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Abstract: In this work, we propose a new three-dimensional constitutive equation related to a third-
grade fluid. This proposal is based on experimental work for which the viscosity term and the terms
related to viscoelasticity may depend on the shear rate, in accordance with a power-law type model.
The numerical implementation of this fluid model is rather demanding in terms of computational
calculation and, in this sense, we use the Cosserat theory related to fluid dynamics, which makes the
transition from the three-dimensional fluid model to a one-dimensional fluid model for a specific
geometry under study which, in this case, is a straight tube with constant circular cross-section. Based
on this approximation theory, the one-dimensional fluid model is solved by assuming an ordinary
differential equation involving: an unsteady mean pressure gradient; an unsteady volume flow rate;
the Womersley number; and the viscosity and viscoelasticity parameters. Consequently, for specific
data, and using the Runge–Kutta method, we can obtain the solution for the unsteady volume flow
rate and we can present simulations to the three-dimensional velocity field.

Keywords: third-grade fluid; shear-thickening viscoelastic fluid; shear-thinning viscoelastic fluid;
power-law function; Cosserat theory

MSC: 76A05; 76A10

1. Introduction

This article is based on the works of Caulk and Naghdi [1] and Carapau et al. [2,3]
applied to a new three-dimensional model related to a third-grade non-Newtonian fluid.
Here, we consider the viscosity and the viscoelasticity parameters to be dependent on the
shear rate. In order to develop this new three-dimensional fluid model, we start with the
standard constitutive equation for a third-grade non-Newtonian fluid (see Truesdell and
Noll [4]), which is given by

T = −pI + µA1 + α1 A2 + α2 A2
1 + β1 A3 + β2(A1 A2 + A2 A1) + β3(tr(A2

1))A1. (1)

In Equation (1), the tensors A1, A2 and A3 are given by (see Rivlin and Ericksen [5])

A1 = ∇ϑ +
(
∇ϑ

)T , A2 =
d
dt

(
A1

)
+ A1∇ϑ +

(
∇ϑ

)T A1 (2)

and
A3 =

d
dt

(
A2

)
+ A2∇ϑ +

(
∇ϑ

)T A2. (3)

In Equations (2) and (3), the vector ϑ = ϑ(x, t) is the three-dimensional velocity field
(the vector x = (x1, x2, z = x3) is the vector space coordinates and the parameter t is the

Mathematics 2024, 12, 1326. https://doi.org/10.3390/math12091326 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091326
https://doi.org/10.3390/math12091326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3164-113X
https://orcid.org/0000-0002-7652-6119
https://orcid.org/0000-0001-6956-3635
https://doi.org/10.3390/math12091326
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091326?type=check_update&version=2


Mathematics 2024, 12, 1326 2 of 17

time variable). ∇ϑ is the velocity gradient, and
(
∇ϑ

)T denotes the transpose of ∇ϑ. In

Equations (2)2 and (3), the expression
d
dt
(·) is the material time derivative, defined by:

d
dt

(
·
)
=

∂

∂t
(
·
)
+ ϑ · ∇(·). (4)

Furthermore, in Equation (1), ”tr” denotes the trace operator, µ is the viscosity constant,
and −pI is the undetermined part of the stress due to incompressibility, where p is the
pressure and α1, α2, β1, β2 and β3 are the viscoelasticity constants, also called the normal
stress coefficients.

The stability and thermodynamics of constitutive Equation (1) were studied in detail
by Fosdick and Rajagopal [6]. Based on that work, the solution stability is ensured under
the following conditions:

µ ⩾ 0, α1 ⩾ 0, | α1 + α2 |⩽
√

24µβ3, β1 = 0, β2 = 0, β3 ⩾ 0. (5)

Using the condition (5) in Equation (1), we obtain the following constitutive equation:

T = −pI + µA1 + α1 A2 + α2 A2
1 + β3(tr(A2

1))A1. (6)

In Equation (6), the different material parameters µ, α1, α2 and β3 may depend on
several factors, for example temperature, pressure, or shear rate (see Truesdell and Noll [4]).
In this work, we consider that the viscosity (µ) and the viscoelasticity terms (α1, α2, β3)
depend on the shear rate. Therefore, we present a new constitutive equation:

T = −pI + Υ(|γ̇|)
(

µA1 + α1 A2 + α2 A2
1 + β3(tr(A2

1))A1

)
, (7)

where the positive function (the set R+ is the set of positive real numbers),

Υ(|γ̇|) : R+ → R+ (8)

is the shear-dependent viscoelasticity function, γ̇ the traditional scalar measure of the rate
of shear given by

|γ̇| =
√

2D : D

where “:” denotes the tensor product, and the tensor D is given by

D =
1
2
(
∇ϑ +

(
∇ϑ

)T).

Considering the experimental work of Beracea et al. [7], Mall-Gleissle et al. [8], and
Tao et al. [9], related to polymers, suspensions, and liquid crystals, respectively, we can
conclude that there is a variation in the viscosity and in the viscoelasticity terms associated
with the shear rate, with this variation being of the power-law type. Therefore, we consider
the positive power-law function (8) in Equation (7), defined as follows:

Υ(|γ̇|) = |γ̇|n−1, (9)

where n > 0 is the flow index. By Equation (9), and for different values of the flow index n,
we obtain two distinct and relevant situations in the current study, i.e., shear-thinning (or
pseudoplastic) viscoelastic fluid situation and shear-thickening (or dilatant) fluid situation.
Therefore, in condition (9), if n < 1, then

lim
|γ̇|→+∞

Υ(|γ̇|) = 0, lim
|γ̇|→0

Υ(|γ̇|) = +∞



Mathematics 2024, 12, 1326 3 of 17

and we obtain the shear-thinning (or pseudoplastic) viscoelastic fluid case, i.e., the vis-
coelasticity decreases when we increase the shear rate; see Figure 1a. In the same sense,
considering n > 1 in condition (9), the result is

lim
|γ̇|→+∞

Υ(|γ̇|) = +∞, lim
|γ̇|→0

Υ(|γ̇|) = 0

and we obtain the shear-thickening (or dilatant) viscoelastic fluid situation, i.e., the vis-
coelasticity increases when we increase the shear rate; see Figure 1b. Finally, considering
n = 1 in condition (9) applied to Equation (7), we recover constitutive Equation (6) for a
third-grade non-Newtonian fluid with the stability condition (5). Furthermore, considering
β3 = 0, Equation (6) becomes the standard constitutive equation for a second-grade non-
Newtonian fluid; see Coleman and Noll [10]. Also, if α1 = α2 = 0 and β3 = 0, Equation (6)
becomes the constitutive equation for a Newtonian fluid. Based on the work of Chien
et al. [11], we can consider that Equation (7), with the condition (9) for n < 1, may be
relevant for the study of blood flow in small vessels, where the action of the shear rate
associated with the phenomena of aggregation and deformability of red blood cells produce
variational effects on the viscosity and viscoelasticity.

Υ

|γ̇|

n = 0.1

n = 0.9

n = 0.5

(a)

Υ

|γ̇|

n = 1.5

n = 3n = 5

(b)

Figure 1. Power-law model for different values of flow index: (a) shear-thinning viscoelastic fluid;
(b) shear-thickening viscoelastic fluid.

The study in terms of classical numerical implementation (for example, by finite
element methods) for a three-dimensional model associated with an incompressible fluid
that follows constitutive Equation (7) with the condition (9) in a tube of a circular cross-
section with a variable radius is, in most situations, an unfeasible study in computational
terms. In this sense, to get around the difficulty related to the space dimensions (x1, x2, x3)
and time t, we will use the Cosserat theory related to fluid dynamics, as developed by
Caulk and Naghdi [1]. This theory, under very specific conditions, makes the transition
from a three-dimensional model (with three space variables and one time variable) to a one-
dimensional model (one space variable and one time variable), making the computational
implementation more accessible. Furthermore, in terms of numerical implementation,
we will only consider the simplest geometry, i.e., a straight tube with a circular cross-
section of constant radius throughout the flow. Using the Cosserat theory associated with
fluid dynamics (see [1,12–14]), in which the three-dimensional velocity field of the fluid is
approximated in a very specific way, it is possible, by integration of the linear momentum
equation, to transform the three-dimensional model of the fluid into a one-dimensional
model. This procedure allows us to obtain a partial (or ordinary) differential equation. In
most cases, the difficulty of this differential equation is related to the geometry under study.
Therefore, considering [1], let us assume that the unsteady three-dimensional velocity field

ϑ(x, t) = ϑi(x, t)ei,
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is approximated by

ϑ(x, t) = v +
k

∑
N=1

xθ1 . . . xθN W θ1 ...θN , (10)

where Latin indices take the values 1, 2, 3, Greek indices the values 1, 2, and we use the
convention of summing over repeated indices. Moreover

v = vi(z, t) ei, W θ1 ...θN = Wi
θ1 ...θN

(z, t) ei, (11)

where the function v denotes the velocity along the symmetric axis z (axis relative to the
flow) at variable time t, and xθ1 . . . xθN are the polynomial weighting functions with order
k; this number is the number of directors. The vectors W θ1 ...θN are the director velocities
associated with specific physical characteristics of the fluid (see [1]), and ei are the unit
basis vectors.

In Section 2, we consider a three-dimensional model for an incompressible fluid
that follows the Equation (7) with conditions (9), where the unsteady three-dimensional
velocity field is approximated by the expression (10) with nine-directors, i.e., k = 3 in (10)
(see [1]). Therefore, we obtain a one-dimensional fluid model, making it possible to obtain
for specific flow regime data, applying the Runge–Kutta method to the solution for the
unsteady volume flow rate. Consequently, we can present simulations to the unsteady
three-dimensional velocity field, including an analysis on perturbed flows.

2. Proposed Flow Model

Considering the arguments presented in the previous section, we propose a new
three-dimensional model for a non-Newtonian incompressible fluid, where viscosity and
elasticity vary depending on the shear rate, with this variation being of the power-law type.
Therefore, for our proposed generalized third-grade fluid model, the equations of motion
stating the conservation of linear momentum and mass are given in Ω × (0, T) by

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T + B,

∇ · ϑ = 0,

T = −pI + Υ(|γ̇|)
(

µA1 + α1 A2 + α2 A2
1 + β3(tr(A2

1))A1

)
, tw = T · η,

(12)

where ρ is the constant fluid density and B is the external body forces. In our study, we
neglect the external forces; in this sense, B ≡ 0. The balance of linear momentum is given
by Equation (12)1, and the incompressibility condition of the fluid is given by (12)2. The
first expression of Equation (12)3 is the proposed constitutive Equation (7) with the given
condition (9). Finally, the second expression of Equation (12)3 is the stress vector on the
surface, given by tw, where η = ηiei denotes the outward unit normal vector. In this section,
we consider the general straight tube geometry Ω contained in R3 (see Figure 2) of the
circular cross-section, where the scalar function ϕ(z, t) is related to the variable radius of
the tube by

ϕ2(z, t) = x2
1 + x2

2. (13)
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Γ2

x2

x1

Γ1

z

ΩΓw

pe

τ1τ2

ϕ(z, t)

Figure 2. Function ϕ(z, t) is the general geometry fluid domain Ω; functions pe and τ1, τ2 are the
normal and tangential components of the surface traction vector, respectively, where τ1 is the wall
shear stress. Also, Γ1 is the proximal cross-section, Γ2 is the distal cross-section, and Γw is the lateral
wall of the tube.

Then, considering the scalar function ϕ(z, t), the components ηi of the outward unit
normal vector η to the domain Ω are given by

η1 =
x1

ϕ
√

1 + ϕ2
z

, η2 =
x2

ϕ
√

1 + ϕ2
z

, η3 = − ϕz√
1 + ϕ2

z
, (14)

where a subscripted variable denotes partial differentiation. Applying condition (4) to
Equation (13), then, on the boundary of the domain Ω, we have:

d
dt

(
ϕ2(z, t)− x2

1 − x2
2
)
= 0,

i.e.,
ϕϕt + ϕϕzϑ3 − x1ϑ1 − x2ϑ2 = 0. (15)

Now, using the unsteady three-dimensional velocity approach (10) with k = 3, based
on the work [1], we obtain

ϑ(x, t) =
[

x1(ξ + σ(x2
1 + x2

2))− x2(ω + ψ(x2
1 + x2

2))
]
e1

+
[

x1(ω + ψ(x2
1 + x2

2)) + x2(ξ + σ(x2
1 + x2

2))
]
e2

+
[
v3 + γ(x2

1 + x2
2)

]
e3 (16)

where ξ(z, t), ω(z, t), γ(z, t), σ(z, t) and ψ(z, t) are physical scalar functions with the follow-
ing meaning: ξ and σ are related to transverse elongation; γ is related to transverse shearing
motion, while ω and ψ are related to rotational motion (also called swirling motion). Using
velocity Equation (16), the lateral boundary (15) can be rewritten as

ϕt +
(
v3 + ϕ2γ

)
ϕz −

(
ξ + ϕ2σ

)
ϕ = 0 (17)

and the incompressibility condition (12)2 reduces to

(v3)z + 2ξ +
(
x2

1 + x2
2
)(

γz + 4σ
)
= 0. (18)

Consequently, for Equation (18) to be valid for any point in the fluid domain, we have
to impose the following conditions:

(v3)z + 2ξ = 0, γz + 4σ = 0. (19)

In order to simplify our study, we neglect the time variable in the scalar function

ϕ = ϕ(z). (20)
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i.e., we consider the fluid flowing in a straight tube with a rigid wall. Also imposing a
no-slip condition on the boundary, velocity Equation (16) is identically equal to zero on
surface (13). Therefore, we obtain from (16):

ξ + ϕ2σ = 0, ω + ϕ2ψ = 0, v3 + ϕ2γ = 0. (21)

Furthermore, using condition (20), kinematic Equation (17) is satisfied, and we can
rewrite the incompressibility condition (19)2 as(

ϕ2v3
)

z = 0. (22)

Throughout our work, we are interested in understanding the behavior of the unsteady
volume flow rate; in this sense, we present the definition to the volume flow rate Q, i.e.,

Q(z, t) =
∫

S(z,t)
ϑ3(x1, x2, z, t)da, (23)

where S(z, t) is an arbitrary cross-section of the tube geometry. Now, using the definition
for unsteady volume flow rate (23), the component of the three-dimensional velocity field
(16) related to e3 and conditions (21)3, (22), we conclude that the unsteady volume flow
rate Q does not depend on the space variable z, and is given by

Q(t) =
π

2
ϕ2(z)v3(z, t). (24)

Starting from the balance of linear momentum (12)1 without external body forces, we
impose the following integral assumptions, where N = 1, 2, 3 (see [1]):∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
da = 0, (25)

∫
S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xθ1 . . . xθN da = 0. (26)

Now, applying the divergence theorem and integration by parts, the integral
conditions (25) and (26) can be reduced to the equations:

∂n
∂z

+ f = a, (27)

∂mθ1 ...θN

∂z
+ lθ1 ...θN = hθ1 ...θN + bθ1 ...θN . (28)

The forces terms n, hθ1 ...θN and mθ1 ...θN are given by

n =
∫

S
T3da, hα =

∫
S

Tαda, hαβ =
∫

S

(
Tαxβ + Tβxα

)
da (29)

and

hαβγ =
∫

S

(
Tαxβxγ + Tβxαxγ + Tγxαxβ

)
da, mθ1 ...θN =

∫
S

T3xθ1 . . . xθN da. (30)

The inertia terms a and bθ1 ...θN are given by

a =
∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
da, bθ1 ...θN =

∫
S

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
xθ1 . . . xθN da, (31)
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and the surface traction terms f and lθ1 ...θN , are given by

f =
∫

∂S

√
1 + ϕ2

z twds, lθ1 ...θN =
∫

∂S

√
1 + ϕ2

z twxθ1 . . . xθN ds. (32)

Considering work [1], the stress vector tw, given by (12)3 on the lateral surface related
to Equation (32), can be rewritten in terms of the outward unit normal vector η, and by the
normal and tangential components pe and τ1, τ2 of the surface traction, i.e.,

tw =
[ 1

ϕ(1 + ϕ2
z)

1/2

(
τ1x1ϕz − pex1 − τ2x2(1 + ϕ2

z)
1/2

)]
e1

+
[ 1

ϕ(1 + ϕ2
z)

1/2

(
τ1x2ϕz − pex2 + τ2x1(1 + ϕ2

z)
1/2

)]
e2

+
[ 1
(1 + ϕ2

z)
1/2

(
τ1 + peϕz

)]
e3, (33)

where the scalar function τ1 is the wall shear stress. Moreover, taking into account a flow
without rotation (i.e., ψ ≡ ω ≡ 0 in Equation (16)), conditions (19)1, (20), (21)1,3, and the
unsteady volume flow rate (24), then the unsteady three-dimensional velocity field (16)
reduces to

ϑ(x, t) =
[

x1

(
1 −

x2
1 + x2

2
ϕ2

)2ϕzQ(t)
πϕ3

]
e1 +

[
x2

(
1 −

x2
1 + x2

2
ϕ2

)2ϕzQ(t)
πϕ3

]
e2

+
[2Q(t)

πϕ2

(
1 −

x2
1 + x2

2
ϕ2

)]
e3. (34)

The model (12), with n = 1 on the power-law function given in condition (12)3 reduces
to a three-dimensional model for a non-Newtonian incompressible fluid of the third grade,
where the constitutive equation is given by (6). The third-grade fluid model has been
studied for different frameworks (see, e.g., [15–20]) and, in particular, by the Cosserat theory
(see, e.g., [2,3]). Analogously, we can reduce Model (12), with n = 1 and β3 = 0 in condition
(12)3, to the three-dimensional model for a non-Newtonian incompressible fluid of the
second grade. The second-grade fluid model has been studied for different frameworks
(see, e.g., [21–28]) and, in particular, by the Cosserat theory (see, e.g., [29–31]). Finally,
Model (12) can be reduced to a three-dimensional model for a Newtonian incompressible
fluid, with n = 1 and α1 = α2 = β3 = 0 in condition (12)3. The Newtonian fluid model
has already been studied by the Cosserat theory, considering the viscosity constant and
non-constant (see, e.g., [32,33]), respectively.

Remark 1. For concrete flow regimes of Newtonian and non-Newtonian fluids in specific geometries,
it is possible to find exact solutions in the scientific literature. For these cases, this Cosserat theory
proved to be an approximation theory to take into account. More specifically, the Cosserat theory was
validated for Newtonian fluids in the work of Caulk and Naghdi [1] and Robertson and Sequeira [32].
Also, the theory was validated for non-Newtonian fluids in the work of Carapau et al. [30,31,33].

3. One-Dimensional Results

Due to the complexity of the model under study, we only present results for the
simplest geometry case, i.e., the scalar function ϕ given by (20) is constant. Therefore, the
unsteady three-dimensional velocity field (34) reduces to

ϑ(x, t) =
[2Q(t)

πϕ2

(
1 −

x2
1 + x2

2
ϕ2

)]
e3 (35)
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and the unsteady stress vector (33) reduces to

tw =
[ 1

ϕ

(
− pex1 − τ2x2

)]
e1 +

[ 1
ϕ

(
− pex2 + τ2x1

)]
e2 +

[
τ1

]
e3. (36)

Now, under the conditions of the system (12) with ϕ constant, and applying the
velocity field (35) and the stress vector (36) to Equations (29)–(32), we can calculate the
results related to the quantities n, kα1 ...αn , mα1 ...αn , a, bα1 ...αN and f , lα1 ...αN . Therefore,
using the solutions related to the forces, the inertia and surface traction terms in system
Equations (27) and (28) with the average pressure (the quantity A(z, t) is the area of the
section S(z, t)),

p̄(z, t) =
1

A(z, t)

∫
S(z,t)

p(x1, x2, z, t)da, (37)

we obtain the unsteady average pressure differential equation

p̄z(z, t) = −8µ(32)n/2−1/2

πnϕ3n+1 Qn(t)− 512(32)n/2−1/2β3

3πn+2ϕ3n+7 Qn+2(t)

− 4ρ

3ϕ2π

(
1 +

6α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)

Qt(t) (38)

and the unsteady wall shear stress equation

τ1(z, t) =
4µ(32)n/2−1/2

πnϕ3n Qn(t) +
256(32)n/2−1/2β3

πn+2ϕ3n+6 Qn+2(t)

+
ρ

6πϕ

(
1 +

24α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)

Qt(t). (39)

Integrating differential Equation (38) over the cross-section of tube interval [z1, z2], we
obtain the unsteady mean pressure gradient equation, given by

G(t) =
p̄(z1, t)− p̄(z2, t)

z2 − z1

=
8µ(32)n/2−1/2

πnϕ3n+1 Qn(t) +
512(32)n/2−1/2β3

3πn+2ϕ3n+7 Qn+2(t)

+
4ρ

3ϕ2π

(
1 +

6α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)

Qt(t). (40)

Let us consider the following dimensionless variables (the characteristic frequency for
unsteady flow is given by the parameter ω0):

t̂ = ω0t, Q̂ =
2ρ

πϕµ
Q, β̂3 =

µ

ϕ4ρ2 β3, α̂1 =
µn−1(32)n/2−1/2

ϕ2n2n−1ρn α1 (41)

and

Ĝ =
ρnϕ2n+1

(32)n/2−1/2µn+1 G, τ̂1 =
ρnϕ2n

(32)n/2−1/2µn+1 τ1. (42)

Now, substituting this new variables (41) and (42) into Equations (39) and (40), we
obtain the unsteady nondimensional mean pressure gradient equation

Ĝ(t̂) =
8
2n Q̂n(t̂) +

512
3

1
2n+2 β̂3Q̂n+2(t̂) +

2
3
W2

0

(
1 + 6α̂1Q̂n−1(t̂)

)
Q̂t̂(t̂). (43)
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Moreover, we obtain the unsteady nondimensional wall shear stress equation

τ̂1(ẑ, t̂) =
4
2n Q̂n(t̂) +

256
2n+2

β̂3

3
Q̂n+2(t̂) +

1
12

W2
0

(
1 + 24α̂1Q̂n−1(t̂)

)
Q̂t̂(t̂). (44)

In Equations (43) and (44), the constant n is the power index, α̂1, β̂3 are viscoelastic
coefficients, and W0 is the Womersley number, given by

W0 = ϕn

√
ωoρn

(32)n/2−1/2µn ,

which reflects the pulsatility of the flow frequency in relation to viscous effects, which is an
unsteady phenomenon (see [34]). Finally, using the dimensionless variables

x̂1 =
x1

ϕ
, x̂2 =

x2

ϕ
, ϑ̂ =

ϕρ

µ
ϑ (45)

in Equation (35), we obtain the unsteady nondimensional three-dimensional velocity field
equation

ϑ̂(x̂, t̂) =
[

Q̂(t̂)
(

1 − (x̂2
1 + x̂2

2)
)]

e3. (46)

At this stage, it is important to mention that, for flow index n = 1 in Equations (43)
and (44), we recover the results obtained by Carapau and Correia [2]. In next section, for
specific flow regimes data, we present numerical illustrations to the unsteady volume flow
rate and the unsteady three-dimensional velocity field.

4. Numerical Simulations

For specific flow regimes, we could obtain numerical results for both Equation (43)
and (44), but since we intend to present the results for the unsteady three-dimensional
velocity field (46), we will focus our numerical simulations on Equation (43). Therefore,
considering Equation (43) for specific flow regime data, with constant and non-constant
mean pressure gradient, and applying the Runge–Kutta method, we obtain the unsteady
solution for the volume flow rate. Consequently, we can present numerical simulations
to solve the unsteady three-dimensional velocity field (46), for both shear-thinning and
shear-thickening viscoelastic fluids, considering a straight tube with a constant circular
cross-section.

4.1. Constant Mean Pressure Gradient

In this case, let us consider a specific flow regime, i.e., Ĝ = 1 in Equation (43),
Q̂(0) = 1, α̂1 = 1 and β̂3 = 1. Applying the Runge–Kutta method to solve Equation (43),
we can present the behavior of the unsteady volume flow rate Q̂ for various values of the
Womersley number and power index n. Figure 3 shows the behavior of the shear-thinning
viscoelastic fluid, and Figure 4 shows the behavior of the shear-thickening viscoelastic fluid.

Based on the solutions presented in Figures 3 and 4, we can conclude that after the
initial transient phase the unsteady volume flow (43) converges in time to the stationary
solution. The convergence is faster for the case of shear-thickening viscoelastic fluid (see
Figure 4) than for the shear-thinning case.
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Q̂

t̂

Q̂

t̂

(a) (b)

Figure 3. Illustration in time (s) of the volume flow rate (m3/s) given by (43), where Ĝ(t̂) = 1,
Q̂(0) = 1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thinning viscoelastic fluid, with power
index n = 0.5 and n = 0.8. (a) Volume flow rate with n = 0.5. (b) Volume flow rate with n = 0.8.

Q̂

t̂

Q̂

t̂

(a) (b)

Figure 4. Illustration in time (s) of the volume flow rate (m3/s) given by (43), where Ĝ(t̂) = 1,
Q̂(0) = 1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thickening viscoelastic fluid, with
power index n = 1.2 and n = 1.8. (a) Volume flow rate with n = 1.2. (b) Volume flow rate with
n = 1.8.

Finally, we illustrate in Figures 5 and 6 the behavior of the unsteady three-dimensional
velocity field (46), related to shear-thinning and shear-thickening viscoelastic fluids. The
behavior of the solution presented for three-dimensional velocity field ϑ̂ is associated with
the behavior of the volume flow rate solution Q̂ during and after the initial transient phase.
We can remark that the shown behavior of the unsteady volume flow rate solution Q̂ has an
influence on the choice of time parameters in the illustrations presented in Figures 5 and 6.
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Figure 5. Illustration of the three-dimensional velocity (m/s) field (46) over the tube circular cross-
section with volume flow rate obtained by (43), where Ĝ = 1, Q̂(0) = 1, W0 = 0.8, α̂1 = 1 and β̂3 = 1
for shear-thinning fluid with power index n = 0.5. Time (s) parameters: t̂ = 0.1, t̂ = 0.3, t̂ = 0.5,
t̂ = 0.7.

Figure 6. Illustration of the three-dimensional velocity (m/s) field (46) over the tube circular cross-
section with volume flow rate obtained by (43), where Ĝ = 1, Q̂(0) = 1, W0 = 0.8, α̂1 = 1 and β̂3 = 1
for shear-thickening fluid with power index n = 1.25. Time (s) parameters: t̂ = 0.1, t̂ = 0.3, t̂ = 0.5,
t̂ = 0.7.
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4.2. Non-Constant Mean Pressure Gradient

Given the following equation for the non-constant mean pressure gradient

Ĝ(t̂) = 1 +
sin2(t̂2)

et̂
, (47)

we can verify that it presents a strong variation during the initial transient phase and
smaller variation in time after the initial transient phase; see Figure 7.

Figure 7. Mean pressure gradient dependent on time given by (47).

Let us consider a specific flow regime, i.e., Q̂(0) = 1, α̂1 = 1, β̂3 = 1 and W0 =
(0.2, 0.4, 0.6, 0.8). Using the Runge–Kutta method for solving ordinary differential
Equation (43), we can observe the behavior of the unsteady volume flow rate Q̂ for different
power index values, related to shear-thinning and shear-thickening viscoelastic fluids; see
Figures 8 and 9, respectively. Analyzing the behavior of the volume flow rate illustrated in
Figures 8 and 9, we can conclude that, over time, the unsteady solution converges to the
steady solution, as in the case where the mean pressure gradient was constant. Also, in
these conditions, the convergence is faster for the case of shear-thickening viscoelastic fluid
(see Figure 9) than for the shear-thinning case.

Q̂

t̂

Q̂

t̂

(a) (b)

Figure 8. Illustration in time (s) of the volume flow rate (m3/s) given by (43), with mean pressure
gradient (47), where Q̂(0) = 1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thinning
viscoelastic fluid, with power index n = 0.5 and n = 0.8. (a) Volume flow rate with n = 0.5.
(b) Volume flow rate with n = 0.8.
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Q̂

t̂

Q̂

t̂

(a) (b)

Figure 9. Illustration in time (s) of the volume flow rate (m3/s) given by (43), with mean pressure
gradient (47), where Q̂(0) = 1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thickening
viscoelastic fluid, with power index n = 1.2 and n = 1.8. (a) Volume flow rate with n = 1.2.
(b) Volume flow rate with n = 1.8.

Finally, considering the data solution for the unsteady volume flow rate on
Equation (46), we can illustrate the behavior of the three-dimensional velocity field (46),
related to shear-thinning and shear-thickening viscoelastic fluids; see Figures 10 and 11,
respectively. As in the case of a constant mean pressure gradient, the behavior of the
solution presented for the three-dimensional velocity field ϑ̂ is associated with the behavior
of the volume flow rate solution Q̂ during and after the initial transient phase. Again, the
choice of time parameters in Figures 10 and 11 is associated with the shown behavior of the
unsteady volume flow rate solution Q̂ during and after the initial transient phase.

Figure 10. Illustration of the three-dimensional velocity (m/s) field (46) over the tube circular
cross-section, where the volume flow rate is obtained by (43) with mean pressure gradient (47) and
Q̂(0) = 1, W0 = 0.8, α̂1 = 1, β̂3 = 1 for shear-thinning fluid, with power index n = 0.75. Time (s)
parameters: t̂ = 0.1, t̂ = 0.3, t̂ = 0.5, t̂ = 0.7.
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Figure 11. Illustration of the three-dimensional velocity (m/s) field (46) over the tube circular
cross-section, where the volume flow rate is obtained by (43) with mean pressure gradient (47) and
Q̂(0) = 1, W0 = 0.8, α̂1 = 1, β̂3 = 1 for shear-thickening fluid, with power index n = 1.75. Time (s)
parameters: t̂ = 0.1, t̂ = 0.3, t̂ = 0.5, t̂ = 0.7.

5. Perturbed Flows

When considering the new constitutive Equation (7), we lose the guarantee of stability
solution mentioned in condition (5). Therefore, in this section, we intend to take a first
approach to the study of the stability solution related to the unsteady volume flow rate
Q̂, obtained by the proposed flow model (12). In this sense, we only study the stability
solution, where Q̂(0) = 1, W0 = 0.8, α̂1 = 1 and β̂3 = 1 are fixed, for different power index
parameters.

Now, let us consider the perturbation function, given by

Ĝ±
ϵ = (1 ± ϵ)Ĝ (48)

where ϵ > 0 is the magnitude perturbation and Q̂±
ϵ is the perturbed volume flow rate

related to the perturbation Ĝ±
ϵ . From the previous section, we know that, over time, the

solution to the unsteady volume flow rate Q̂ for constant and non-constant mean pressure
gradient converges to the steady solution. As a result, assuming Q̂t̂(t̂) = 0 in Equation (43),
considering specific perturbation Ĝ±

ϵ , then it is not possible to calculate explicitly the exact
expression to the perturbed unsteady volume flow rate Q̂±

ϵ . However, we can overcome
this difficulty by calculating the time evolution of the perturbed flow

|Q̂+
ϵ − Q̂−

ϵ | (49)

for fixed magnitude ϵ > 0.
Consequently, Figure 12 shows the perturbation given by (49) with magnitude ϵ = 0.1

for shear-thinning and shear-thickening viscoelastic fluid. More properly, Figure 12a
illustrates the evolution in time of the perturbation (49) for different power index values,
where the mean pressure gradient is constant. In the same way, Figure 12b shows the
evolution in time of the perturbation (49) for different power index values, where the mean
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pressure gradient is non-constant and given by Function (47). Therefore, for specific flow
regimes associated with the solutions, we can conclude that, after the initial transition
phase, the unsteady volume flow rate behavior is stable in both situations of shear-thinning
and shear-thickening viscoelastic fluids.

(a) (b)

Figure 12. Time (s) evolution of the perturbation (49) with magnitude ϵ = 0.1 for shear-thinning
and shear-thickening viscoelastic fluid. (a) Constant mean pressure gradient. (b) Non-constant mean
pressure gradient.

6. Conclusions

In this work, we proposed a new three-dimensional model for a non-Newtonian
incompressible fluid, where viscosity and elasticity vary depending on the shear rate being
this dependence a power-law type. The study carried out allowed us to obtain relevant
results with applications in different areas of scientific development; for example, in biology,
physics, industry, engineering, chemistry, hemodynamics and mathematics. Below, we
highlight the main conclusions, namely:

• We obtained the ordinary differential equations involving unsteady mean pressure gra-
dient (unsteady wall shear stress, respectively), unsteady volume flow rate, Womersley
number, power index, and material parameters;

• We obtained numerical simulations for the unsteady volume flow rate in specific flow
regimes;

• Based on the unsteady solution obtained for the volume flow rate, we presented
numerical simulations to the unsteady three-dimensional velocity field in specific flow
regimes;

• We presented a study on the perturbed flows.

In addition to the innovation in the proposed model in the field of applications, we
highlight the innovative use of Cosserat theory associated with fluid dynamics. This
allowed us to move from a three-dimensional model to a one-dimensional model, thus
obtaining information about the behavior of the flow volume, which was decisive in the
numerical simulations presented for three-dimensional velocity. Finally, for future work,
we intend to apply this approximation theory to investigate open problems related to
curved tubes and fluid–structure interaction.
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