗ given in (7) and (8) into a4 and b4,
calculations yield

a4 =a2
3 − η2c2

3 − 2b3 =
1

(δ + ηz∗)2 Q1(z∗), (25)

b4 =b2
3 − η2d2

3 =
(µz∗ − B)
(δ + ηz∗)4 Q2(z∗)Q3(z∗), (26)

where Q1, Q2 and Q3 are polynomials of z, such that

Q1(z) = 2η2µ(η − α)z3 + (µ
(

α2µ − 4αδη + 2δη2
)
+ 2Bη2(α − η))z2

−2
(

δµ(αδ − ηµ) + B
(

α2µ − 2αδη + η2(δ − µ)
))

z

+B2
(

α2 − η2
)
+ 2αBδ2 + δ2µ2, (27)

Q2(z) = αδ2 + αδµ + αBη + δ2η + αη2z2 + η3z2 + 2αδηz + 2δη2z,

Q3(z) = −η2µ(α + 3η)z3 + η(2µ(αµ − 3δη) + Bη(α + η))z2

+δµ(α(δ + µ)− 3δη) + Bη(2δη − 3αµ)z

+B
(

δ2η − α
(
−Bη + δ2 + δµ

))
. (28)

Note that Q1(z) is a degree three polynomial with Q1(B/µ) = B2η2 + 2Bδηµ+ δ2µ2 >
0. Obviously, Q2(z∗) > 0, and µz∗ − B > 0 as z∗ > B/µ if R0 > 1. Q3(z) is also a degree
three polynomial of z, such that

Q3(B/µ) = −2B3η3

µ2 − 4B2δη2

µ
− 2Bδ2η ≤ 0

and
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Q3(B/µ) < 0

if B > 0.
Applying the results of Lemma 2, we have the following results.

Theorem 5. Let R0 > 1, and let Q1 and Q3 be defined by (27), and (28). We then have:

(I) If Q1(z∗) ≥ 0 and Q3(z∗) ≥ 0, then Equation (24) has no positive roots.
(II) If Q3(z∗) < 0, or if Q3(z∗) = 0 and Q1(z∗) < 0, then Equation (24) has a unique

positive root.

Now assume that R0 > 1 and Equation (24) has at least one positive root. Solving q
from Equation (24) for the positive roots gives

q± =
1
2

[
− (a2

3 − η2c2
3 − 2b3)±

√
(a3 − η2c2

3 − 2b3)2 − 4(b2
3 − η2d2

3)

]
.

Note that if Equation (24) has a unique positive root, then it is q+. Let ω± =
√

q±.
Solving for sin(ωρ) and cos(ωρ) from (22) and (23), we obtain

cos(ωρ) =
(d3 − a3c3)ω

2 − b3d3

η
(
c2

3ω2 + d2
3
) = g1(ω)

and

sin(ωρ) =
ω
(
c3ω2 + a3d3 − b3c3

)
η
(
c2

3ω2 + d2
3
) = g2(ω).

Define ρ±n , n = 0, 1, 2, · · · , as

ρ±n =


1

ω± (arccos g1(ω
±) + 2nπ) if g2(ω

±) > 0,

1
ω± (2π − arccos g1(ω

±) + 2nπ) if g2(ω
±) ≤ 0.

(29)

Hence, ρ±n > 0 and Equation (20) has a pair of purely imaginary roots ±iω± when ρ = ρ±n
for n = 0, 1, 2, · · · . Next, we attempt to establish the transversality condition for Hopf
bifurcation. For ρ > 0, let

λ(ρ) = α(ρ) + iw(ρ) (30)

be the root of Equation (20), satisfying

α(ρ±n ) = 0, w(ρ±n ) = w±.

Differentiating both sides of Equation (20) with respect to ρ gives

Re
(

dλ

dρ

)−1

ρ=ρ±n
=

±
√

a2
4 − 4b4

d2
3 + c2

3ω2
. (31)

Note that a2
4 − 4b4 > 0 since in this case Equation (24) has two positive roots. We thus

established that Re
(

dλ
dρ

)−1

ρ=ρ+n
> 0 and Re

(
dλ
dρ

)−1

ρ=ρ−n
< 0. The discussion above establishes

the following stability and Hopf bifurcation results.

Theorem 6. Assume that R0 > 1 and let a4, b4, Q1, Q3, z∗, ω+, ρ+0 be defined above. We then
have the following results.

(I) If Q1(z∗) ≥ 0 and Q3(z∗) ≥ 0, then all roots of Equation (20) have negative real parts for all
delay ρ ≥ 0. Therefore, P∗ is locally asymptotically stable for all ρ ≥ 0.
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(II) If Q3(z∗) < 0, or if Q3(z∗) = 0 and Q1(z∗) < 0, then there is a ρ+0 > 0, such that all roots
of Equation (20) have negative real parts for all ρ ∈ [0, ρ+0 ). It has a pair of purely imaginary
roots ±iω+, and all other roots have negative real parts when ρ = ρ+0 . Therefore, P∗ is locally
asymptotically stable for all ρ < ρ+0 , and is unstable for all ρ > ρ+0 . Hopf bifurcation occurs
as ρ passes through ρ = ρ+0 .

If we choose the same parameter values as in Section 2.1, i.e., A = 10, B = 0.2, α = 0.1,
η = 0.5, µ = 0.2, δ = 0.4. Then we have P∗ = (43.239, 0.3127, 7.4479), i.e., z∗ = 7.4479. We
also have R0 = 4.54545 > 1, and calculations give

Q1(z) = 0.0032 + 0.0048z − 0.0156z2 + 0.04z3,

Q3(z) = 0.0132 − 0.0092z − 0.086z2 − 0.08z3.

Therefore, Q1(z∗) = 15.6992, Q3(z∗) = −37.87 < 0, which means that the condition (II) of
Theorem 6 is satisfied, and a ρ+0 > 0 exists. Actually, calculations yield

ρ+0 = 0.0474351.

That means that all roots of Equation (20) have negative real parts when ρ < ρ+0 ; there-
fore, P∗ is locally asymptotically stable for all ρ < ρ+0 . When ρ = ρ+0 , Equation (20) has a
pair of purely imaginary roots, and all other roots have negative real parts. Hopf bifur-
cation occurs as ρ passes across ρ = ρ+0 . See Figure 4 for solutions to converge to P∗ for
ρ = 0.02 < ρ+0 , Figure 5 for Hopf bifurcations to occur and periodic solutions to appear
when ρ = ρ+0 = 0.0474351, and Figure 6 for solutions blow out when ρ moves to the right
of ρ+0 = 0.0474351.
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t
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Figure 4. ρ = 0.02 < ρ+0 . Solutions converge to P∗.
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Figure 5. ρ = ρ+0 = 0.0474351. Periodic solutions appear.
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Figure 6. ρ = 0.05 > ρ+0 . Solutions go to infinity.

2.3. Hopf Bifurcation When ρ > 0 and τ > 0

Now, assume that ρ ≥ 0 and τ ≥ 0. Let λ = ωi (ω > 0) be a root to Equation (11).
Plug it into (11), and separate the real and imaginary parts, we obtain

cηω sin(ρω) + dη cos(ρω) = ω2 − b − δω sin(τω)− δh cos(τω), (32)

cηω cos(ρω)− dη sin(ρω) = −aω − δω cos(τω) + δh sin(τω). (33)

Squaring both sides and adding them together yields

2δ[ω
(
ah − b + ω2) sin(τω) + (ω2(h − a)− bh) cos(τω)]

= ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

which is equivalent to

sin(θ + ωτ) =
ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

2δ
√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

,

where

θ = arcsin
(h − a)ω2 − bh√

(h2 + ω2)(a2ω2 + (ω2 − b)2)
.

Let
F(ω) = sin(θ + ωτ) (34)

and

G(ω) =
ω4 + (a2 + δ2 − 2b − c2η2)ω2 + b2 + h2δ2 − d2η2

2δ
√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

. (35)

Now, we study the existence of positive solutions to the equation

F(ω) = G(ω)

when τ ≥ 0. First, note that if ω = 0, then we have

(h − a)ω2 − bh√
(h2 + ω2)(a2ω2 + (ω2 − b)2)

=
−b
|b| =

{
1, if b < 0,

−1, if b > 0.

Therefore, it follows that

F(0) =
{

1, if b < 0,
−1, if b > 0.

we also have

G(0) =
b2 + h2δ2 − d2η2

2δh|b| =
b2 + h2δ2

2δh|b| − d2η2

2δh|b|
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and G(ω) → ∞ as ω → ∞. Also note that F has a sine-shaped curve. If the equation
F(ω) = G(ω) has positive solutions, it has only a finite number of solutions.

Solving Equations (32) and (33) for cos(ωρ) and sin(ωρ), we obtain

cos(ωρ) = − acω2+bd+δ cos(τω)(cω2+dh)+δω(d−ch) sin(τω)−dω2

η(c2ω2+d2)
= h1(ω) (36)

sin(ωρ) =
adω−bcω−δ sin(τω)(cω2+dh)+δω(d−ch) cos(τω)+cω3

η(c2ω2+d2)
= h2(ω). (37)

For values of τ, such that F(ω) = G(ω) has positive roots, assume that 0 < ω1 <
ω2 < · · · < ωm are the roots, and define ρ+jk , j = 1, 2, · · · , m, and k = 0, 1, 2, · · · , as

ρ+jk =

{ 1
ωj

[
2kπ + arccos h1(ωj)

]
if h2(ωj) > 0,

1
ωj

[
2π(k + 1)− arccos h1(ωj)

]
if h2(ωj) ≤ 0.

(38)

It follows that for every 1 ≤ j ≤ m, k = 0, 1, 2, · · · , ρ+jk > 0 is a function of τ on some

interval and for each j, ρ+jk are defined on the same interval for all k. There are a number of

different cases in terms of functions ρ+jk . We list a couple of cases here. For more information
regarding the stability regions if a system has two delays, see Hale and Huang [29] and
Wang [30].

Theorem 7. Assume that R0 > 1. Let a, b, c, d, and h be defined by (10), and a1, b1, and c1 be
defined by (13). Also let F, G be defined in (34) and (35). We then have the following results.

(I) Equation (14) has no positive roots. Then

• If the equation F(ω) = G(ω) has no positive solutions for any τ ≥ 0, then all roots of
Equation (11) have negative real parts for all delays ρ ≥ 0 and τ ≥ 0. Therefore, P∗ is
locally asymptotically stable for all ρ ≥ 0 and τ ≥ 0. The stability region of P∗ is the
whole first quadrant of the (τ, ρ) plane.

• If the equation F(ω) = G(ω) has positive solutions for some τ ≥ 0, then there exists
a ρ(τ) > 0, such that all roots of Equation (11) have negative real parts for all delays
0 ≤ ρ < ρ(τ). When ρ = ρ(τ), it has a pair of imaginary roots ±iω, and all other roots
have negative real parts. Therefore, P∗ is locally asymptotically stable for all ρ < ρ(τ),
and Hopf bifurcations occur as ρ passes through ρ(τ). The stability region of P∗ is the
region given by

{(τ, ρ) : 0 ≤ τ < ∞, 0 ≤ ρ < ρ(τ).}
(II) Equation (14) has positive roots. Thus, a τ+

0 > 0 exists and is given by (19). Then

• If the equation F(ω) = G(ω) has no positive solutions for any 0 ≤ τ < τ+
0 , then all roots

of Equation (11) have negative real parts for all delays ρ ≥ 0 and 0 ≤ τ < τ+
0 . Therefore,

P∗ is locally asymptotically stable for all (τ, ρ) in the region {(τ, ρ) : τ < τ+
0 , ρ ≥ 0}.

• If the equation F(ω) = G(ω) has one positive solution for all 0 ≤ τ < τ+
0 , then there

exists a ρ(τ) > 0, such that all roots of Equation (11) have negative real parts for all
delays (τ, ρ) in the region R = {(τ, ρ) : 0 ≤ τ < τ+

0 , ρ < ρ(τ)}. When ρ = ρ(τ), it
has a pair of imaginary roots ±iω, and all other roots have negative real parts. Therefore,
P∗ is locally asymptotically stable for all (τ, ρ) in R, and Hopf bifurcations occur as
(τ, ρ) crosses through the curve given by ρ = ρ(τ).

Again, we perform some numerical simulations to illustrate our theoretical results.
First, if we choose the same parameter values as in Sections 2.1 and 2.2 as A = 10,
B = 0.2, α = 0.1, η = 0.5, µ = 0.2, δ = 0.4. Then, we have P∗ = (43.239, 0.3127, 7.4479),
R0 = 4.54545 > 1. In this case, both τ+

0 > 0 and ρ+0 > 0 exist, and they are

τ+
0 = 0.440535, ρ+0 = 0.047453.
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A function ρ(τ) > 0 as a function of τ can be found using (38), such that the stability
region S in the τρ-space can be identified. P∗ is locally asymptotically stable for all (τ, ρ)
in the interior of S, and Hopf bifurcation occurs as (τ, ρ) passes across the boundary of
S, where

S = {(τ, ρ) : 0 ≤ τ ≤ τ+
0 , 0 ≤ ρ ≤ ρ(τ)}.

See Figure 7 for the stability region S and Figure 8 for solutions to converge to P∗

when (τ, ρ) = (0.1, 0.1) is in the interior of S. Also see Figure 9 for Hopf bifurcations to
occur and periodic solutions to appear when (τ, ρ) = (0.2, 0.0314633) is on the boundary
of the stability region S, and Figure 10 for solutions blow out when (τ, ρ) moves out of the
stability region S.
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Figure 8. τ = 0.1, ρ = 0.01, (τ, ρ) ∈ S. Solutions converge to P∗.

Next, if we choose the parameter values as A = 2, B = 0.2, α = 0.3, η = 0.5, µ =
0.3, δ = 0.1. Then we have P∗ = (4.8471, 0.37484, 2.1094), and R0 = 2.72727 > 1. In this
case, calculations show

a2 = 0.629726, b2 = 0.0992197.

So, Equation (14) has no positive roots, and that implies that τ+
0 > 0 does not exist. But in

this case, ρ+0 > 0 exists, and
ρ+0 = 0.325204.

A function of ρ(τ) > 0 as a function of τ can be found using (38) such that the stability
region S in the τρ-space can be identified. P∗ is locally asymptotically stable for all (τ, ρ)

Figure 7. The stability region.
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Figure 8. τ = 0.1, ρ = 0.01, (τ, ρ) ∈ S. Solutions converge to P∗.
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Figure 9. τ = 0.2, ρ = 0.0314633. (τ, ρ) is on the boundary of S. Periodic solutions appear.
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Figure 10. τ = 0.2, ρ = 0.04. (τ, ρ) is outside of S. Solutions go to infinity.

Next, if we choose the parameter values as A = 2, B = 0.2, α = 0.3, η = 0.5, µ = 0.3,
δ = 0.1, then we have P∗ = (4.8471, 0.37484, 2.1094), and R0 = 2.72727 > 1. In this case,
calculations show that:

a2 = 0.629726, b2 = 0.0992197.

So, Equation (14) has no positive roots, and that implies that τ+
0 > 0 does not exist. But in

this case, ρ+0 > 0 exists, and
ρ+0 = 0.325204.

A function of ρ(τ) > 0 as a function of τ can be found using (38), such that the stability
region S in the τρ-space can be identified. P∗ is locally asymptotically stable for all (τ, ρ) in
the interior of S; Hopf bifurcation occurs as (τ, ρ) passing across the boundary of S, where

S = {(τ, ρ) : 0 ≤ τ, 0 ≤ ρ ≤ ρ(τ)}

See Figure 11 for the stability region S, Figure 12 for solutions to converge to P∗ when
(τ, ρ) = (0.1, 0.1) is in the interior of S, and Figure 13 for Hopf bifurcations to occur and
periodic solutions to appear when (τ, ρ) = (1, 0.2413) is on the boundary of the stability
region S. As (τ, ρ) moves out of the stability region S, solutions will blow out to infinity.
It’s similar to cases above, so we omit a numerical simulation here.
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Figure 11. The stability region.
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Figure 12. τ = 1, ρ = 0.18, (τ, ρ) ∈ S. Solutions converge to P∗.
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Figure 13. τ = 1, ρ = 0.2413. (τ, ρ) is on the boundary of S. Periodic solutions appear.

3. Discussion

In this paper, we introduced and explored a mathematical model for online social
networks, wherein the population is categorized into three distinct sub-classes: potential
network users, active users, and individuals opposed to networks. Diverging from existing
literature, our model accounts for the presence of individuals who will never express
interest in using online networks. Additionally, active online social network users may
exhibit a tendency to lose interest and subsequently abandon the platform over time,
with or without interacting with non-users.

Assuming that the basic reproduction number R0 exceeds unity, we delved into an
investigation of whether time delays affecting active users’ abandonment of the network
can induce a switch in the stability of the unique user prevailing equilibrium (UPE) denoted
as P∗. We established conditions ensuring the asymptotic stability of P∗ for all delays τ ≥ 0
and ρ ≥ 0, enabling individuals across all three sub-classes to settle into equilibrium
over time. Furthermore, we identified stability regions and associated conditions under
which Hopf bifurcations occur as the delays (τ, ρ) traverse the boundaries of these regions.
Consequently, periodic solutions emerged, leading to oscillations in the populations of the
three sub-classes.

To validate our theoretical findings, we conducted numerical simulations, providing
empirical evidence to support the dynamics predicted by our model. Through this compre-
hensive analysis, we shed light on the complex dynamics inherent in online social networks
and elucidate the role of time delays in shaping equilibrium states and oscillatory behavior.
Our study contributes to a deeper understanding of the underlying mechanisms driving the
evolution of online social networks, with implications for diverse fields including sociology,
network science, and computational modeling.
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