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Abstract: We investigate some subclasses of regular and bi-univalent functions in the open unit disk
that are associated with Lucas-Balancing polynomials in this work. For functions that belong to
these subclasses, we obtain upper bounds on their initial coefficients. The Fekete-Szegt problem is
also discussed. Along with presenting some new results, we also explore pertinent connections to
earlier findings.
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1. Introduction

An open unitdisk {¢ € C: [g| < 1} is represented by 4, where C signifies a set of com-
plex numbers. The sets of real and natural numbers are R and N := {1,2,3,...} = No\ {0},
respectively. The set of regular functions g in i is denoted by A with the following form:

gle)=c¢c+Y did, (ceu), 1)

j=2

where ¢(0) = ¢’(0) —1 =0, and S is a subset of A that is made up of univalent functions
in ${. In accordance with Koebe's result (see [1]), every function g in S has an inverse, which
is given by

h(w) = ¢ Y (w) = w — dow? + (2d3 — d3)w® — (5d5 — 5dods +dy)w* + ..., 2)

satisfying ¢ = h(g(¢)) and w = g(h(w)), |w| < ro(g), 1/4 <ro(g), ¢, w € 4L

If g and ¢! = 7 are both univalent in 4 and & C g(4l), then a function g of A is
bi-univalent in {{. ¢ represents the set of bi-univalent functions in il that are identified

by (1) 3log(£), 1<,

2
the Koebe function is not a member of the ¢ family. Functions ¢ — % and #, which are

and —log(1 — ¢) are few functions in the ¢ family. However,

members of the S family, are not part of the ¢ family.
Studies pertaining to coefficients for members of the ¢ family were initiated in the
1970s. Lewin [2] stated that |d;| < 1.51 for elements of ¢ after examining the ¢ family. It

Mathematics 2024, 12, 1325. https:/ /doi.org/10.3390/math12091325

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math12091325
https://doi.org/10.3390/math12091325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8088-4103
https://orcid.org/0000-0002-7610-9585
https://orcid.org/0000-0002-0269-0688
https://orcid.org/0009-0007-1212-4245
https://doi.org/10.3390/math12091325
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091325?type=check_update&version=2

Mathematics 2024, 12, 1325

2 of 15

was demonstrated in [3] that for members of o, |da| < V2. Tan [4] subsequently discovered
coefficient-related studies for functions € ¢. In [5], the authors examined two classical
subfamilies of 0. The trend over the past twenty years has been to investigate the coefficient-
related estimates for elements of particular subfamilies of ¢, as evidenced by papers [6-10].

The current emphasis is on functions that are subordinate to known special poly-
nomials and belong to particular ¢ subfamilies. Coefficient estimates and Fekete-Szego
functional |d3 — ¢d3| for members of certain subfamilies of o subordinate to a known special
polynomial have been found by a number of researchers. For more information on these,
see [11-14]. One particular kind of these polynomials that has drawn attention recently
from researchers are the Lucas-Balancing polynomials.

The Balancing numbers, denoted by C;, satisfy the recurrence relation C; 1 = 6C; —
Cj-1,j = 1 with Cp = 1and C; =1 (see [15]). The sequence B; = 8C]2 +1,j > lis called
a Lucas-Balancing number. It satisfies the recurrence relation Bj;; = 6B; — Bj_1,j >
1 with By = 1 and By = 3. These numbers have been extensively studied in the
articles [16-22]. Balancing polynomials, denoted by Cj(%), j = 0, and Lucas-Balancing
polynomials, denoted by B;j(s),j > 0, are natural extensions of Balancing numbers and
Lucas-Balancing numbers, respectively. Balancing polynomials [23] are recursively de-
fined by

Cj(3) = 63Cj_1(5) — Cj_a(3),j = 2,

with Cp(3¢) =0 and Cj(sr) =1, where s € C. The first few polynomials are C(r) = 63«
and Cs(5) = 3652 — 1, Cy(5) = 2165 — 125,....

The Lucas-Balancing polynomials B;(s¢),j > 0 with 5 € C is defined in [23]. The fol-
lowing is a recursive definition for these polynomials:

Bj(s) = 6xBj_1(3) —Bj_a(x) with Bg(x) =1, Bi(x) =3z, (3)
where j € N\{1} and s € C. By(3) = 185 — 1 and B3(3) = 10852 — 95 are evident from
(3). For further details on this field, we refer researchers to [24-26]. As stated in [17], the below-
mentioned B(, ¢) represents the generating function of the Lucas-Balancing polynomials.

d ; 1—3xg
B(s,¢):=) Bi(x)d = ——2—, 4)
)= B = 12

where > € [-1,1] and ¢ € C.

For 3., 3.€ Aregularin {, 3, is subordinate to 3,, if there is a Schwartz function ¥(g)
that is regular in Yl with ¥(0) = 0 and |(g)| < 1, such that 3, (¢) = 3.(¥(g)), ¢ € 4. This
subordination is symbolized as 3, < 3, 0r3:(¢) < 3.(¢), (¢ € 4). Inthis case, if 3, € S, then

31(6) <32(6) & 31(0) =3.(0) and 3, (4) C 3.(L).

Inspired by the previously mentioned patterns in problems involving coefficients
and the Fekete—Szego functional [27] on specific subclasses of ¢, we introduce some novel
subfamilies of ¢ that are subordinate to Lucas-Balancing polynomials H;() as in (3),

specifically TL(B, v, ), DT (B, v, 1, »), WE(B, v, 3¢), and OL(B, v, 1, »).
Unless otherwise specified, this paper uses the inverse function ¢~!(w) = #i(w) as
in (2) and the generating function B(s, ¢) as in (4).

Definition 1. A function ¢ € o is said to be in the class TL(B,v, %), T > 1,0 <v < 1,B €
C\{0}, and § < s < 1,if

and

141 (V([(wzgz;)’r) +(1-v) (w(g((;")))r) - 1) <B(w), w el (6)
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For specific choices of v in the class TL(B, v, 4, »), we obtain the following subfamilies

of o
1. A function g € ¢ is in the class BL(B, »2) = TL(B,0, %), T > 1,8 € C\{0}, and 1 <
»x<1,if
142 (( gg ) ) %,6), ¢ €4, @)
and
1+ = (( ) ><B%w)w€il. (8)
2. A function g € ¢ is in the class Qf(ﬁ,%) TL(B,1,5),T>1,8€ C\{0}, and } <
x <1,if
1+1<( g > ><B%g)g€ﬂ 9
p '(¢) '
and . i
wh' (w)
1+ﬁ<< ﬁw )<B%, w), w € sl (10)

Definition 2. We say that ¢ € 9%(B, v, i, »), if the following subordinations hold:

1( %" (6) +c(8'(e)" B
"B (79g’(g)+ 1-7)g(c) 1) <B(x¢) ced (11)
and 2h//( )+ w(H (w))
Hw w w))T B o) w
1+ﬁ<vwﬁ’( w) + (1 —)h(w) 1) < B, w), w €4, (12)

wheregEU,Tzl,Og'ygl,y27,,56@\{0},117161%<%§1.

For specific choices of iy and p in 9% (B, v, 4, »¢), we obtain the following subfamilies
of o:

1.Y95(B,0,u, ) = RS (B, 1, ), p € C\{0},T>1,u >0, and% < » < 1is the class of
functions g € o satisfying

1e’8" () +¢(8'(9)" L
1+,8< 200) 1> < B(s,¢),cel (13)
and
1 [ pw?h" (w) + w(W (w)" ) w
1+ ﬁ( o) 1) < B(xw), w € L. (14)

2.9, L, u,2) =35(Bu, =), C\{0}, t>1,u>1, and% < 2 < 1is the class of
functions g € o satisfying

g (e (S <1) <leoc cu (15)
T e () ) siewwen

3. DB, 71,1, 5%) = L5(B,7,%),T>1,8€ C\{0},0 <y <1,and} < <1listhe
class of functions g € ¢ satisfying

+1( 6*8"(¢) +6(8'(6))"

B\re8'(c) + (1 —7)8(c

7 1) < B(x,6),ced (17)
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and

1 ( W (w) + w(f (w))?
1_—

U B\ Gl (w) + (1= 9)h(w)

Remark 1. (i) £5(B,0, ) = 8L(B, 1, 50). (ii) £3(B, 1, 50) = 3T(B, 1, ).

- 1) < B(s,w), €4 (18)

Definition 3. A function § € o is said to be in the class WL (B,v,»), T>1,0<v <1,B €
C\{0}, and } < s <1,if

1 @)Y e 5
1+ﬁ0(gﬁj)+u 1)(g'(0)) 1)<w,@46x 19)

and

1+;<V(W> —0—(1—v)(ﬁ’(w))T—1) < B(s,w), w €Ll (20)

1. For v = 0 in the class 2Z(B, v, »), we obtain the class UJ (B, ) = W (B,0, ),
T>1,p € C\{0}, and % < 7 < 1 where g € 0 satisfies

]+;KﬂQYD<H%Q4€% 1)

and
14 ;((h’(w))f C1) <B(xw), w € il 22)

2. For T = 1 in the class 20%(B, v, ), we obtain the class $,(8, v, ) = 2L(B,v, »)
0<v<1,BeC\{0}, and % < s <1, where g € o satisfies

1/, (&) A (e — L
1+5<V( (0 )+(1 v)(8'(c)) 1) < B(#6), ¢ €4, (23)
and

(L (@R@YY 3

Remark 2. 20%(B, 1, 3c) = QL(B, »).

Definition 4. A function § € o is said to be in the class OF(B, v, , »), p € C\{0}, T > 1, u >
7,0§’y§1,and%<%§1,if

1(pg’8"(¢) +6(g'(6)" »
"B ( 768’ (6) + (1 —)g 1) <B(x%¢6), ced (25)
and
1 (" (w) + w(i (w))* 3
t p ( ywh (w) + (1 —7)w 1) < B(sw), w €4l (26)

For specific choices of y and 7y in the family O7 (B, v, u, »¢), we obtain the following
subfamilies of o

1. OZ(B,0,1,3¢) = AL(B,p, %), T > 1, € C\{0}, 4 > 0, and 3 < 5 < 1is the class
where ¢ € 0 satisfies

14 5 (1eg”(6)+ (€))7 1) < Bl c €8 @)
and
14 (ol () + ( ())7 1) < B(e,0), w € 4 28)

p
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2. OL(B,v,1,5) = Ny (B,7,%),p € C\{0},0 < y <1, and% < 2 < 1is the class
where ¢ € o satisfies

gzg”(g) +e(gle) 5
and
1 wzﬁ”(w)—kw(ﬁ’(w)) - .

3. OL(B, 7,7, %) = Ms(B,v,%), B € C\{0},0< y <1, and% < » < 1is the class
where ¢ € 0 satisfies

1 96%8"(c) +¢8'(c) 5
"B <"r€g’(g) +(1—)g 1) <B(#g), cell (31)

and

yw?h" (w) 4+ wh' (w)
1+ = 5 (

Yo @) (A= )w 1) < B(s,w), w € L. (32)

Remark 3. 97(B,1, 1, 2) = OF(B,1, 1, ), as can be seen.

For functions in the classes TL(B, i, ), D& (B, v, 1, ), WE(B, v, 3¢), and OL(B, v, u, »),
we find estimates for |dy|, |d3|, and |d3 — ¢d3|,& € R in Section 2. Presentations of intriguing
outcomes of these classes and links to the established results are in Section 3.

2. Main Results

We find the coefficient-related estimates for ¢ € TL(B, v, »), the class mentioned in
Section 1.

Theorem 1. Let B € C\{0},¢ € R,% <x<1lt>1,and0 <v <1 Ifg € 0isassigned to
the class T5(B, v, ), then

3
<
2] 3"3”\/19 D6v+1)+v+12)ps2— (21 —1)2(v + 1)2(1852 — 1)|’ (33)
ds] < 27|B|?5
N =To(t(t—1)(6v+1) + v+ 12)Bs2 — (2T — 1)2(v + 1)2(1852 — 1)]
3|
TEoyarn oY
and
38| . |1 _g‘ < J
|ds — &3] < {(STD(ZUH) 27122 1-¢] hogzg O
[9(t(t—1)(6v+1)+v+712)Bs2—(21—1)2(v+1)2(1852—1)| ’ | _‘:‘ = Y
where

(t(t=1)(6v+1) +v+1%)9B2> — (2T — 1)?(v + 1)?(185* — 1) '

J= (3t —1)(2v + 1)9p52

(36)

Proof. Let g € TL(B,v, ). Then, from (5) and (6), we have
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and
10 (wh (w)]" w(h (w))" _
1+ ﬁ<v(ﬁ/(w) +(1-v) h(w)> —1) =B(o(w)), wesl  (38)
where . .
u(g) = Y wi/, and v(w) =Y v (39)
j=1 j=1
are some analytic functions with the property (see [1])
lu;| <1, and |v;| <1(i € N). (40)
It is clear by using (4) and (37)—(39) that
1 [(gg’(g))’]"f> (g(g’(g))f) )
1+<v< +(1—-v)| ==~ —-1) = (41
p 8'(¢) =t :
1+ Bi(30)wg+ {Bl(%)uz + Bz(%)uﬂ .
e (L@l @) w(H ()"
v (M) e (M) 1) - “2
1+ By () + [Bl(%)nz + Bz(z)nﬂ W+
Therefore, by comparing the respective coefficients in (41) and (42), we arrive at
(2'['— 1)(V+1)d2 = ‘BB1(%)u1, (43)
(Bt —1)(2v+1)d3 + (272 — 41 +1)(Bv 4+ 1)d5 = B[B1(s)up + Ba(50)u3],  (44)
—(2T—1)(V—|—1)d2 :ﬁBl(}f)Ul (45)
and
(3t —1)(2v +1)(2d5 — d3) + (21> — 47 + 1)(3v + 1)d3 = B[B1(5)vz + Ba(»)v3].  (46)
From (43) and (45), we obtain
Uy = —0q (47)
and also
202t = 1)*(v+1)%d5 = B> (1 + v7) (B1 (). (48)
In order to obtain the bound on |dy |, we add (44) and (46).
2(t(t —1)(6v +1) + v+ 72)d3 = BBy () (up + v2) + BBa(3¢) (uf + v7). (49)
The value of m% + n% from (48) is substituted into (49) to obtain
42 = BB (5) (w2 + o) 50)
2 2[(t(t—1)(6v+1) + v+ 12)BB2(%) — (v + 1)2(2T — 1)2By ()]
We obtain (33) by applying (40) for up and b,.
From (44), we subtract (46) to obtain the bound on |d3:
_ . PBi(3)(uz2 —v2)
ds = da + 22v+1)(3r—1) G
This leads to the following inequality:
B —
|d3| < ’d2|2+ |ﬁ 1(%)”112 t‘2| (52)

22v+1)3t—1)°
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We obtain (34) from (33) and (52) by applying (40) for up and vs.
Finally, we compute the bound on |d3 — ¢d3| using the values of d3 and d3 from (50)
and (51), respectively. Consequently, we have

|ﬁ|\B1 )l 1
lds — &d3] = ‘( 37—1)(2v +1) +f(€’%)>“2

((31' - 1)1(21/ 1) F (&, %)>nz

where
B (1—¢)pBi(5)
P& = [ = D)or 1 1) 1 v+ pB () — (27 — 120 T D)Ba ()]
Cl
early ey I <
|ﬁ||B1( WFE )| 5 [F(E )| > m

We derive (35) from (53), where 7 is the same as in (36). [
Remark 4. From Theorem 1, we can derive Theorems 1 and 2 in [28] by letting p = land T = 1.

For functions in the class 97 (B8, 7, p, ) that were discussed in Section 1, the coefficient
estimates and Fekete-Szego inequalities are given here.

Theorem 2. Let p € C\{0},¢ € ]R,% <x<lLt>1Lu>vyand0<y<1lIfgecis
assigned to the class DL (vy, u, »), then

27|B|?53
da] < \/|9 B Ty e P S Y 3. i T ey e b - A

3] < 27|pPo (55)
O = 2y(tH )+ TRT = 1)+ 4B — (T + ) —  — 1)2(1852 — 1))]
3Bl
32u+1)—27y—-1
and
31| ; 1— < Q
|ds —gd3| < {Swm_h_l 271B128 )1 ¢ , e (56)
[9(v 2279 (t+p) +T(2T—1)+4p) B2 — (2(t+p) —29y—1)2(1852-1)| ’ 1-¢l=g
where
0- (Y2 —29(T+pu) + 12T — 1) +4u)Bs% — 2(t + 1) — 7 —1)2(185% — 1)
B2u+ 1) =27 —1)9p? '
Proof. Let g € DZ(, 1, »). Then, from (11) and (12), we obtain
1( p6’8"(g) +6(8'(6)" )
1+< —1) =B(sxu ,celd 57
B\reg’(c) + (1= 7)8(c) (aule)) ¢ &7
e 21 (10) + co (I ()"
1/ pw " (w) +w(W (w
- —1) =B(s, , sl 58
() + 1 iy ~1) = Bl e 9

where u(g) and v(w) satisfy (39) and (40).
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From (57) and (58) using (4) and (39), it is evident that

1( He’8"(6) +6(8'()™

) =1+Bi(3)mg+ [Bl(%)u2 + Bz(%)uﬂ F+... (59

B\ 58'(c) + (1 —7)g(s)
and
1 [ pw?h" (w) + w(H (w))® B
1+3 (WW(W) =] 1) =1+ By (0w + [Bl(%)nz + Bz(%)uﬂ @+ ... (60)
The corresponding coefficients in (59) and (60) can therefore be compared to obtain

2(t+pu) —7—1)d2 = BB1(50)wy, (61)
(B(t+2) =27 = s+ ((y+ 1) (v +1—=2(t + p)) +27(t — 1))d3 = B[B1(5)uz + B2 (>)ui], (62)
—Q(t+p) —7—1)dy = BB1(3)11 (63)

and

(3(t+2p) =2y~ 1)(2d5 — d3) + (v + 1)(y +1 = 2(7 +p)) +27(7 —1))d3 = B[B1 (5)v2 + Bo(50)07]. (64)

By using the same method as in Theorem 2 with regard to (43)-(46), the results (54)—(56) of
this theorem now follow from (61)-(64). O

We now provide the coefficient estimates and discuss the Fekete-Szego issue for
functions in the class 205 (B, v, ).

Theorem 3. Let p € C\{0},¢ € R,% <x<1lt>1and0 <v <1 Ifg € oisassigned to
the class 0% (B, v, ), then

353
a2 < 3|’B|\/|9,8%2(2T(T—1)(3v+1) T g gy o o y gy -7 g T LD
ds] < 27|BJ*5
N =182t (t— 1)@+ 1)+ 31 —v(2T—1)) — 4(w(t — 1) + 7)2(18:2 — 1)]
Bl >
+1/(ZT—1)—|—T' (66)
and
|.B\% . ‘1 _ §| < Z
211 ’ >~
ds —¢d3| < {V( T 27164 1] gz
[9B852(27(t—1)(Bv+1)+31—v(2t—1))—4(v(t—1)+7)2 (182 -1)] ’ = =
where

98:2(2t(t—1)(Bv+1) + 31 —v(2t — 1)) —4(v(T — 1) + 7)%(185* — 1)
27(v(2T — 1) + 7) o2

Z- ‘
Proof. Let g € WL(B, v, ). Then, from (19) and (20), we obtain

1/ (1(cg'()T" A (NT —1) = Bo
1+ﬁ(v( e )+<1 V(&) 1)—B<,<g>>,geu (©9)

and

V@Y N

where u(g) and v(w) satisfy (39) and (40).
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It is clear from (68) and (69) in combination with (4) and (39) that
1 [(Gg’(G))’}T) / )
1+(1/< +(1—v T—-1) = 70
B 7(0) (1-v)(g'(¢)) (70)
14 B1(3)wg+ [Bl(%)uz + Bz(%)uﬂ 2+ ...
e 1(, ( [k (@)]"
2y AR N FH (N —1) =
1+ B (v( (w) > + (1 —v) (A (w)) 1) (71)
14+ Bi(s)vqw + [Bl(%)bz + Bz(%)bﬂ w4 ... .
The corresponding coefficients in (70) and (71) can therefore be compared to obtain
2(v(t —1) 4+ 17)dy = BB1(3)uy, (72)

3(v(2t —1) + 1)dz —2(2v(2T — 1) — (T — 1)(3v + 1))d3 = B[B1(3¢)uz + Ba (53], (73)
=2(v(t—1)+1)dy = BB1(50)1g (74)

and
3(v(2t —1) 4+ 1)(2d3 — d3) —2(2v(2T — 1) — (T — 1)(3v + 1))d3 = B[B1(5¢)v2 + By (5¢)03]. (75)

Using the same method as in Theorem 2 with regard to (43)—(46), the outcomes (65)—(67)
of this theorem now follow from (72)—(75). O

The Fekete-Szegd inequality and coefficient estimates for functions ¢ € OF(B, v, i, )
are obtained in the following theorem.

Theorem 4. Let B € C\{0}, e R,t>1,u>90<y<1, and% <x<1lIfgeois
assigned to the class OL(vy, u, »), then

da] < \/ 271B* (76)
V6@t T—y) —22y(t+p—) —T(r—1)))Bx2 — 4T+ p—7)2(182 - 1)|
27|82
ds| < 77
S CTE TP B 1 Cu iy B 51 [ T curpg o T N
Bl
+2y +T—7
and
ozl < |7 .
ds —¢d5| < 27825 [1-¢| =& > X 78
9B2u+t—7)-2Q2y(t+u—7)—7(1-1))) 2 —4(t+p—7)? (182 -1)[ ’ =
where
Y- ’9(3(2# +7—9) —2Q2y(t+p—7) —t(t—1)))Bx* —4(t+pu—7)* (182 - 1)
(B2u+71) — 27 —1)9852 ’
Proof. Let g € OL(7, u, »). Then, from (25) and (26), we obtain
1(uc*g"(¢) +¢(8'(5)" )
1+ = —1) =B(ru(g)), g 79
13( v68'(¢) + (1 —7)g Gaule)). ¢ @)
e 2 (10) + w(H (w))
1 (pw k" (w) +w(h'(w))* -
1+,3< ol (@) + (= 7)w —1) = B(s,0(w)), w € sl (80)
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where u(g) and v(w) satisfy (39) and (40).
From (79) and (80) using (4) and (39), it is evident that
1(p6’8"(c) +6(8'(e))" ) 2] 2
1~|—< —1) =14+ Bq(s)uig+ [By(s0)uz + Ba(sr)u +... (81
B\ eg (0 + (1 —7)c 1(59)wg [ 1(30)up + Ba(%) 1]@ (81)
and
1 (pwt (w) + w(l (w))" _ 2] 2
1+E( 'ywh’(w)+(1—'y)w —1) 714—81(%)0160—"- [Bl(%)bz—l-Bz(%)Ul]w +.... (82)

The corresponding coefficients in (81) and (82) can therefore be compared to obtain

2(t+p —v)dy = BBy (5)uy,

3(T 421 —y)ds — 22y(T+ p — ) — (T — 1))d} = B[B1(3)uz + Ba(30)uf],

=2(t+p—7)da = BB1()01

and

(83)

(84)
(85)

3(t + 25 — ) (23 — d3) —2(2(T + p —y) — T(T = 1))d3 = B[B1 ()02 + Ba(5¢)v]]. (86)

By using the same method as in Theorem 2 with regard to (43)—-(46), the results (76)—~(78)

of this theorem now follow from (83)—(86). [

Remark 5. From the above definitions, we can derive several subclasses of bi-univalent functions
related to Lucas-Balancing polynomials for certain parameters such as T, v, u, and y. The corre-
sponding results are thus derived from the results demonstrated in the paper; in the following section,

we address a few of these.

3. Special Cases of Main Results
The following would result from Theorem 1 when v = 0:

Corollary 1. Let f € C\{0},& € R, 7 > 1, and § < 3 < 1. Ifg € PL(B, »), then

3x

42| < 3|ﬁ”\/|9r(2r “1)B2— (21— 1)2(18:2 —1)|

"y 271p 25 31813
=92t —1)2B2 — (21 —1)2(1852 —1)] ' 31 —1
and 313
= 1=¢l < T
oz (3t-1) |
s — &3] < { 27|B*> [1-¢| 1—¢ > T
[(2T(t—1))9p2—(21—1)2(18:2-1)] ' = Jls
where

(27(t —1))9Bs* — (2T — 1)%(1852 — 1)
(31 — 1)9B52

71—‘

Remark 6. Allowing f = 1andt =1 in Corollary 1, we obtain Corollary 1 in [28].
We deduce the following when v = 1 in Theorem 1.

Corollary 2. Let B € C\{0}, € R, T > 1, and § < 3 < 1. Ifg € Q¥(B, ), then

3
<
42| < 3|'B%\/|9(872 — 7T +1)Bs? — 421 — 1)2(182 — 1)’
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) < 27|54 L Bl
=981 — 7t + 1)Br2 —4(2T — 12)(1852 —1)| | 31 —1
and 8l
-z ;1=81 < P
7 (Bt-1) |
[9(872—71+1)Bs2—4(21—1)2(18:2—1)] ’ = J2
where

9B (87> — 7T+ 1) — 4(185> — 1) (2T — 1)?
27(37 — 1)Bs2 '

322’

Remark 7. Using B = land T = 1 in Corollary 2, we obtain Corollary 2 in [28].
The following would result from Theorem 2 when y = 0:

Corollary 3. Let € R, € C\{0}, 3 <> <1,Tt>1,andu > 0.If g € RL(B, p, »), then

3|8l
<
2| < 3|ﬁ|%\/|9(r(2r — 1)+ u)Bs2 — 2(p+1) —1)2(1852 — 1) |’
4l < 271p 124" . 3Bl
=Tt — 1)+ u)Bs2 — 2(u+1) —1)2(182 —1)| ' 32u+1) —1
and
31| .
s —cd3| < { F@FI1 A== @
3 2 - 27‘5|2?‘3‘1*§‘ . |1 _C‘ > Q
[9(T(2T—1)+p)Bs2— (2(u+7)—1)2(18:2—1)] = =
where

9(t(2r = 1) + )P — (2 +7) —1)2(182 — 1)
9(3(2u + 1) —1)Bs?

le‘

Remark 8. Taking u = 0,p = 1,and T = 1 in Corollary 3, we obtain Corollary 1 in [28].
The following would result from Theorem 2 when y = 1:

Corollary 4. Let T > 1,u > 1, € R, and } < 5 < 1.Ifg € JL(B, u, ), then

3x
<
da] < 3“8'%\/9(272 =37+ 1+2u)Bs? —4(u+1—1)2(1852 - 1)|’

ds] < 27|p*> LBl
N =92 =3t +1+2u)Bs2 —4(t+pu—12)(18:2 —1)| ' 2u+7—1
and 8l
x
ZntT-1 i1=¢1< D
d3 =gl < 7 27]B2¢f 1] 1-¢ > Q
[9(2T2—3T+1+2p)Bs2—4(u+71—1)2(18:2—-1)] ’ 1-¢> Q,
where Oy — ‘ (272 = 3T+ 2u +1)9B3% — 4(p + T —1)%(1852 — 1) '

(2u+ T —1)9Bs?

Remark 9. If we permit y = 1,7 = 1, and B = 1 in Corollary 4, we obtain the outcome
Corollary 2 [28].

Theorem 2 would yield the following in the case where y = 1:
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Corollary 5. Let p € C\{0},{ € R, >1,0< vy < 1,and % <x<1.Ifg € £5(B, 7, ), then

3x
2] < 3/3|%\/|9((1 TPttt — ) 13- — 2T - T 1282 1)’

s < 27|p22 4 SlBlx
=91 =) +2t(t—7) +3—1)Bs2 — 2T — 7+ 1)2(18:2 —1)| ' 3T—27+5
and
3|Bl> 1-¢ < Q
2 31—-29+5 ’ = 3
|d3 — gd3| < 27|24 [1-¢| ¢ > 0
[O((A=7)Z+21(r=7)+3-7) B~ (2r =+ 1)/ - =Y
where Oy — ‘ (1=7)?+27(r =) +3-1)9" — 2T +1-7)’(18:% —1)|

(3T — 277 +5)9B52
Theorem 3 would yield the following in the case where v = 0:

Corollary 6. Let p € C\{0}, e R, T > 1, and% <% <1.Ifg€WBL(B, ), then

2] < 3(8] >
2l <3lp 97(27 + 1) B2 — 472(18522 — 1)’

4s] < 271pl* L 1Bl
N orr+ )2 42182 1) T T
and .
4
T =3¢l < 2
2 T
ds —¢d3| < 2182 1] e
[9T(2T+1)Bs2 —472(1852—1)] ’ 2 21,
where

(9T(2T + 1)Bs? — 47%(1852% — 1)
277 B2 )

z-|

Theorem 3 would yield the following in the case where T = 1:

Corollary 7. Let i € R, B € (C\{O},% <x<1l,and0<v <1Ifg € Hy(B v, ), then

33
<
ds| < 27|p[?5° L 1Bl
=B v)pR 4182 1) T vt
and "
»
v+ 121 < 2
|d3_€d%| S v+ 27“B|21"3‘1*§‘ ] |1 B | > z
9B v)p2—4(18-2-1) ’ ¢l = 2,
where

9(3 —v)Bs? — 4(185> — 1)
27(v + 1) B2

=

Remark 10. In Corollary 7, if we take v = 1 and p = 1, we obtain the outcome Corollary 2 [28].

Theorem 4 would yield the following in the case where ¢y = 0:
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Corollary 8. Let p € C\{0},¢ € R,% <x<1l,t>1andyu>0.Ifg € AL (B, p, »), then

| < 27|82
V92712 + T+ 6p) B — 4(p + 1)%(18x2 —1)|”

|d3] < 27|B[*5 |B| 2
3> 9272+ T+ 6p)Bs2 —4(u+1)2(1852 —1)] ' 2u+7
and 5
< - < x
2 2u+t 7 > A
9272+ T+61)pr2—4(n+7)2(18:2-1)] ’ > A,
where

9212 + T+ 61) Bs> — 4(u + 7)%(1852 — 1)) _

= ‘ (B2 + 1) — 1)9p52

The following would result from Theorem 4 when y = 7 = 1:

Corollary 9. Let p € C\{0}, € R,0<y <1, and% < <1.Ifg € NA(B,, »), then

3|
<
2] < 3|5|\/|9(472 Ty 1 9)p2 42— 12182 1)’

271p e
|9(4y2 — 11y +9)Bs2 —4(2 — 7)2(18»2 —1)| 33—

|ds| <

and
P J-gl< X

2 3—7
|d3_§d2| < 27‘/5‘2;43‘17@ . |1_§‘ -y
[9(4y2—117+9) B> —4(2—7)* (182 —1)[ ' = A,

1 185% — 1

Remark 11. In Corollary 9, if we take v = 1 and B = 1, we obtain the outcome Corollary 2 [28].

When 7 =1and u = 7 (0 <y < 1) are used in Theorem 4, we obtain the following
corollary.

Corollary 10. Let p € C\{0},¢ € R,0< vy <1, and } <3 < 1.Ifg € ML(B, 7, »), then

353
|d2| < 3|/3|\/9(1 + 29— 72);3%2 — (’Y-f— 1)2(18%2 _ 1>|/

27|75 |B|>
|ds| < AV 2 2 +
PA+27—1)p2 — (1 + 12182 1) | 7+1
and
1Bl - < X
ds — &3] < { T s / -0
3 21 = 271B| %3‘1*@1 . |1 7€| > X
[9(1-+2y—72) B3 —(y+1)2(182—1)] ’ = 3
where )
_ a2 o 187 —1
= faszr - - ()|

Remark 12. We obtain the outcome Corollary 2 [28] , if we allow B = 1 and -y = 1 in Corollary 10.
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4. Conclusions

In the present investigation, the upper bounds of |d| and |ds| for functions in the
defined ¢ subfamilies linked with Lucas-Balancing polynomials are determined. Further-
more, we have found the Fekete-Szego functional |d3 — Cd% |, & € R, for functions in these
subfamilies. Specialization of parameters involved in our results yields new results—as
stated in Section 3—that have not been previously considered. Relevant connections to the
present findings are also indicated.

It might inspire many researchers to focus on a plethora of recent works based on
the subclasses examined in this investigation such as subclasses of ¢ linked with Lucas-
Balancing polynomials using q-derivative operator, g-integral operator and operators on
fractional g-calculus [29-35].
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