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Abstract: This paper works with functions defined in metric spaces and takes values in complete
paranormed vector spaces or in Banach spaces, and proves some necessary and sufficient conditions
for weak convergence of probability measures. Our main result is as follows: Let X be a complete
paranormed vector space and Ω an arbitrary metric space, then a sequence {µn} of probability
measures is weakly convergent to a probability measure µ if and only if lim

n→∞

∫
Ω g(s)dµn =

∫
Ω g(s)dµ

for every bounded continuous function g: Ω → X. A special case is as the following: if X is a
Banach space, Ω an arbitrary metric space, then {µn} is weakly convergent to µ if and only if
lim

n→∞

∫
Ω g(s)dµn =

∫
Ω g(s)dµ for every bounded continuous function g: Ω → X. Our theorems and

corollaries in the article modified or generalized some recent results regarding the convergence of
sequences of measures.

Keywords: finite measure; Banach space; complete paranormed space; µ-integral function; weak
convergence of measures

MSC: 28A33; 46G12; 60B10

1. Introduction and Terminology

If (Ω, Σ) is a measurable space, a sequence {µn} of probability measures is weakly
convergent to probability measure µ if lim

n→∞

∫
Ω g(s)dµn =

∫
Ω g(s)dµ for every bounded

continuous function g: Ω → (−∞,+∞). Nielsen [1] proved that if Ω is a polish metric
space, and if X is a Banach space, then {µn} is weakly convergent to µ if and only if
lim

n→∞

∫
Ω g(s)dµn =

∫
Ω g(s)dµ for every bounded continuous function g: Ω → X. Yang [2]

discussed the situation of g: Ω →(−∞,+∞) and proved that the function g is not necessarily
point-wise continuous. Wei [3] worked with functions taking values in a metric space X and
assumed that {µn} is a tight and weak convergence of the finite dimensional distributions
of {µn} to µ.

There is a rich bibliography concerning the convergence of sequences of measures,
besides the above-mentioned studies [1–3]; see, for example, [4–8].

Let K be the field of real numbers or the field of complex numbers and X be a vector
space over the number field K. A paranormed space is a pair (X, || · ||), where || · || is a
function, called a paranorm, such that

(a) ||x|| ≥ 0, ||x|| = 0 ⇔ x = 0 ;
(b) ||x + y|| ≤ ||x||+ ||y||;
(c) || − x|| = ||x||;
(d) lim

α→0
||αx|| = 0, lim

x→0
||αx|| = 0.

Since ||x − y|| ≤ ||x|| + ||y||, for ∀x, y ∈ X, ||x − y|| defines a metric in a para-
normed space.

In what follows, paranormed paces will always be regarded as metric spaces with
respect to the metric || · ||.
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It is known that a normed vector space is a paranormed vector space, but a paranormed
space is not necessarily a normed vector space. We note that, compared with the definition
of “norm”, “paranorm” is just without the property of positive homogeneity, replaced by
the weaker conditions (c) and (d).

Any Banach space is a complete paranormed space, but the converse is not true.
A complete paranormed space is called a Fréchet space in Bourbaki’s terminology.
Assume that Σ is the σ-algebra of all Borel measurable sets in Ω. An additive measure

µ on Σ is called a finite measure if Ω ∈ Σ and µ (Ω) < ∞. (Ω, Σ, µ) is called a finite measure
space if the measure µ on Σ is finite. If µ (Ω) = 1, then µ is said a probability measure.
Generally speaking, we may consider that a finite measure and a probability measure are
one thing.

A function g: Ω → X is called µ-measurable (or measurable if no confusion arises) if
for any scalar α

{s ∈ Ω; g(s) < α}

is a µ-measurable subset.
A function g: Ω → X is called a simple function if there are measurable sets Bj ∈ Σ

with Bi ∩ Bj = Φ (i ̸= j) and xj ∈ X (j = 1, 2, . . ., k) such that

g(s) =

{
xj, i f
0, otherwise

s ∈ Bj(j = 1, · · ·, k)

The µ-integral (or integral if without confusion) of the simple function g is defined as∫
Ω

g(s)dµ = ∑k
j=1 xjµBj

A function g: Ω → X is called µ-integrable (or integrable if no confusion arises) if
there exists a sequence of {gn} of simple functions such that

(a) lim
n→∞

gn(s) = g(s), µ-a.e. on Ω (almost everywhere on Ω) (1)

i.e., there exists A ∈ Σ and µ(A) = 0 such that lim
n→∞

gn(s) = g(s) for s ∈ Ω\A;

(b) For every continuous seminorm p on X,

lim
n→∞

∫
Ω

p(gn(s)− g(s))dµ = 0 (2)

In this case, lim
n→∞

∫
Ω

gn(s)dµ exists, and the µ-integral (or integral if no confusion arises) of

g is defined as ∫
Ω

g(s)dµ = lim
n→∞

∫
Ω

gn(s)dµ.

When X is a Banach space, the µ-integral is known as the Bochner integral.

2. Some Lemmas

In what follows, let Ω be an arbitrary metric space, Σ the σ-algebra of all Borel
measurable sets in Ω, Π a family of additive finite measures on Σ, and (X, || · ||) a complete
paranormed space.

A seminorm is map p: X → K satisfying

(a) p(x) ≥ 0;
(b) p(x + y) ≤ p(x) + p(y);
(c) p(αx) = |α|p(x) for any scalar α.
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Compared with the definition of “norm”, “seminorm” is without the property of
“faithfulness”: x ̸= 0 does not imply p(x) > 0.

A subset Y ⊆ X is said to be a bounded set, if ∀p ∈ P, there exists a constant Cp > 0
such that p(y) ≤ Cp, ∀y ∈ Y.

The following Lemma 1 is a well-known result in functional analysis.

Lemma 1. X is a complete paranormed space if and only if there is a family of continuous seminorms
P = {pn; n = 1, 2, . . .} on X, such that

p1(x) ≤ p2(x) ≤ · · · ≤ pn(x) ≤ · · ·, ∀x ∈ X;

And the paranorm on X can be given by

∥x∥ = ∑∞
n=1

1
2n

pn(x)
1 + pn(x)

, ∀x ∈ X.

Furthermore, for any topological net {xτ} ⊂ X, and x ∈ X, the following are equivalent

(a) lim
τ

xτ = x;

(b) lim
τ

xτ − x = 0;

(c) lim
τ

p(xτ − x) = 0, ∀p ∈ P.

A set A ⊂ X is called separable if A has a countable dense subset, i.e., there exists a countable
subset B ⊂ A such that B = A, where B is the topological closure of B. B is called a countable dense
subset of A.

For A ⊂ X, span A is the set of all possible linear combinations of the elements in A.

The following Lemma 2 has an independent interest. There were different discussions
of Lemma 2, which can be seen in [9,10].

Lemma 2. Suppose µ ∈ Π. A µ-measurable function g: Ω → X is µ-integrable if and only if

(a) g is µ-essential separable valued, i.e., there exists E ∈ Σ with µE = 0, such that g(Ω\E) is a
separable subset of X;

(b)
∫
Ω

p(g(s))dµ < ∞, ∀p ∈ P, where P is defined as in Lemma 1.

Proof.
The sufficiency is as follows:
Suppose E ∈ Σ with µE = 0, and suppose that g(Ω\E) is a separable subset of X, and

{xn} ⊂ X a countable dense subset of g(Ω\E). Take

An,k = {s ∈ Ω; pk(g(s)− xn) <
1
k
},

since g is a µ-measurable function, An,k are measurable sets, i.e., An,k∈ Σ. Define

gk(s) =

{
xn, s ∈ An,k\ ∪m<n Am,k

0, otherwise
, (n = 1, 2, . . .)

Then,

pi(gk(s)− g(s)) ≤ pk(gk(s)− g(s)) ≤ 1
k

µ-a.e. on Ω, for k ≥ i. It follows that, ∀i

lim
k→∞

pi(gk(s)− g(s)) = 0, µ-a.e.
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That is to say
lim
k→∞

gk(s) = g(s), µ-a.e (3)

Therefore,
lim
k→∞

gk(s)− g(s) = 0, µ-a.e.

Note that gk can be written as

gk(s) = ∑∞
n=1 xnχBn,k

where Bn,k = An,k\ ∪m<n Am,k, Bn,i ∩ Bn,j = Φ (i ̸= j), and χBn,k is the characteristic func-
tion of the set Bn,k, i.e.,

χn,k(s) =

{
1 s ∈ Bn,k

0, otherwise.

Since Ω = ∪∞
n=1Bn,k and µΩ < ∞, for each k, we can choose l(k) satisfying

µ
(
∪∞

j=l(k)+1Bj,k

)
<

1
k

.

Take
gk

′(s) = ∑l(k)
j=1 xjχBj,k ,

Then, for each k, gk
′(s) is a simple function and

µ{s ∈ Ω;
∥∥gk(s)− gk

′(s)
∥∥ > 0} ≤ µ

(
∪∞

j=l(k)+1Bk,j

)
<

1
k

.

So, there exists a subsequence of {gk − gk
′} that converges to 0 µ-a.e. We may assume,

without loss of generality, that

lim
k→∞

(gk(s)− gk
′(s)) = 0, µ-a.e.

This and (3) imply that
lim
k→∞

gk
′(s) = g(s), µ-a.e.

On the other hand, ∀s ∈ Ω

pi(gk
′(s)− g(s))

≤ pi(gk
′(s)− gk(s)) + pi(gk(s)− g(s))

≤ pi(gk
′(s)) + pi(gk(s)) + pi(gk(s)− g(s))

≤ 2pi(gk(s)) + pi(gk(s)− g(s))
≤ 2[pi(gk(s)− g(s)) + pi(g(s))] + pi(gk(s)− g(s))
≤ 2pi(g(s)) + 3pi(gk(s)− g(s))
≤ 2pi(g(s)) + 3

Since
∫
Ω

p(g(s))dµ < ∞, ∀p ∈ P, an application of Lebesgue’s Dominated Convergence

Theorem, in our case shows that

lim
k→∞

∫
Ω

pi(gk
′(s)− g(s))dµ = 0, ∀pi ∈ P.

This proves that g: Ω → X is µ-integrable.
The necessity is as follows:
Suppose g: Ω → X is µ-integrable, then the combination of
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|
∫
Ω

p(gn(s))dµ −
∫

Ω
p(g(s))dµ| ≤

∫
Ω

p(gn(s)− g(s))dµ

and (2) imply that lim
n→∞

∫
Ω

p(gn(s))dµ exists, and

∫
Ω

p(g(s))dµ = lim
n→∞

∫
Ω

p(gn(s))dµ < ∞

Moreover, from (1), there exists E ∈ Σ with µE = 0, and there exists an at most
countable set ∪∞

n=1gn(Ω), such that

∪∞
n=1gn(Ω) =g(Ω\E) ∪ (∪∞

n=1gn(Ω)).

Then, as a subset of a separable set g(Ω\E) ∪ (∪∞
n=1gn(Ω)), g(Ω\E) is separable.

This completes the proof of Lemma 2. □

Lemma 3. If g: Ω → X is a bounded continuous function, then g is µ-integrable.

Proof. Note that pk(g(s)): Ω → (−∞,+∞) are bounded continuous functions (k = 1, 2,
. . .). Therefore, each pk(g(s)) is µ-integrable, and so each pk(g(s)) is µ-essential separable
valued, i.e., there exists Ek ∈ Σ with µEk = 0, such that pk(g(Ω\Ek)) is a separable subset
of X. Assume that

{
sk

n

}
⊂ (−∞,+∞) is a countable dense subset of pk(g(Ω\Ek)), then

there exists a sequence
{

ωk
n

}∞

n=1
⊂ Ω such that g(ωk

n) = xk
n ∈ X and pk(g(xk

n)) = sk
n

(n = 1, 2, . . .). Take

An,k = {s ∈ Ω\Ek; pk(g(s)− xk
n) <

1
k
},

since g is a µ-measurable function, An,k are measurable sets, i.e., An,k ∈ Σ. Define

gk(s) =

{
xk

n, s ∈ An,k\ ∪m<n Am,k

0, otherwise
, (n = 1, 2, . . .).

Therefore,

pk(gk(s)− g(s)) ≤ 1
k

, (k = 1, 2, . . .).

From Lemma 2, gk(s) are µ-integrable functions. The inequalities above and Lemma 2
(p1(x) ≤ p2(x) ≤ · · · ≤ pl(x) ≤ · · ·, ∀x ∈ X) deduce that

lim
k→∞

∫
Ω

p(gk(s)− g(s))dµ = 0, ∀p ∈ P.

Using Theorem 4 in Zeng [11], the limit of a sequence of µ-integrable functions is µ-
integrable in a complete paranormed space. Therefore, g: Ω → X is a µ-integrable function. □

3. Weak Convergence of Finite Measures

A sequence {µn} ⊂ Π is called weakly convergent to µ ∈ Π if

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ

for every bounded continuous function g: Ω → (−∞,+∞).
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Theorem 1. Suppose that Ω is an arbitrary metric space, X is a complete paranormed space over
the field K, and µ, µn ∈ Π (n = 1, 2, . . .). Then, {µn} is weakly convergent to µ if and only if

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ

for every bounded continuous function g: Ω → X.

Proof.
The necessity is as follows:
Let g: Ω → X be a bounded continuous function. From Lemma 3, g is integrable for

all µ, µn ∈ Π (n = 1, 2, . . .).
From the proof of Lemma 3, there exists a sequence {gk(s)} of functions defined as

gk(s) =

{
xk

j , s ∈ Aj,k\ ∪i<j Ai,k

0, otherwise
, (j = 1, 2, . . .).

with
pk(gk(s)− g(s)) ≤ 1

k
,

such that
lim
k→∞

∫
Ω

p(gk(s)− g(s))dµ = 0, ∀p ∈ P. (4)

Given p ∈ P.
For any given ε > 0, take k0 such that∫

Ω

p(gk0(s)− g(s))dµ < ε (5)

On the other hand, the weak convergence of {µn} to µ on Ω implies that

lim
n→∞

p(
∫

Ω
gk0(s)dµn −

∫
Ω

gk0(s)dµ) = 0.

Then, there exists N > 0, when n ≥ N

p(
∫

Ω
gk0(s)dµn −

∫
Ω

gk0(s)dµ) < ε. (6)

Again, from (4), p(gk(s)− g(s)) converges in measure µ, which is to say

lim
k→∞

µ{s ∈ Ω; p(gk(s)− g(s)) ≥ ε} = 0.

Let
A =

{
s ∈ Ω; p(gk0(s)− g(s)) ≥ ε

}
.

Take k0 to be large enough such that both (5) and the following hold true:

µA = µ
{

s ∈ Ω; p(gk0(s)− g(s)) ≥ ε
}
< ε.

Since the weak convergence of {µn} to µ implies

lim
n→∞

µn A = µA, and lim
n→∞

µn(Ω) = µ(Ω),

one can take n to be large enough, say, n ≥ N, such that

µn A < µA + ε, µn(Ω) < µ(Ω) + ε.
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Therefore, when n ≥ N,∫
Ω p(gk0(s)− g(s))dµn
=

∫
A p(gk0(s)− g(s))dµn +

∫
Ω\A p(gk0(s)− g(s))dµn

≤ 2Cpµn A + εµn(Ω)
< Mε,

(7)

for a given scalar M > 0, where we assume that the bonded functions satisfy the conditions
p(gk(s)) ≤ Cp, p(g(s)) ≤ Cp.

Hence, from (5), (6), and (7), when n ≥ N,

p(
∫

Ω g(s)dµn −
∫

Ω g(s)dµ)
≤ p(

∫
Ω g(s)dµn −

∫
Ω gk0(s)dµn)

+p(
∫

Ω gk0(s)dµn −
∫

Ω gk0(s)dµ)
+p(

∫
Ω gk0(s)dµ −

∫
Ω g(s)dµ)

< (M + 2)ε.

That is to say, for each bounded continuous function g: Ω → X, and each p ∈ P

lim
n→∞

p(
∫

Ω
g(s)dµn −

∫
Ω

g(s)dµ) = 0.

Therefore, for each bounded continuous function g: Ω → X, one has

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ.

The sufficiency is as follows:
Suppose that for each bounded continuous function g: Ω → X,

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ.

For given function g: Ω → (−∞,+∞), take x0 ∈ X with x0 ̸= 0, and define the function
f : Ω → X:

f (s) = g(s)x0, s ∈ Ω.

Then, ∀p ∈ P
lim

n→∞
|
∫

Ω g(s)dµn −
∫

Ω g(s)dµ|
= lim

n→∞
|
∫

Ω g(s)dµn −
∫

Ω g(s)dµ|p(x0)

= lim
n→∞

p((
∫

Ω g(s)dµn −
∫

Ω g(s)dµ)x0)

= lim
n→∞

p(
∫

Ω g(s)x0dµn −
∫

Ω g(s)x0dµ)

= 0,

which completes the proof. □

From Theorem 1, we have the following Corollary 1.

Corollary 1. Let Ω be a polish metric space, X a Banach space, and µ, µn are finite measures
defined on Ω (n = 1, 2, . . .). Then, {µn} is weakly convergent to µ if and only if

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ

for every bounded continuous function g: Ω → X.

Theorem 1 can be stated as the following Theorem 2, a result in probability distribution
theory.
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Theorem 2. Suppose that Ω is an arbitrary metric space, and X is a complete paranormed space
over the field K. Let ςn ∈ Ω be random elements (n = 1, 2, . . .), E the mathematical expectation
operator, then {ςn} converges in probability distribution to a random element ς ∈ Ω if and only if
for each bounded continuous function g: Ω → X, there holds

lim
n→∞

Eg(ςn) = Eg(ς).

From Theorem 1, we have the following Theorem 3.

Theorem 3. Let Ω be an arbitrary metric spac, and X a Banach space. A sequence {µn} ⊂ Π is
weakly convergent to µ ∈ Π if and only if

lim
n→∞

∫
Ω

g(s)dµn =
∫

Ω
g(s)dµ

for every bounded continuous function g: Ω → X.

Theorem 3 can be rewritten as the following Theorem 4.

Theorem 4. Suppose that Ω is an arbitrary metric space and X a Banach space. Let ςn ∈ Ω be
random elements (n = 1, 2, . . .), E the mathematical expectation operator, then {ςn} converges in
probability distribution to a random element ς ∈ Ω if and only if for each bounded continuous
function g: Ω → X, there holds

lim
n→∞

Eg(ςn) = Eg(ς)

4. Conclusions

In references [6,7], the authors discussed Riemann–Lebesgue integrals, while our
discussion is about the Bochner integral (or similarly, Pettis integral) in abstract spaces.

References [4,5] also worked with convergence for sequences of measures. Although [4]
supposed that their functions were defined on Hausdorff topological spaces (see the first
paragraph of Section 2 in [4]), they were taking values as scalars—their proofs were carried
out by using absolute values. Some results of Reference [5] are for “vector-valued functions”
(see Page 14 “Section 3.1 The vector case for integrals” in [5])—the proofs were carried out
by using a norm—as a Banach space has.

References [4–7] all required that measures are bounded and converge “set-wisely”.
Some results in [4] require the sequence to converge in value and/or uniformly and
absolutely continuously, while similar results in [6] require the measures to be finite-
valued and/or increasing. Our results, however, only require “a sequence of bounded
measures”—weaker conditions compared with [4–7]—in which both sequences of functions
and measures are considered. Our functions take values in a paranormed linear space,
which is also weaker than the conditions of a normed linear space in [5] or finite dimensional
space in [4,6,7].

Our results extended Proposition 3.2 in [4] and Corollary 3.8 in [5]; and modified
Corollary 2.1 in [5], Theorem 3.4 and 3.5 in [6], as well as Lemma 4.1 in [7].

Theorem 1 in this article is a modification of Theorem 2.1 and 2.2 in [8]. Theorem 2.1
and 2.2 in [8] require non-negative functions f.

Theorem 3 is a generalization of Corollary 1. Corollary 1 is the main result in [1].
Compared with [1], we do not have the condition of “polish metric space”. In this study,
we obtained the same results but required weaker conditions.
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