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Abstract: This paper conducts an in-depth study on the self-similar transformation, Darboux trans-
formation, and the excitation and propagation characteristics of high-order bright–dark rogue wave
solutions in the (2+1)-dimensional variable-coefficient Zakharov equation. The Zakharov equation is
instrumental for studying complex nonlinear interactions in these areas, with specific implications
for energy transfer processes in plasma and nonlinear wave propagation systems. By analyzing
bright–dark rogue wave solutions—phenomena that are critical in understanding high-energy events
in optical and fluid environments—this research elucidates the intricate dynamics of energy concen-
tration and dissipation. Using the self-similar transformation method, we map the (2+1)-dimensional
equation to a more tractable (1+1)-dimensional nonlinear Schrödinger equation form. Through the
Lax pair and Darboux transformation, we successfully construct high-order solutions that reveal
how variable coefficients influence rogue wave features, such as shape, amplitude, and dynamics.
Numerical simulations demonstrate the evolution of these rogue waves, offering novel perspectives
for predicting and mitigating extreme wave events in engineering applications.This paper crucially
advances the practical understanding and manipulation of nonlinear wave phenomena in variable
environments, providing significant insights for applications in optical fibers, atmospheric physics,
and marine engineering.

Keywords: zakharov equation; higher-order bright–dark rogue waves; self-similar transformation;
Darboux transformation; dynamics analysis

MSC: 35C06; 35C08; 35Q70

1. Introduction

The Zakharov equation is a significant mathematical model in plasma physics, em-
ployed for studying nonlinear phenomena, particularly the nonlinear propagation and
interaction of waves. Its applicability extends beyond plasma research to encompass the
comprehension of complex nonlinear phenomena such as wave formation in oceans and the
propagation of light waves in optical fibers [1]. A comprehensive analysis of the Zakharov
equation unveils the mechanisms of nonlinear wave interactions and explores various
wave patterns formed under specific conditions, such as solitons and rogue waves [2]. In
1972, the renowned physicist and mathematician V.E. Zakharov proposed this system of
equations coupling electric field and particle perturbations while investigating the interac-
tion between plasma and lasers. This system combines the nonlinear Schrödinger equation
with a wave equation containing strong nonlinear terms, forming what is known as the
Zakharov equation. Zakharov successfully computed soliton wave solutions of this system
of equations, providing profound explanations for physical phenomena such as the deep
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density cavities observed in laser–target interactions, garnering widespread attention in
the international physics community [3]. To date, the Zakharov equation is considered
one of the most comprehensive models for describing the coupling of low-frequency and
high-frequency waves in nonlinear systems [4], particularly in plasma physics, where
the high-frequency mode describes electron-acoustic waves and the low-frequency mode
describes ion-acoustic waves. For instance, Langmuir wave turbulence in plasmas with
large temperature ratios is often described by this equation [5].

Due to its potent application potential in theoretical physics, oceanography, optics, and
quantum fluid dynamics, the Zakharov equation has attracted extensive research efforts
from physicists and mathematicians. These efforts have led to numerous innovative and
influential findings. For example, regarding the (2+1)-dimensional Zakharov equation [6]:

iut + uxy + uv = 0, vx = |u|2y

When x = y, the above equation reduces to the well-known (1+1)-dimensional nonlinear
Schrödinger (NLS) equation; when t = 0, it simplifies to the complex sine-Gordon equation.

Radha and others investigated the (2+1)-dimensional Zakharov equation and demon-
strated its Painlevé property. Through an in-depth analysis of singular structures, they
further showcased the richness and complexity of this equation in describing nonlinear
phenomena. Particularly, their derivation of a bilinear form provided new analytical meth-
ods and insights for subsequent researchers [7]. Strachan utilized the bilinear method
to construct a new method for inducing localized coherent structures by freely selecting
arbitrary functions. This method not only broadened the application scope of the Zakharov
equation but also provided a new approach for understanding and controlling coherent
structures in nonlinear systems [8]. Chen and others, building upon the bilinear method,
obtained breather solutions and first-order rogue wave solutions. They also utilized the
Sato operator theory to derive first- and higher-order rogue wave solutions, depicting the
dynamic evolution of nonlinear waves under specific conditions [9]. Wang and others com-
bined the bilinear method with the long-wave limit approach to obtain rational and mixed
solutions for solitons, enriching the forms of solutions to the Zakharov equation [10]. Yin
and others employed the Jacobi elliptic function expansion method to solve the equation
for traveling wave solutions and solitary wave solutions, effectively revealing the propaga-
tion characteristics of traveling waves and solitary waves in nonlinear systems [11]. Guo
and others, inspired by the traveling wave solutions, utilized the homogeneous balance
principle and the structure of a class of nonlinear ordinary differential equation solutions
to investigate the richer exact solution expressions of the equation using an extended
(G′/G) expansion method, providing more effective means for controlling nonlinear wave
dynamics [12]. He adopted the (Φ/Ψ) expansion method to obtain rich hyperbolic cotan-
gent function solutions and, by selecting appropriate parameters, vividly depicted the
propagation of waves [13]. Hua and others utilized the generalized algebraic method
to derive many new exact solutions, including rational function solutions, Jacobi elliptic
function solutions, mixed elliptic function solutions, knotted solutions, singular solutions,
and trigonometric function solutions [14]. The acquisition of these solutions not only
enriched our understanding of the Zakharov equation but also revealed the propagation
and evolution characteristics of nonlinear waves in various forms.

Previous researchers have extensively explored the (2+1)-dimensional Zakharov equa-
tion on multiple levels, uncovering its important mathematical properties and providing
powerful mathematical tools and theoretical support for understanding and controlling
nonlinear wave dynamics. In this paper, to expand the application of the Zakharov equa-
tion in the study of nonlinear systems, we will seek bright–dark rogue wave solutions of
the (2+1)-dimensional variable-coefficient Zakharov equation, aiming to achieve new break-
throughs in the study of nonlinear systems. The following sections introduce the concepts
related to bright–dark rogue wave solutions and the methods for solving the equation.

Rogue wave solutions, also known as bright rogue wave solutions, are a special
class of solutions in the study of nonlinear partial differential equations and have been
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a hot topic in nonlinear science in recent years. They have been observed in many nat-
ural and laboratory systems [15–19], especially in fluid dynamics and nonlinear optics
describing wave phenomena [20,21]. The concept of rogue waves originated in the ocean to
describe a peculiar type of ocean wave, characterized as a sudden wave that significantly
increases in amplitude over a short time against a background of zero or relatively small
amplitude, greatly exceeding the average level, and then disappearing shortly thereafter,
showing a very localized nature. In optics, bright rogue waves can be seen as high-intensity
light pulses that appear suddenly against an almost completely dark background and
then rapidly disappear. This phenomenon has been observed in nonlinear optical fiber
transmission, ocean wave dynamics, and other areas, often associated with the analytical
solutions of basic nonlinear models such as the nonlinear Schrödinger equation (NLSE)
and the Zakharov equation. Dark rogue wave solutions [22–27], also known as rogue
hole solutions [28], represent another phenomenon relative to bright rogue waves. They
form a localized low-intensity region or ‘hole’ in a continuous wave background. These
rogue wave solutions appear as dark areas against a relatively bright background and then
disappear within a short time [29]. The study of bright and dark rogue waves reveals the
complex dynamics of energy concentration and dissipation that can occur in nonlinear
systems under certain conditions [30–32].

Self-similar transformation plays a significant role in the study of nonlinear evolution
equations [33]. It is a scaling transformation based on the fundamental mathematical
concept of self-similarity, which refers to an object or mathematical entity exhibiting similar
forms or structures at different scales. In nonlinear dynamical systems in physics and
mathematics, self-similar transformation often translates the solution of an equation from
one scale to another while preserving the form of the solution in order to find analytical
or approximate solutions under specific conditions. This means that if a solution, after
appropriate scaling, can satisfy the same equation again, then this solution is considered
self-similar. By applying self-similar transformations, we can simplify a complex nonlinear
problem into a more manageable form, or reduce a multi-parameter problem to one with
fewer parameters, thereby making it easier to find analytical or approximate solutions [34].

The Darboux transformation, originally developed by Gaston Darboux, is an instru-
mental method in the study of nonlinear evolution equations, particularly in the construc-
tion of explicit solutions, such as rogue wave solutions. This transformation operates
through an elegant algebraic procedure that enables the generation of new solutions from
known ones without solving the differential equations directly. Its application in the field of
integrable systems, such as the nonlinear Schrödinger equation (NLS) and the Korteweg-de
Vries (KdV) equation, has been pivotal in deepening our understanding of the dynamics of
rogue waves. These solutions, often characterized by their extreme, transient nature, pro-
vide crucial insights into phenomena ranging from oceanography to optics. The Darboux
transformation not only facilitates the exploration of these complex wave structures but
also significantly simplifies the process of obtaining higher-order rogue wave solutions.
For instance, studies by Matveev and Salle demonstrated the transformation’s robustness
in generating multi-soliton solutions, a foundational aspect for analyzing rogue waves [35].
Further, Guo et al. expanded this application to uncover dynamics of rogue waves in fiber
optics using the NLS model [36]. These applications underscore the transformation’s utility
in translating theoretical mathematical concepts into practical analytical tools that can
predict and analyze high-energy wave phenomena in various physical contexts [37–40].

Within the realm of nonlinear dynamics, the self-similar and Darboux transformations
stand out for their unique abilities to streamline complex problem-solving. The self-
similar transformation reduces the complexity of nonlinear equations, converts multi-
parameter problems into simpler forms, and maintains the structural integrity of solutions
across varying scales. This characteristic is invaluable in modeling phenomena with
inherent self-similarity, such as turbulent flows and fractal patterns in nature. Conversely,
the Darboux transformation excels in generating exact solutions from known ones, a
process pivotal for revealing intricate dynamics like rogue waves. It also adeptly handles
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variable-coefficient equations, making it a potent tool in theoretical and applied sciences
where conditions often vary, highlighting its practical significance in adapting models
to real-world scenarios. These transformations not only provide clearer insights into the
mathematical structures they address but also enhance the applicability of solutions to
physical and engineering problems.

This paper, based on the research method provided in the literature [10], first estab-
lishes the self-similar transformation of the variable-coefficient (2+1)-dimensional Zakharov
equation. After reducing it to the (1+1)-dimensional variable-coefficient NLS equation,
with the aid of its Lax pair and Darboux transformation, we obtain the excitation of higher-
order bright and dark rogue waves on the x-y plane. Furthermore, we conduct a study on
various parameters and perform a dynamics analysis of the propagation characteristics
of bright and dark rogue waves. Then, we will analyze the propagation characteristics of
bright and dark rogue waves and draw plenty of pictures, from which we will show the
relationship between rogue wave characteristics and system parameters, and the evolution
process of rogue waves under the influence of multiple factors. This paper, has for the first
time successfully constructed high-order bright–dark rogue wave solutions in the (2+1)-
dimensional variable-coefficient Zakharov equation through the self-similar transformation
and the Darboux transformation.

2. Self-Similar Transformation of the (2+1)-Dimensional Variable-Coefficient
Zakharov Equation

This is the (2+1)-dimensional variable-coefficient Zakharov equation:

a1(t)iut + a2(t)uxy + a3(t)uv = 0, vx = |u|2y. (1)

Within the restraint of the Equation (1), the function u(x,y,t) is a complex-valued
function representing the wave function. This function depends on two spatial dimensions
(x and y) and time (t), evolving dynamically according to the equation. It is important
to note that u(x,y,t) being complex-valued, encodes both the amplitude and phase of the
wave, providing a rich mathematical framework for describing various wave phenomena
in (2+1) dimensions.

Introducing the self-similar transformation:

u(x, y, t) = ρ1(t)ϕ(ξ, ζ)exp[iφ(x, y, t)] (2)

v(x, y, t) = ρ2(t)ψ(ξ, ζ) (3)

where ρ1(t), ρ2(t), ϕ(ξ, ζ), ψ(ξ, ζ), φ(x, y, t), and ξ = ξ(x, y, t), ζ = ζ(t) are the to-be-
determined functions of the specified variables, substitution yields:

ut = eiφ(x,y,t)ϕρ1t + eiφ(x,y,t)ρ1
(
ζtϕζ + ξtϕξ

)
+ ieiφ(x,y,t)ϕρ1(t)φt, (4)

uxy = eiφ(x,y,t)ξxyρ1(t)ϕ(1,0)[ξ(x, y, t), ζ(t)]

+ eiφ(x,y,t)ξxξyρ1(t)ϕ(2,0)[ξ(x, y, t), ζ(t)]

+ ieiφ(x,y,t)ξxρ1(t)ϕ(1,0)[ξ(x, y, t), ζ(t)]φy

+ ieiφ(x,y,t)ξyρ1(t)ϕ(1,0)[ξ(x, y, t), ζ(t)]φx

− eiφ(x,y,t)ϕ[ξ(x, y, t), ζ(t)]ρ1(t)φy φx

+ ieiφ(x,y,t)ϕ[ξ(x, y, t), ζ(t)]ρ1(t)φxy,

(5)

vx = ξxρ2(t)ψ(1,0)[ξ(x, y, t), ζ(t)], (6)
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|u|2y = 2e−2Im[φ(x,y,t)]|ϕ[ξ(x, y, t), ζ(t)]ρ1(t)|ξyρ1(t)
d
dt
|ϕ[ξ(x, y, t), ζ(t)]ρ1(t)|

× ϕ(1,0)[ξ(x, y, t), ζ(t)]

− 2e−2Im[φ(x,y,t)]|ϕ[ξ(x, y, t), ζ(t)]ρ1(t)|2
d
dt

Im[φ(x, y, t)]φy

= eiφ(x,y,t)ϕ[ξ(x, y, t), ζ(t)]ρ1t

+ eiφ(x,y,t)ρ1(t)
(

ζtϕ
(0,1)[ξ(x, y, t), ζ(t)] + ξtϕ

(1,0)[ξ(x, y, t), ζ(t)]
)

+ ieiφ(x,y,t)ϕ[ξ(x, y, t), ζ(t)]ρ1(t)φt(x, y, t).

(7)

After substituting into the original equation, it leads to the derivation:

iϕ
(
a1ρ1t + a2ρ1 φxy

)
+ a2ρ1ξxyϕξ + iϕξ ρ1

(
a2 φxξy + a1ξt + a2 φyξx

)
− ρ1ϕ

(
a1 φt + a2 φx φy

)
+ iρ1ζtϕζ a1 + ρ1ξxξyϕξξ a2 + ρ1ρ2ϕψa3 = 0

(8)

ρ2ψξ ξx = ρ2
1|ϕ|2ξ ξy (9)

In order to transform into the (1+1)-dimensional variable-coefficient nonlinear
Schrödinger (NLS) equation, the variables above need to satisfy the following relationships:

ξxy = 0 (10)

a1ξt + a2 φxξy + a2 φyξx = 0 (11)

a1 φt + a2 φx φy = 0 (12)

ζt = ξxξy (13)

a1ρ1t + a2ρ1 φxy = 0 (14)

ρ2
1ξy = ρ2ξx = 2ξxζt (15)

After satisfying the above relationships, the original equation has been transformed
into the (1+1)-dimensional variable-coefficient nonlinear Schrödinger (NLS) equation:

ia1(t)ϕζ + a2(t)ϕξξ + a3(t)2ϕ|ϕ|2 = 0 (16)

Given the certain symmetry of the Zakharov equation with respect to the spatial
variables x and y, and in conjunction with the literature, we define the similarity variable
ξ as:

ξ = κ(t)(x + γy) + ω(t) (17)

Combining Equation (17), and from Equation (11), we can obtain:

φ(x, y, t) = −α(t)
2

(x + γy)2 − β(t)(x + γy)− σ(t) (18)

From Equations (11)–(15), we sequentially obtain:
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F(t) =
∫ t

1

2γa2(k1)

a1(k1)
dk1

α(t) = − 1
F(t) + c1

κ(t) =
c1c2

c1 + F(t)

β(t) =
c3c4

c3 + F(t)
ω(t) = c1c2c4ln(c1 + F(t))− ln(c1)

σ(t) =
−c2

3c2
4

c3 + F(t)
+ c2

4 + c5

ζ(t) = γc2
1c2

2

∫ t

1

1
(c1 + F(k4))2 dk4 + c3

ρ1(t) =
√

2C1C2

C1 + F(t)

ρ2(t) =
2γc2

1c2
2

(c1 + F(t))2

(19)

We have now successfully used the self-similar transformation to map the (2+1)-
dimensional variable-coefficient Zakharov equation to the (1+1)-dimensional variable-
coefficient nonlinear Schrödinger (NLS) equation.

3. The Lax Pair and Darboux Transformation of the (1+1)-Dimensional Variable-
Coefficient Nonlinear Schrödinger (NLS) Equation

For our equation:

ia1(t)ϕζ + a2(t)ϕξξ + a3(t)2ϕ|ϕ|2 = 0 (20)

Its Lax pair is: [41]

Ψξ = UΨ (21)

U =

(
λa1(t) a1(t)ϕ
−a1(t)ϕ̄ −λa1(t)

)
(22)

and

Ψζ = VΨ (23)

V = i

2a1(t)a2(t)λ2 + a3(t)
a1(t)

|ϕ|2 a2(t)ϕξ + 2a1(t)a2(t)λϕ

a2(t)ϕ̄ξ − 2a1(t)a2(t)λϕ̄ −2a1(t)a2(t)λ2 − a3(t)
a1(t)

|ϕ|2

 (24)

Substituting into the Lax equation Uζ − Vξ + [U, V] = 0, to satisfy the compatibility
condition, it is required that

a1(t)a2(t) =
a3(t)
a1(t)

(25)

This indicates that among the three variable coefficients of the original equation, only
two degrees of freedom exist.
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In the (1+1)-dimensional variable-coefficient nonlinear Schrödinger (NLS) equation,
the Darboux transformation is defined as follows:

Ψ[1] = T[1]Ψ, ϕ[1] = ϕ + 2(λ∗
1 − λ1)(P[1])21 (26)

where

T[1] = λ − λ∗
1 + (λ∗

1 − λ1)P[1], P[1] =
Ψ1Ψ†

1
Ψ†

1Ψ1
(27)

Ψ1 is a particular solution of the linear system (21–24) when substituting λ = λ1;
(P[1])21 represents the element in the second row and the first column of the matrix P[1],
and the dagger symbol denotes the conjugate transpose of the matrix.

If we substitute N distinct seed solutions Ψk, (k = 1, 2, . . . , N) into the Lax pair, then
we can repeatedly perform the fundamental Darboux transformation. To carry out the
second transformation, we substitute Ψ2, which is given by Ψ2[1] = T[1]|λ=λ2 Ψ2, therefore:

T[2] = λ − λ∗
2 + (λ∗

2 − λ2)P[2], P[2] =
Ψ2[1]Ψ†

2[1]
Ψ†

2[1]Ψ2[1]
(28)

Let Ψ1(λ1), Ψ2(λ2), . . . , Ψn(λn) be n independent solutions of the Lax pair. We per-
form a Taylor expansion for each of them at λi, yielding:

Ψi(λi + δ) = Ψi + Ψ[1]
i δ + Ψ[2]

i δ2 + · · ·+ Ψ[mi ]
i δN + . . . (i = 1, 2, . . . , n) where

Ψ[j]
i =

1
j!

∂j

∂ζ j Ψi(ζ)|ζ=ζi (j = 1, 2, . . . ) (29)

We define:

T = ΓnΓn−1 . . . Γ1Γ0 Γi = Ti[mi] . . . Ti[1](i ≥ 1) Γ0 = I (30)

where [36]

Ti[j] = λ − λ∗
i + (λ∗

i − λi)Pi[j] Pi[j] =
Ψi[j − 1]Ψ†

i [j − 1]
Ψ†

i [j − 1]Ψi[j − 1]
1 ≤ j ≤ mi (31)

Ψi[0] = (Γi−1 . . . Γ1Γ0)|λ=λi Ψi (32)

Ψi [k] = lim
δ→0

[δ + Ti [k]λ=λi ] · · · [λ + Ti [2]λ=λi ][δ + Ti [1]λ=λi ]Γi−1(λi + δ) · · · Γ1(λi + δ)Γ0Ψi(λi + δ)

δk (33)

= Ψi +
k

∑
s=1

∑l
j=1 k j + s = k

∑
mi≥h(i)1 >···>h(i)ki

≥1

i≥g1>···>gl≥1

i f g1=i, then h(1)1 ≤k

(Tg1 [h
(1)
1 ] · · · Tg1 [h

(1)
k1

] · · · Tg1 [h
(l)
1 ] · · · Tgl [h

(l)
kl
])|λ=λ1 Ψ[s]

i (34)

where 1 ≤ k ≤ mi, we thus obtain the general Darboux transformation of the nonlinear
Schrödinger (NLS) equation:

Ψ[N] = TΨ ϕ[N] = ϕ + 2
n

∑
i=1

mi

∑
j=1

(λ∗
i − λi)(Pi[mj])21

(
N = n +

n

∑
k=1

mk

)
(35)

Now, let us start from the seed solution ϕ[0] = eiζ
∫

2a1(t)a2(t) dt and set λ = ih.
We obtain
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Ψ1(h) =

(
i(c1eΩ − c2e−Ω)e−iζ

∫
a1(t)a2(t)dt

(c2eΩ − c1e−Ω)eiζ
∫

a1(t)a2(t)dt

)
(36)

where,

c1 =

√
h −

√
h2 − 1√

h2 − 1
(37)

c2 =

√√
h2 − 1 + h√
h2 − 1

(38)

Ω =
√

h2 − 1(ξ + ihζ
∫

2a1(t)a2(t)dt −
∫ a2(t)

a1(t)
dt) (39)

Let h = 1 + d2, expanding the vector function Ψ1(d) at d = 0, we have

Ψ1(d) = Ψ1(0) + Ψ[1]
1 d2 + · · ·

Ψ1(0) =

ie−iζ
∫

a1(t)a2(t) dt
(

4iζ
∫

a1(t)a2(t) dt − 2
∫ a2(t)

a1(t) dt + 2ξ − 1
)

eiζ
∫

a1(t)a2(t) dt
(

4iζ
∫

a1(t)a2(t) dt − 2
∫ a2(t)

a1(t) dt + 2ξ + 1
) ,

and

Ψ[1]
1 =

(
∆11

a
∆11

b

)
,

where

∆11
a =

1
12

e−iζ
∫

a1(t)a2(t) dt

(
12i
(∫ a2(t)

a1(t)
dt
)2

(4iζ
∫

a1(t)a2(t) dt + 2ξ − 1)− 6i
∫ a2(t)

a1(t)
dt(4iζ

∫
a1(t)a2(t) dt + 2ξ − 1)2

+ 4ζ(
∫

a1(t)a2(t) dt)(−3(4(ξ − 1)ξ + 5) + 4ζ(
∫

a1(t)a2(t) dt)(4ζ
∫

a1(t)a2(t) dt − 6iξ + 3i))− 8i
(∫ a2(t)

a1(t)
dt
)3

+i
(

2ξ
(

4ξ2 − 6ξ + 3
)
+ 3
))

∆11
b =

1
12

eiζ
∫

a1(t)a2(t) dt

(
12
(∫ a2(t)

a1(t)
dt
)2

(4iζ
∫

a1(t)a2(t) dt + 2ξ + 1)− 6
∫ a2(t)

a1(t)
dt(4iζ

∫
a1(t)a2(t) dt + 2ξ + 1)2

+ 4ζ(
∫

a1(t)a2(t) dt)(4ζ(
∫

a1(t)a2(t) dt)(−4iζ
∫

a1(t)a2(t) dt − 6ξ − 3) + 3i(4ξ(ξ + 1) + 5))− 8
(∫ a2(t)

a1(t)
dt
)3

+2ξ
(

4ξ2 + 6ξ + 3
)
− 3
)

and

Ψ[2]
1 =

(
∆12

a
∆12

b

)
where

∆12
a =

1
480

ie−iζ
∫

a1(t)a2(t) dt

(
2

(
512iζ5

(∫
a1(t)a2(t) dt

)5

+ 640ζ4
(∫

a1(t)a2(t) dt
)4(

−2
∫ a2(t)

a1(t)
dt + 2ξ − 1

)

− 320iζ3
(∫

a1(t)a2(t) dt
)3
(

4
(∫ a2(t)

a1(t)
dt
)2

− 8ξ
∫ a2(t)

a1(t)
dt + 4(ξ − 1)ξ + 15

)

+ 80ζ2
(∫

a1(t)a2(t) dt
)2
(

4
(∫ a2(t)

a1(t)
dt
)3

− 12ξ

(∫ a2(t)
a1(t)

dt
)2

+ (12(ξ − 1)ξ + 33)
∫ a2(t)

a1(t)
dt

−2ξ
(

4ξ2 − 6ξ + 33
)
+ 27

)
+ 80iζ

∫
a1(t)a2(t) dt

((∫ a2(t)
a1(t)

dt
)3

− 3ξ

(∫ a2(t)
a1(t)

dt
)2

+
(

6ξ2 − 8ξ + 21
) ∫ a2(t)

a1(t)
dt

+ξ(−2(ξ − 2)ξ − 21) + 15) +
(∫ a2(t)

a1(t)
dt
)(

20
(

2ξ
(

4ξ2 − 6ξ + 9
)
− 3
) ∫ a2(t)

a1(t)
dt
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+ 8
(∫ a2(t)

a1(t)
dt
)2(∫ a2(t)

a1(t)
dt
(
−2

∫ a2(t)
a1(t)

dt + 10ξ − 5
)
− 5(4(ξ − 1)ξ + 3)

)
−40ξ(ξ(2(ξ − 2)ξ + 9)− 3) + 15) + 420iζ

∫
a1(t)a2(t) dt + 2ξ(4ξ(2ξ(ξ(2ξ − 5) + 15)− 15)− 15)− 45

)

∆12
b =

1
480

eiζ
∫

a1(t)a2(t) dt

(
40
(∫ a2(t)

a1(t)
dt
)2(

4ζ

(∫
a1(t)a2(t) dt

)(
4ζ

(∫
a1(t)a2(t) dt

)(
−4iζ

∫
a1(t)a2(t) dt − 6ξ − 3

)
+3i(4ξ(ξ + 1) + 7)) + 2ξ

(
4ξ2 + 6ξ + 9

)
+ 3
)
+ 10

∫ a2(t)
a1(t)

dt
(
−(2ξ + 1)

(
2ξ
(

4ξ2 + 6ξ + 15
)
− 3
)

+ 16ζ

(∫
a1(t)a2(t) dt

)(
2ζ

(∫
a1(t)a2(t) dt

)(
8ζ

(∫
a1(t)a2(t) dt

)(
−ζ

∫
a1(t)a2(t) dt + 2iξ + i

)
(
+12ξ(ξ + 1) + 33)− i

(
2ξ
(

4ξ2 + 6ξ + 21
)
+ 15

)))
+ 4ζ

(∫
a1(t)a2(t) dt

)(
8ζ

(∫
a1(t)a2(t) dt

)
(
−5
(

2ξ
(

4ξ2 + 6ξ + 33
)
+ 27

)
+ 4ζ

(∫
a1(t)a2(t) dt

)(
2ζ

(∫
a1(t)a2(t) dt

)(
4iζ

∫
a1(t)a2(t) dt + 10ξ + 5

)
−5i(4ξ(ξ + 1) + 15)) + 5i(2ξ + 1)

(
2ξ
(

4ξ2 + 6ξ + 39
)
+ 21

))
+ 80

(∫ a2(t)
a1(t)

dt
)4(

4iζ
∫

a1(t)a2(t) dt + 2ξ + 1
)

− 80
(∫ a2(t)

a1(t)
dt
)3(

8ζ

(∫
a1(t)a2(t) dt

)(
−2ζ

∫
a1(t)a2(t) dt + 2iξ + i

)
+ 4ξ(ξ + 1) + 3

)
−32

(∫ a2(t)
a1(t)

dt
)5

+ 2ξ(4ξ(2ξ(ξ(2ξ + 5) + 15) + 15)− 15) + 45

)

It is clear that Ψ1(0) is a solution for the Lax pair at λ = i. We takeλk = i
(k = 1, 2, 3, . . . )

Utilizing Equations (30)–(35), we specifically substitute to obtain:

Ψ1[1] = lim
d→0

[id2 + T1[1]]Ψ1(d)
d2 = T1[1]Ψ

[1]
1 + Ψ1(0)

T1[1] = 2i(I − Ψ1(0)Ψ1(0)†

Ψ1(0)†Ψ1(0)
)

Substituting into Formula (26), we obtain

ϕ[1] = e2iζ
∫

a1(t)a2(t) dt(1 +
D1

D2
) (40)

where

D1 = −(32 + 16i)ζ2(
∫

a1(t)a2(t) dt)2

− 8ζ
∫

a1(t)a2(t) dt + (16 + 8i)ξ
(∫ a2(t)

a1(t)
dt
)
− (8 + 4i)

(∫ a2(t)
a1(t)

dt
)2

−
(
(8 + 4i)ξ2

)
+ (−2 + i)

D2 = 2

(
16ζ2(

∫
a1(t)a2(t) dt)2 − 8ξ

(∫ a2(t)
a1(t)

dt
)
+ 4
(∫ a2(t)

a1(t)
dt
)2

+ 4ξ2 + 1

)

meanwhile
T1[2] = λ − λ∗

1 + (λ∗
1 − λ1)P1[2]

Substituting into Equation (28), we obtain the second-order rogue wave solution.

ϕ[2] = e2iζ
∫

a1(t)a2(t) dt(1 +
D3

D4
)

The specific analysis results for D3 and D4 are detailed in Appendix A.
Upon specific substitution into Equations (30)–(35), the corresponding Darboux trans-

formation for the third-order rogue wave solution is:

T1[3] = λ − λ∗
2 + (λ∗

2 − λ2)P1[3]

P1[3] =
Ψ1[2]Ψ1[2]†

Ψ1[2]†Ψ1[2]
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ϕ[3] = ϕ[2] + 2(λ∗
2 − λ2)(P1[3])21

The obtained third-order rogue wave solution is detailed in Appendix B.
When ai(t) = 1 (where i = 1, 2, 3), the results for the anomalous waves coincide with

the constant coefficient results found in [42].
Assuming that N distinct solutions Ψi = (ψi, υi)

T (i = 1, 2, . . . , N) are given for the
spectral problem (21)–(24) at λ = λ1 = · · · = λn and expanding

(λi + δ)jψi(λi + δ) = λ
j
iψi + ψi[j, 1]δ + ψi[j, 2]δ2 + · · ·+ ψi[j, mi]δ

mi + · · · (41)

(λi + δ)jυi(λi + δ) = λ
j
iυi + υi[j, 1]δ + υi[j, 2]δ2 + · · ·+ υi[j, mi]δ

mi + · · · (42)

with [43]

ψi[j, m] =
1

m!
∂m

∂λm

[
λjψi(λ)

]∣∣∣∣
λ=λi

, υi[j, m] =
1

m!
∂m

∂λm

[
λjυi(λ)

]∣∣∣∣
λ=λi

(j = 0, 1, . . . , N, m = 1, 2, 3, . . .)
Based on the N-fold Darboux transformation (29)–(35) for the variable coefficient NLS

Equation (20), when substituting the seed solution

ϕ[0] = ϕ = eiζ
∫

2a1(t)a2(t) dt, (43)

we have

ϕ[N] = ϕ − 2
Da

Db
, Da = det([H1 . . . Hn]), Db = det([G1 . . . Gn]) (44)

where N = n + ∑n
k=1 mk and [42]

Gi =



λN−1
i ψi · · · ψi[N − 1, mi] −λ

∗(N−1)
i υ∗i · · · −υi[N − 1, mi]

∗

· · · · · · · · · · · · · · · · · ·
ψi · · · ψi[0, mi] −υ∗i · · · −υi[0, mi]

∗

λN−1
i υi · · · υi[N − 1, mi] λ

∗(N−1)
i ψ∗

i · · · ψi[N − 1, mi]
∗

· · · · · · · · · . . . · · ·
υi · · · υi[0, mi] ψ∗

i · · · ψi[0, mi]
∗


, (45)

Hi =



λN
i υi · · · υi[N, mi] λ∗N

i ψ∗
i · · · ψi[N, mi]

∗

λN−2
i ψi · · · ψi[N − 2, mi] −λ

∗(N−2)
i υ∗i · · · −υi[N − 2, mi]

∗

· · · · · · · · · · · · · · ·
ψi · · · ψi[0, mi] −υ∗i · · · −υi[0, mi]

∗

λN−1
i υi · · · υi[N − 1, mi] λ

∗(N−1)
i ψ∗

i · · · ψi[N − 1, mi]
∗

· · · · · · · · · · · · · · ·
υi · · · υi[0, mi] ψ∗

i · · · ψi[0, mi]
∗


. (46)

We point out that, applied to special seed solution (43), (39) enables us to have a
determinant form for higher-order rogue wave solutions. We considered (ψ1, υ1) above at
(36)–(39).

Substituting λk = i (k = 1, 2, 3, . . . ), the associated Taylor expansions become

ij
(

1 + h2
)j

ψ1(h) = ijψ1(0) + ψ1[j, 1]h2 + · · ·+ ψ1[j, N]h2N + · · · ,

ψ1[j, n] =
1

(2n)!
∂2n

∂h2n

[
ij
(

1 + h2
)j

ψ1(d)
]∣∣∣∣

h=0
,

ij
(

1 + h2
)j

υ1(h) = ijυ1(0) + υ1[j, 1]h2 + · · ·+ υ1[j, N]h2N + · · · ,

υ1[j, n] =
1

(2n)!
∂2n

∂h2n

[
ij
(

1 + h2
)j

υ1(h)
]∣∣∣∣

h=0
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(j = 0, 1, . . . , N, n = 1, 2, 3, . . .)
Then it follows that the N th-order rogue wave solution for the NLS Equation (20), reads

ϕ[N] =

[
1 − 2

Da

Db

]
e2iζ

∫
a1(t)a2(t) dt (47)

where

Da =

∣∣∣∣∣∣∣∣∣∣∣∣∣

iN−1ψ1 · · · ψ1[N − 1, N − 1] −(−i)(N−1)υ∗1 · · · −υ1[N − 1, N − 1]∗

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψ1[0, N − 1] −υ∗1 · · · −υ1[0, N − 1]∗

iN−1υ1 · · · υ1[N − 1, N − 1] −i(N−1)ψ∗
1 · · · ψ1[N − 1, N − 1]∗

· · · · · · · · · · · · · · ·
υ1 · · · υ1[0, N − 1] ψ∗

1 · · · ψ1[0, N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣

Db =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iNυ1 · · · υ1[N, N − 1] (−i)Nψ∗
1 · · · ψ1[N, N − 1]∗

iN−2ψ1 · · · ψ1[N − 2, N − 1] −(−i)(N−2)υ∗1 · · · −υ1[N − 2, N − 1]∗

· · · · · · . . . . . . · · ·
ψ1 · · · ψ1[0, N − 1] −υ∗1 · · · −υ1[0, N − 1]∗

iN−1υ1 · · · υ1[N − 1, N − 1] (−i)(N−1)ψ∗
1 · · · ψ1[N − 1, N − 1]∗

. . . · · · . . . . . . · · ·
υ1 · · · υ1[0, N − 1] ψ∗

1 · · · ψ1[0, N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Utilizing the self-similar inverse transformation, as derived through Equations (2) and (3),
the results for higher-order rogue wave solutions (47) of the (1+1)-D variable-coefficient
NLS equation, can be substituted back into the original Equation (1). Consequently, we
obtain the N-th order rogue wave solution for the original equation as follows:

u(x, y, t)[N] =

√
2C1C2

C1 + F(t)
ϕ[N]exp[i(

(x + γy)2

2(F(t) + C1)
− c3c4(x + γy)

c3 + F(t)
+

c2
3c2

4
c3 + F(t)

− c2
4 − c5)]

When ai(t) = 1 (where i = 1, 2), the results for the anomalous waves u[1] and u[2]
coincide with the constant coefficient results found in the literature [10].

4. Dynamics Analysis of the Propagation Characteristics of Bright and Dark
Rogue Waves

The constant c5 does not appear in the modulus part of the rogue wave solution,
hence, it does not affect the amplitude of the rogue wave. Because the constant parameters
ci (i = 1, 2, 3, 4) and γ are mutually independent of the time-dependent coefficients, we
initially choose the set of time-dependent coefficients a2(t) = 2 and a1(t) = 1 to investigate
the influence of constant parameters and time on the rogue wave. The parameter for F(t) is
automatically determined once a1(t), a2(t), and γ are specified, given that F(t) is defined
by (19), the integral expression F(t) =

∫ t
1

2γa2(k1)
a1(k1)

dk1.
Figure 1 and its corresponding density plot in Figure 2 illustrate the initial state

and evolution of first-order bright–dark rogue waves. The three-dimensional plot and
the density plot reveal a concentrated wave energy core that diffuses over time while
maintaining a clear distinction between the bright and dark components of the wave.

The provided images display both 3D surface plots and density plots created using
Mathematica. These visualizations utilize a “Rainbow” color function to map the height
(i.e., the absolute value of the function) onto various colors spanning the visible light
spectrum. Additionally, a mesh is incorporated for enhanced visualization, allowing for
clearer delineation of the function’s topology. The "Rainbow" color function systematically
maps different heights of the plot to a gradient of colors, ranging from purple for the lowest
values to red for the highest.
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Figure 1. The three-dimensional evolution plot of first-order bright–dark rogue waves u[1] at
t = 2, 4, 8, with γ = 5 and ci = 1.

Figure 2. The density plot depicting the evolution of first-order bright–dark rogue waves u[1] at
t = 2, 4, 8, with γ = 5 and ci = 1.

In Figures 3 and 4, we ascend to the second-order bright–dark rogue wave solutions.
The increased order introduces more complex wave structures. The peaks and troughs are
more pronounced, and the interaction between the bright and dark elements becomes more
dynamic, reflecting a more complicated energy distribution within the wave system.

Figure 3. The three-dimensional evolution plot of second-order bright–dark rogue waves u[2] at
t = 2, 4, 8, with γ = 5 and ci = 1.

Figure 4. The density plot illustrating the evolution of second-order bright–dark rogue waves u[2] at
t = 2, 4, 8, with γ = 5 and ci = 1.

Figures 5 and 6 present the third-order bright–dark rogue wave solutions. The com-
plexity further escalates, displaying an intricate pattern of wave propagation. These
higher-order solutions indicate the presence of multiple rogue wave peaks, embodying a
system where high-energy concentration areas and points of minimal energy alternate in a
complex but systematic manner.
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Figure 5. The three-dimensional evolution plot of third-order bright–dark rogue waves u[3] at
t = 2, 4, 8, with γ = 5 and ci = 1.

Figure 6. The density plot illustrating the evolution of third-order bright–dark rogue waves u[3] at
t = 2, 4, 8, with γ = 5 and ci = 1.

From Figures 1–6, a multifaceted evolution of bright–dark rogue waves is depicted,
showcasing the intricate interplay between system parameters and the physical properties
of the waves. As time progresses, we observe not only an expansion in the spatial range over
which the rogue waves propagate, indicating diffusion, but also a noticeable diminution in
their peak amplitude. This diminishing amplitude is indicative of energy redistribution
within the wave system.

Figures 7 and 8 vividly capture the profound effect of the parameter γ on the formation
and characteristics of second-order bright–dark rogue waves. The three-dimensional
and density plots both articulate how γ governs the emergence, spatial positioning, and
amplitude metrics relative to the background energy level of the waves. A diminutive γ is
seen to correlate with an escalated quantity of rogue wave formations, each manifesting
with a pronounced amplitude. This is indicative of γ’s role in enhancing the nonlinearity of
the system; a smaller γ intensifies the nonlinearity, resulting in a more robust rogue wave
occurrence, characterized by heightened peaks that starkly contrast against the surrounding
sea state.

Specifically, the plots demonstrate a scenario where the waves, under a lower γ value,
appear tightly packed and energetically superior, suggesting a state of increased wave
interaction and energy transfer. This visually translates into a strikingly varied landscape
of peaks and troughs. Conversely, a larger γ value scatters the rogue waves, reducing
their amplitude and presenting a calmer wave field, indicative of weaker nonlinearity and
diminished wave interaction.

Figure 7. The three-dimensional plot of second-order bright–dark rogue waves at t = 2, with
γ = 0.5, 2, 9 and ci = 1.
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Figure 8. The density plot illustrating the second-order bright–dark rogue waves at t = 2, with
γ = 0.5, 2, 9 and ci = 1.

Figures 9 and 10 allow for an assessment of the parameter c1’s subtle and nuanced
role in the evolution of bright–dark rogue waves. The increment in c1 is observed to
marginally nudge the progression between bright and dark rogue waves and mildly bolster
the amplitude of these waveforms. Notably, these adjustments are slight, underpinning
the robustness and stability of the rogue wave structure against variations in c1. Despite
a range of c1 values, the overall silhouette and spatial configuration of the rogue waves
exhibit a striking steadfastness. The constancy in shape underscores the inherent stability of
the wave formation process, suggesting that the physical mechanisms dictating the rogue
wave formation are relatively insensitive to the scaling factor introduced by c1.

Figure 9. The three-dimensional plot of second-order bright–dark rogue waves at t = 2, with γ = 5,
c1 = 3, 6, 55, and c2,3,4 = 1

Figure 10. The density plot illustrating the second-order bright–dark rogue waves at t = 2, with
γ = 5, c1 = 3, 6, 55, and c2,3,4 = 1.

This observation reinforces the understanding that while certain system parameters
may offer fine adjustments to wave characteristics, the fundamental properties of rogue
waves—such as their spatial distribution and essential structure—are resilient to these
parameter changes. The persistence of the wave form, despite the varying c1, underscores
the dominance of other physical forces and parameters at play, which more profoundly
shape the rogue wave phenomenon.

Figures 11 and 12 elucidate the pivotal role of the parameter c2 in dictating the config-
uration and spatial extent of second-order dark rogue waves. These figures, comprising
both three-dimensional plots and density plots, indicate that variations in c2 subtly refine
the distribution and breadth of dark rogue wave formations. Specifically, an increment in
c2 is associated with a modest increase in the prevalence of dark rogue wave occurrences,
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leading to a fusion of adjacent waves and thereby broadening the overall expanse of the
dark regions within the wave profile.

This gentle increase in c2 facilitates a discernible consolidation among individual dark
rogue waves, contributing to a wider collective wave structure without drastically altering
the overall wave pattern. Such behavior exemplifies the nuanced influence of c2 on the
dark rogue waves’ morphology, reinforcing its role as a fine-tuning parameter within the
dynamical system. The essence of this effect is a controlled expansion of the dark regions,
effectively changing the wave’s visual and physical presence while preserving the integrity
of the individual wave features.

Figure 11. The three-dimensional plot of second-order bright–dark rogue waves at t = 2, with γ = 5,
c2 = 3, 8, 25, and c1,3,4 = 1.

Figure 12. The density plot illustrating the second-order bright–dark rogue waves at t = 2, with
γ = 5, c2 = 3, 8, 25, and c1,3,4 = 1.

In Figures 13 and 14, the parameter c3 is exhibited as a determinant factor in the
morphological transition from bright to dark rogue waves, providing a visualization of how
variations in c3 lead to observable changes in the waves’ features. The three-dimensional
and density plots together demonstrate that, with an increase in c3, there is a notable shift
in the morphology of the rogue wave field, fostering the evolution of wave features from
bright, high-energy peaks to dark troughs that are less pronounced in amplitude.

This transition, while visually striking, does not correspond with an alteration in the
amplitude of the individual waves; rather, the changes are contained within the visual form
and distribution of the rogue waves. The plots illustrate that the secondary waves—additional
wave structures that appear alongside the primary rogue wave peaks—adapt their shapes in
response to c3 without a concurrent increase or decrease in peak amplitude. This implies a
remarkable stability in the wave energy distribution despite the evolving appearance of the
waves across the parameter changes.

Figure 13. The three-dimensional plot of second-order bright–dark rogue waves at t = 2, with γ = 5,
c3 = 2, 5, 10, and c1,2,4 = 1.
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Figure 14. The density plot illustrating the second-order bright–dark rogue waves at t = 2, with
γ = 5, c2 = 2, 5, 10, and c1,3,4 = 1.

Figures 15 and 16 showcase the influence of c4 on the morphological characteristics
of bright–dark rogue waves, with the parameter exerting a moderate influence on the
transition dynamics. The visualization provided by the three-dimensional and density
plots indicates that c4 assists in the evolution from bright to dark features within the wave
pattern. While this assistance is evident, it operates within the bounds of the existing wave
structure, contributing to but not decisively determining the overall wave morphology.

Despite c4’s involvement in the evolution process, the amplitude of the rogue waves
exhibits resilience to these parameter changes, maintaining a relative constancy that sug-
gests an underlying robustness in the system. The parameter c4 thus appears to refine
the features of the waves subtly, affecting their appearance and the smoothness of their
transitions without eliciting a profound change in their peak energies.

Next, we will discuss the influence of variable coefficients on the dynamics of bright–
dark rogue waves.

Figure 15. The three-dimensional plot of second-order bright–dark rogue waves at t = 2, with γ = 5,
c4 = 3, 7, 10, and c1,2,3 = 1.

Figure 16. The density plot illustrating the second-order bright–dark rogue waves at t = 2, with
γ = 5, c4 = 3, 7, 10, and c1,2,3 = 1.

Figures 17–20 collectively illustrate the substantial influence of variable coefficients on
the formation and evolution of first-, second-, and third-order bright–dark rogue waves. For
simplifying the numerical simulation of the solutions, despite the constant value of a1(t),
the variation in a2(t) introduces distinct dynamic behaviors in the waveforms. Employing
a single variable coefficient a2 suffices to illustrate the impact of coefficients on wave
dynamics.

In Figure 17, the linear variation in a2(t) introduces a scaling effect on the waves
and results in a proportionate spatial modulation of the wave features, with each order
exhibiting an adjusted pattern that reflects the linear growth of the coefficient. Figure 18
demonstrates the rogue waves under a quadratic coefficient. At the same time instance,
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the higher-order influence of a2(t) manifests in a more accentuated transformation of the
wave patterns. The first-order waves show a subtle increase in peak sharpness compared
to the linear case, whereas the higher-order waves, especially the third-order, display a
more pronounced spatial complexity. The crests and troughs become more distinct with
increased peak steepness and trough depth, suggesting a nonlinear amplification effect on
the spatial features of the waves due to the quadratic nature of a2(t).

Figure 19 introduces a sinusoidal variation in a2(t) with sin(t), leading to periodic
modulations in the waveforms. This sinusoidal factor causes the rogue waves to exhibit a
rhythmic pattern in their height and spatial distribution, reflecting the oscillatory modu-
lation imposed by a2(t). Finally, Figure 20, with an exponential function et defining a2(t),
shows an intense and accelerating alteration in the wave structures. The waves now display
a rapid increase in both the height and complexity, highlighting an exponential sensitivity
to the temporal coefficient.

This sequence of figures reveals that the temporal behavior of a2(t) significantly
influences the rogue waves’ spatial and temporal characteristics. The degree of change
ranges from linear stretching and broadening to oscillatory modulation and exponential
amplification, illustrating the responsive nature of rogue wave structures to the time-
dependent changes in system parameters.

Figure 17. The three-dimensional plots of first-, second-, and third-order bright–dark rogue waves at
t = 3, with γ = 5, ci = 1, and a1(t) = 1, a2(t) = t.

Figure 18. The three-dimensional plots of first-, second-, and third-order bright–dark rogue waves at
t = 3, with γ = 5, ci = 1, and a1(t) = 1, a2(t) = t2.

Figure 19. The three-dimensional plots of first-, second-, and third-order bright–dark rogue waves at
t = 3, with γ = 5, ci = 1, and a1(t) = 1, a2(t) = sin(t).

Figure 20. The three-dimensional plots of first-, second-, and third-order bright–dark rogue waves at
t = 3, with γ = 5, ci = 1, and a1(t) = 1, a2(t) = et.
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5. Conclusions

This paper has focused on the (2+1)-dimensional variable-coefficient Zakharov equa-
tion and has successfully constructed high-order bright–dark rogue wave solutions through
the self-similar transformation and Darboux transformation. The research has demon-
strated that these solutions can reveal the complex dynamics of energy concentration and
energy dissipation in nonlinear wave propagation in oceanic rogue waves. Through the
dynamic analysis of the propagation characteristics of rogue waves, this study has eluci-
dated the significant influence of system parameters and variable coefficient selection on
the waveform shape, amplitude, and evolution process. It has been particularly found that
the selection of variable coefficients can significantly alter the shape of the waveform, while
adjustments to the constant parameters have affected the number, position, and relationship
with the background level of the rogue waves. Furthermore, the physical implications
of these findings extend to practical scenarios where understanding and predicting the
behavior of rogue waves can be crucial. For instance, the ability to manipulate wave
characteristics through parameter adjustments provides valuable insights for designing
maritime structures resilient to such extreme conditions. This ability highlights the direct
applicability of mathematical transformations in engineering practices aimed at reducing
risks associated with high-energy wave events.

The innovative points of this paper are as follows: This paper, with the help of
the method given in the literature [10], has, for the first time, successfully constructed
high-order bright–dark rogue wave solutions in the (2+1)-dimensional variable-coefficient
Zakharov equation through the self-similar transformation and Darboux transformation,
providing a new analytical tool for understanding nonlinear wave phenomena. Through
numerical simulation and theoretical analysis, this paper has deeply explored the dynamic
behavior of rogue wave propagation characteristics, especially the impact of variable coeffi-
cients on rogue wave morphology, which has rarely been involved in previous research.
This paper has shown the relationship between rogue wave characteristics (such as number,
amplitude, morphology, etc.) and system parameters (such as constant parameters ci, λ and
variable coefficients aj(t)), providing theoretical guidance for the control and modulation of
nonlinear wave motion. Through detailed parameter research and image display, this paper
has comprehensively shown the evolution process of rogue waves under the influence of
multiple factors, providing a perspective for a deep understanding of the dynamic behavior
of nonlinear wave motion.

Compared with the literature [10], this paper has applied the self-similar transfor-
mation to the (2+1)-dimensional variable-coefficient Zakharov equation for the first time,
and has studied the impact of variable coefficients on bright–dark rogue wave solutions.
The literature [10] only studied the low-order linear rogue wave cluster of the constant
coefficient Zakharov equation, and this paper has studied the high-order bright–dark rogue
wave solution of the (2+1)-dimensional variable-coefficient Zakharov equation. The lit-
erature [10] indirectly studied the propagation characteristics of the Zakharov equation
with the help of the rogue wave solution of the degenerated NLS equation, and this paper
has directly studied the impact of various parameters on the high-order bright–dark rogue
wave solution of the (2+1)-dimensional variable-coefficient Zakharov equation.

In summary, this research has not only enriched the types of solutions of the (2+1)-
dimensional variable-coefficient Zakharov equation in theory but has also provided new
ideas and tools for the analysis and control of nonlinear wave motion in methodology,
which holds important academic value and application potential.
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Appendix A

D3 = (2048 − 1024i)(
∫ a2(t)

a1(t)
dt)10 − (4096 − 2048i)(5ξ + 4iζ

∫
a1(t)a2(t) dt)(

∫ a2(t)
a1(t)

dt)9

+ 256((360 − 180i)ξ2 + (−22 − 3i) + 8ζ(
∫

a1(t)a2(t) dt)

((36 + 72i)ξ − (12 − 6i)ζ
∫

a1(t)a2(t) dt − 1))(
∫ a2(t)

a1(t)
dt)8

+ 2048(ξ((22 + 3i)− (120 − 60i)ξ2) + (4 + 4i)ζ(
∫

a1(t)a2(t) dt)

(−((1 − i)ξ((18 + 36i)ξ − 1)) + (1 + i)ζ(
∫

a1(t)a2(t) dt)(−((6 + 12i)ξ)

− (8 − 4i)ζ
∫

a1(t)a2(t) dt + 1) + 1))

(
∫ a2(t)

a1(t)
dt)7 + 128(−56i((30 + 60i)ξ2 + (3 − 22i))ξ2 + (−78 − 13i) + 16ζ(

∫
a1(t)a2(t) dt)(28ξ((−1 − i

+ ξ((12 + 24i)ξ − 1)) + 2ζ(
∫

a1(t)a2(t) dt)((−38 − 11i) + 28iξ((3 + 6i)ξ − 1) + 8ζ(
∫

a1(t)a2(t) dt)((14 + 28i)ξ

− (14 − 7i)ζ
∫

a1(t)a2(t) dt + 1))− 1))

(
∫ a2(t)

a1(t)
dt)6 + 256(ξ(56((22 + 3i)− (36 − 18i)ξ2)ξ2 + (234 + 39i))

+ 4ζ(
∫

a1(t)a2(t) dt)((−9 + 36i)

− 4ξ((14 + 14i)ξ((27 + 9i)ξ2 − (1 − i)ξ − 3)− 3) + 4ζ(
∫

a1(t)a2(t) dt)(4ζ

(
∫

a1(t)a2(t) dt)((3 + 20i)− 12ξ((7 + 14i)ξ + 1)

+ 4ζ(i + (42 − 21i)ξ)
∫

a1(t)a2(t) dt)− 3i(2ξ((−11 + 38i) + 14ξ((2 + 4i)ξ − 1)) + 1))(
∫ a2(t)

a1(t)
dt)5

+ 32(−20i(28((12 + 24i)ξ2 + (3 − 22i))ξ2

+ (39 − 234i))ξ2 + (−174 − 3i) + 8ζ(
∫

a1(t)a2(t) dt)((4 + 8i)ξ((−63 − 54i) + 2ξ((−3 + 6i) + 14ξ((−6 + 2i)

+ ξ((−1 + 2i) + 36ξ)))) + 2ζ(
∫

a1(t)a2(t) dt)((−378 − 15i) + 40iξ(ξ((−33 + 114i)

+ 14ξ((3 + 6i)ξ − 2)) + 3) + 16ζ(
∫

a1(t)a2(t) dt)(10ξ((28 + 56i)ξ2 + 6ξ + (−3 − 20i))

− (2 − i)ζ(
∫

a1(t)a2(t) dt)(420ξ2 − (8 − 16i)ξ + (51 + 52i)

+ 8ζ(
∫

a1(t)a2(t) dt)((−2 − i)

+ 14ζ
∫

a1(t)a2(t) dt))− 9))− 15))(
∫ a2(t)

a1(t)
dt)4 + 128(ξ(4(−((480 − 240i)ξ4) + (616 + 84i)ξ2

+ (390 + 65i))ξ2 + (174 + 3i)) + (4 + 4i)ζ(
∫

a1(t)a2(t) dt)((36 + 39i)− (1 − i)ξ(2ξ((45 − 180i)

+ 4ξ((7 + 7i)ξ((18 + 6i)ξ2 − (1 − i)ξ − 5)− 5))

− 15) + (1 + i)ζ(
∫

a1(t)a2(t) dt)(−2ξ((8 + 16i)((65 + 60i) + 7ξ((−1 + 2i) + 6ξ))ξ2

+ 60ξ + (−15 + 378i)) + 4ζ(
∫

a1(t)a2(t) dt)((174 + 43i)

+ 8iξ(5ξ((−3 − 20i) + 2ξ((7 + 14i)ξ + 2))− 9) + 8ζ(
∫

a1(t)a2(t) dt)

(−((1 + 2i)ξ(140ξ2 − (4 − 8i)ξ + (51 + 52i))) + 4ζ(
∫

a1(t)a2(t) dt)((29 + 2i)

+ 10iξ + 2ζ(
∫

a1(t)a2(t) dt)(−((14 + 28i)ξ) + (8 − 4i)ζ
∫

a1(t)a2(t) dt − 1))− 1)) + 15)))(
∫ a2(t)

a1(t)
dt)3

+ 4(−16i(16((45 + 90i)ξ2 + (21 − 154i))ξ4 + (390 − 2340i)ξ2 + (9 − 522i))ξ2 + (−198 + 27i)
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+ 32ζ(
∫

a1(t)a2(t) dt)(4ξ((9 − 225i) + ξ(4ξ((45 − 180i) + ξ(4ξ((−21 − 21i)

+ ξ((36 + 72i)ξ − 7))− 15))− 45)) + 2ζ(
∫

a1(t)a2(t) dt)((18 + 45i) + 12iξ(ξ((−15 + 378i)

+ 4ξ(ξ((−55 + 190i) + 28ξ((1 + 2i)ξ − 1)) + 10))− 15) + 8ζ(
∫

a1(t)a2(t) dt)(2ξ((129 − 522i)

+ 4ξ((2 + 4i)ξ(42ξ2 + (3 − 6i)ξ + (−43 − 14i))− 27)) + ζ(
∫

a1(t)a2(t) dt)((−18 + 45i)

+ 8iξ((1 + 2i)ξ(210ξ2 − (8 − 16i)ξ + (153 + 156i)) + 6)

+ 16ζ(
∫

a1(t)a2(t) dt)(60ξ2 + (24 − 348i)ξ

+ 2ζ(
∫

a1(t)a2(t) dt)((−14 − 15i) + 12iξ((7 + 14i)ξ + 1) + 4ζ(
∫

a1(t)a2(t) dt)(−((12 + 24i)ξ)

− (6 − 3i)ζ
∫

a1(t)a2(t) dt + 2))− 15))− 9))− 9))(
∫ a2(t)

a1(t)
dt)2 + 8(ξ(16(−((160 − 80i)ξ6) + (352 + 48i)ξ4

+ (468 + 78i)ξ2 + (174 + 3i))ξ2 + (198 − 27i)) + 4ζ(
∫

a1(t)a2(t) dt)((27 + 234i)

− 8ξ((288 + 576i)ξ7 − 64ξ6 − (224 + 224i)ξ5 − 48ξ4 + (180 − 720i)ξ3 − 60ξ2 + (18 − 450i)ξ

− 9) + 8ζ(
∫

a1(t)a2(t) dt)(27i − 2iξ((45 − 18i) + 2ξ(2ξ((−15 + 378i)

+ 2ξ(2ξ((−33 + 114i) + 2ξ((6 + 12i)ξ − 7)) + 15))− 45))

+ 4ζ(
∫

a1(t)a2(t) dt)((21 + 240i)− 4ξ(ξ((129 − 522i)

+ 4ξ(ξ((−15 − 100i) + 4ξ((7 + 14i)ξ + 3))− 18))− 9) + 4ζ(
∫

a1(t)a2(t) dt)

((8 + 8i)ζ(
∫

a1(t)a2(t) dt)((33 + 48i) + (1 + 3i)ξ((4 + 8i)ξ2 + (72 − 30i)ξ + (−3 − 6i))

+ (1 + i)ζ(
∫

a1(t)a2(t) dt)(−2ξ((28 + 56i)ξ2 + 6ξ + (−15 + 14i))

+ 4ζ(
∫

a1(t)a2(t) dt)((40 + 5i) + 4ξ(i + (6 − 3i)ξ) + 2ζ(
∫

a1(t)a2(t) dt)(−((3 + 6i)ξ)

+ (8 − 4i)ζ
∫

a1(t)a2(t) dt − 2)) + 9))− i(ξ((45 + 18i) + 8ξ((1 + 2i)ξ(42ξ2 − (2 − 4i)ξ + (51 + 52i)) + 3))− 69))))))∫ a2(t)
a1(t)

dt + (−i + 2ξ)(1 − 2iξ)(8(8((4 + 8i)ξ4 + (2 − 24i)ξ2 + (6 − 33i))ξ2 + (−9 − 108i))ξ2 + (−9 + 18i))

+ 8ζ(
∫

a1(t)a2(t) dt)

(4ξ((−27 − 234i) + 4ξ(2ξ((6 − 150i) + ξ(4ξ((9 − 36i) + 2ξ(ξ((−4 − 4i) + ξ((4 + 8i)ξ − 1))− 1))− 15))− 9))

+ 2ζ(
∫

a1(t)a2(t) dt)((810 − 189i) + 16iξ(ξ((45 − 18i) + 2ξ(ξ((−15 + 378i)

+ 8ξ(ξ((−11 + 38i) + ξ((3 + 6i)ξ − 4)) + 3))− 30))− 27) + 32ζ(
∫

a1(t)a2(t) dt)(2ξ((−21 − 240i)

+ 2ξ(2ξ((43 − 174i) + 2ξ(2ξ((4 + 8i)ξ2 + 2ξ + (−3 − 20i))− 9))− 9))

+ ζ(
∫

a1(t)a2(t) dt)((714 + 57i) + 4iξ(ξ((45 + 18i) + 4ξ(ξ((−53 + 154i) + 4ξ((7 + 14i)ξ − 2)) + 4))− 138)

+ 8ζ(
∫

a1(t)a2(t) dt)(8ξ(10ξ3 + (8 − 116i)ξ2 − 15ξ + (15 − 81i))

+ 2ζ(
∫

a1(t)a2(t) dt)((378 + 31i) + 8iξ(ξ((−15 + 14i) + 2ξ((7 + 14i)ξ + 2))− 9)

+ 8ζ(
∫

a1(t)a2(t) dt)

(−4ξ((4 + 8i)ξ2 − 2ξ + (−5 + 40i)) + ζ(
∫

a1(t)a2(t) dt)

((122 + 5i) + 4iξ((3 + 6i)ξ + 4) + 8ζ(
∫

a1(t)a2(t) dt)(−((4 + 8i)ξ)

+ (4 − 2i)ζ
∫

a1(t)a2(t) dt − 1)) + 2)) + 33)) + 45))− 9)

D4 = 2(16ζ2(
∫

a1(t)a2(t) dt)2 + 4(
∫ a2(t)

a1(t)
dt)(

∫ a2(t)
a1(t)

dt − 2ξ) + 4ξ2 + 1)

× (16ζ(
∫

a1(t)a2(t) dt)(−2ζ(
∫

a1(t)a2(t) dt)(8ζ(
∫

a1(t)a2(t) dt)(ζ
∫

a1(t)a2(t) dt − iξ − 1)

+ 6iξ + 3) + 4iξ3 − 3iξ + 3)

− 4i(
∫ a2(t)

a1(t)
dt)(4ζ(

∫
a1(t)a2(t) dt)(4ζ(

∫
a1(t)a2(t) dt)(4ζ

∫
a1(t)a2(t) dt − 3) + 12ξ2 − 3) + 4(−3 − 4iξ)ξ2 − 3)
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− 16(
∫ a2(t)

a1(t)
dt)3(4iζ

∫
a1(t)a2(t) dt + 4ξ − i)

+ 48ξ(
∫ a2(t)

a1(t)
dt)2(4iζ

∫
a1(t)a2(t) dt + 2ξ − i) + 16(

∫ a2(t)
a1(t)

dt)4

+ 4ξ(4ξ2(ξ − i)− 3i) + 3

)

× (16ζ(
∫

a1(t)a2(t) dt)(2ζ(
∫

a1(t)a2(t) dt)(−8ζ(
∫

a1(t)a2(t) dt)

(ζ
∫

a1(t)a2(t) dt − iξ + 1) + 6iξ − 3) + 4iξ3 − 3iξ − 3)

− 4i(
∫ a2(t)

a1(t)
dt)(4ζ(

∫
a1(t)a2(t) dt)(4ζ(

∫
a1(t)a2(t) dt)(4ζ

∫
a1(t)a2(t) dt + 3) + 12ξ2 − 3) + 4(3 − 4iξ)ξ2 + 3)

− 16(
∫ a2(t)

a1(t)
dt)3(4iζ

∫
a1(t)a2(t) dt + 4ξ + i)

+ 48ξ(
∫ a2(t)

a1(t)
dt)2(4iζ

∫
a1(t)a2(t) dt + 2ξ + i) + 16(

∫ a2(t)
a1(t)

dt)4

+ 4ξ(4(ξ + i)ξ2 + 3i) + 3

Appendix B

ϕ[3](ξ, ζ) =e2iζ
∫

a1(t)a2(t) dt(− i
2
+ i − 4ζ

∫
a1(t)a2(t) dt/4ξ2 + 16ζ2(

∫
a1(t)a2(t) dt)2

+ 4(
∫ a2(t)

a1(t)
dt)(

∫ a2(t)
a1(t)

dt − 2ξ) + 1

+ 4(16(
∫ a2(t)

a1(t)
dt)4 − 16(4ξ + 4iζ

∫
a1(t)a2(t) dt + 1)(

∫ a2(t)
a1(t)

dt)3

+ 48ξ(2ξ + 4iζ
∫

a1(t)a2(t) dt + 1)

(
∫ a2(t)

a1(t)
dt)2 − 4(4(4ξ + 3)ξ2 + 4ζ(

∫
a1(t)a2(t) dt)(3i(4ξ2 − 1)

+ 4ζ(
∫

a1(t)a2(t) dt)(4iζ
∫

a1(t)a2(t) dt + 3)) + 3)
∫ a2(t)

a1(t)
dt

+ 4ξ(4(ξ + 1)ξ2 + 3) + 16ζ(
∫

a1(t)a2(t) dt)(i(4ξ3 − 3ξ + 3) + 2ζ(
∫

a1(t)a2(t) dt)

(6ξ + 8iζ(
∫

a1(t)a2(t) dt)(ξ + iζ
∫

a1(t)a2(t) dt + 1)− 3)) + 3)

(16(
∫ a2(t)

a1(t)
dt)4 + 4(−4(4ξ + 4iζ

∫
a1(t)a2(t) dt − 1)

(
∫ a2(t)

a1(t)
dt)3 + 12ξ(2ξ + 4iζ

∫
a1(t)a2(t) dt − 1)

(
∫ a2(t)

a1(t)
dt)2

+ (4(3 − 4ξ)ξ2 − 4iζ(
∫

a1(t)a2(t) dt)(12ξ2

+ 4ζ(
∫

a1(t)a2(t) dt)(3i + 4ζ
∫

a1(t)a2(t) dt)− 3) + 3)∫ a2(t)
a1(t)

dt + ξ(4(ξ − 1)ξ2 − 3)

+ 4ζ(
∫

a1(t)a2(t) dt)(i(4ξ3 − 3ξ − 3) + 2ζ(
∫

a1(t)a2(t) dt)

(−6ξ − 8ζ(
∫

a1(t)a2(t) dt)(ζ
∫

a1(t)a2(t) dt − i(ξ − 1))− 3))) + 3)

/(16(
∫ a2(t)

a1(t)
dt)4 − 16(4ξ + 4iζ

∫
a1(t)a2(t) dt − 1)

(
∫ a2(t)

a1(t)
dt)3 + 48ξ(2ξ + 4iζ

∫
a1(t)a2(t) dt − 1)(

∫ a2(t)
a1(t)

dt)2

+ 4(4(3 − 4ξ)ξ2 − 4iζ(
∫

a1(t)a2(t) dt)(12ξ2 + 4ζ(
∫

a1(t)a2(t) dt)

(3i + 4ζ
∫

a1(t)a2(t) dt)− 3) + 3)
∫ a2(t)

a1(t)
dt + 4ξ(4(ξ − 1)ξ2 − 3)

+ 16ζ(
∫

a1(t)a2(t) dt)(i(4ξ3 − 3ξ − 3) + 2ζ(
∫

a1(t)a2(t) dt)
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(−6ξ − 8ζ(
∫

a1(t)a2(t) dt)(ζ
∫

a1(t)a2(t) dt − i(ξ − 1))− 3)) + 3)2

+ (16(
∫ a2(t)

a1(t)
dt)4 − 16(4ξ + 4iζ

∫
a1(t)a2(t) dt + 1)

(
∫ a2(t)

a1(t)
dt)3 + 48ξ(2ξ + 4iζ

∫
a1(t)a2(t) dt + 1)

(
∫ a2(t)

a1(t)
dt)2 − 4(4(4ξ + 3)ξ2 + 4ζ(

∫
a1(t)a2(t) dt)

(3i(4ξ2 − 1) + 4ζ(
∫

a1(t)a2(t) dt)(4iζ
∫

a1(t)a2(t) dt + 3)) + 3)∫ a2(t)
a1(t)

dt

+ 4ξ(4(ξ + 1)ξ2 + 3) + 16ζ(
∫

a1(t)a2(t) dt)(i(4ξ3 − 3ξ + 3) + 2ζ(
∫

a1(t)a2(t) dt)

(6ξ + 8iζ(
∫

a1(t)a2(t) dt)(ξ + iζ
∫

a1(t)a2(t) dt + 1)− 3)) + 3)2

− 4(2ξ(4ξ(2ξ(ξ(2ξ − 5) + 15)− 15)− 15) + 420iζ
∫

a1(t)a2(t) dt + 2(512iζ5(
∫

a1(t)a2(t) dt)5

+ 640ζ4(2ξ − 2
∫ a2(t)

a1(t)
dt − 1)(

∫
a1(t)a2(t) dt)4

− 320iζ3(4(ξ − 1)ξ + 4(
∫ a2(t)

a1(t)
dt)(−2ξ +

∫ a2(t)
a1(t)

dt + 1) + 15)

(
∫

a1(t)a2(t) dt)3 + 80ζ2(−2ξ(4ξ2 − 6ξ + 33) + 2(
∫ a2(t)

a1(t)
dt)

(12(ξ − 1)ξ + 2(
∫ a2(t)

a1(t)
dt)(−6ξ + 2

∫ a2(t)
a1(t)

dt + 3) + 33) + 27)

(
∫

a1(t)a2(t) dt)2 + 80iζ(
∫ a2(t)

a1(t)
dt − ξ)(ξ(−2(ξ − 2)ξ − 21)

+ (
∫ a2(t)

a1(t)
dt)(6ξ2 − 8ξ + 2(

∫ a2(t)
a1(t)

dt)

(−3ξ +
∫ a2(t)

a1(t)
dt + 2) + 21) + 15)

∫
a1(t)a2(t) dt + (

∫ a2(t)
a1(t)

dt)

(8((10ξ − 2
∫ a2(t)

a1(t)
dt − 5)

∫ a2(t)
a1(t)

dt − 5(4(ξ − 1)ξ + 3))

(
∫ a2(t)

a1(t)
dt)2 + 20(2ξ(4ξ2 − 6ξ + 9)− 3)

∫ a2(t)
a1(t)

dt

− 40ξ(ξ(2(ξ − 2)ξ + 9)− 3) + 15))− 45)(−32(
∫ a2(t)

a1(t)
dt)5

+ 80(2ξ + 4iζ
∫

a1(t)a2(t) dt + 1)(
∫ a2(t)

a1(t)
dt)4 − 80(4ξ(ξ + 1)

+ 8ζ(
∫

a1(t)a2(t) dt)(i + 2iξ − 2ζ
∫

a1(t)a2(t) dt) + 3)

(
∫ a2(t)

a1(t)
dt)3 + 40(2ξ(4ξ2 + 6ξ + 9) + 4ζ(

∫
a1(t)a2(t) dt)

(3i(4ξ(ξ + 1) + 7) + 4ζ(
∫

a1(t)a2(t) dt)(−6ξ − 4iζ
∫

a1(t)a2(t) dt − 3)) + 3)

(
∫ a2(t)

a1(t)
dt)2 + 10(16ζ(

∫
a1(t)a2(t) dt)

(2ζ(
∫

a1(t)a2(t) dt)(12ξ(ξ + 1) + 8ζ(
∫

a1(t)a2(t) dt)

(i + 2iξ − ζ
∫

a1(t)a2(t) dt) + 33)− i(2ξ(4ξ2 + 6ξ + 21) + 15))− (2ξ + 1)(2ξ(4ξ2 + 6ξ + 15)− 3))
∫ a2(t)

a1(t)
dt

+ 2ξ(4ξ(2ξ(ξ(2ξ + 5) + 15) + 15)− 15) + 4ζ(
∫

a1(t)a2(t) dt)(5i(2ξ + 1)(2ξ(4ξ2 + 6ξ + 39) + 21)

+ 8ζ(
∫

a1(t)a2(t) dt)(4ζ(
∫

a1(t)a2(t) dt)(2ζ(
∫

a1(t)a2(t) dt)

(10ξ + 4iζ
∫

a1(t)a2(t) dt + 5)− 5i(4ξ(ξ + 1) + 15))− 5(2ξ(4ξ2 + 6ξ + 33) + 27))) + 45)

/(2ξ(4ξ(2ξ(ξ(2ξ − 5) + 15)− 15)− 15) + 420iζ
∫

a1(t)a2(t) dt + 2(512iζ5(
∫

a1(t)a2(t) dt)5

+ 640ζ4(2ξ − 2
∫ a2(t)

a1(t)
dt − 1)(

∫
a1(t)a2(t) dt)4 − 320iζ3(4(ξ − 1)ξ
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+ 4(
∫ a2(t)

a1(t)
dt)(−2ξ +

∫ a2(t)
a1(t)

dt + 1) + 15)(
∫

a1(t)a2(t) dt)3

+ 80ζ2(−2ξ(4ξ2 − 6ξ + 33) + 2(
∫ a2(t)

a1(t)
dt)(12(ξ − 1)ξ + 2(

∫ a2(t)
a1(t)

dt)

(−6ξ + 2
∫ a2(t)

a1(t)
dt + 3) + 33) + 27)(

∫
a1(t)a2(t) dt)2

+ 80iζ(
∫ a2(t)

a1(t)
dt − ξ)(ξ(−2(ξ − 2)ξ − 21) + (

∫ a2(t)
a1(t)

dt)

(6ξ2 − 8ξ + 2(
∫ a2(t)

a1(t)
dt)(−3ξ +

∫ a2(t)
a1(t)

dt + 2) + 21) + 15)∫
a1(t)a2(t) dt + (

∫ a2(t)
a1(t)

dt)(8((10ξ − 2
∫ a2(t)

a1(t)
dt − 5)∫ a2(t)

a1(t)
dt − 5(4(ξ − 1)ξ + 3))(

∫ a2(t)
a1(t)

dt)2

+ 20(2ξ(4ξ2 − 6ξ + 9)− 3)
∫ a2(t)

a1(t)
dt − 40ξ(ξ(2(ξ − 2)ξ + 9)− 3) + 15))− 45)2 + (−32(

∫ a2(t)
a1(t)

dt)5

+ 80(2ξ + 4iζ
∫

a1(t)a2(t) dt + 1)

(
∫ a2(t)

a1(t)
dt)4 − 80(4ξ(ξ + 1) + 8ζ(

∫
a1(t)a2(t) dt)(i + 2iξ − 2ζ

∫
a1(t)a2(t) dt) + 3)

(
∫ a2(t)

a1(t)
dt)3

+ 40(2ξ(4ξ2 + 6ξ + 9) + 4ζ(
∫

a1(t)a2(t) dt)(3i(4ξ(ξ + 1) + 7) + 4ζ(
∫

a1(t)a2(t) dt)

(−6ξ − 4iζ
∫

a1(t)a2(t) dt − 3)) + 3)

(
∫ a2(t)

a1(t)
dt)2 + 10(16ζ(

∫
a1(t)a2(t) dt)(2ζ(

∫
a1(t)a2(t) dt)

(12ξ(ξ + 1) + 8ζ(
∫

a1(t)a2(t) dt)

(i + 2iξ − ζ
∫

a1(t)a2(t) dt) + 33)− i(2ξ(4ξ2 + 6ξ + 21) + 15))− (2ξ + 1)(2ξ(4ξ2 + 6ξ + 15)− 3))∫ a2(t)
a1(t)

dt

+ 2ξ(4ξ(2ξ(ξ(2ξ + 5) + 15) + 15)− 15) + 4ζ(
∫

a1(t)a2(t) dt)(5i(2ξ + 1)(2ξ(4ξ2 + 6ξ + 39) + 21)

+ 8ζ(
∫

a1(t)a2(t) dt)

(4ζ(
∫

a1(t)a2(t) dt)(2ζ(
∫

a1(t)a2(t) dt)

(10ξ + 4iζ
∫

a1(t)a2(t) dt + 5)

− 5i(4ξ(ξ + 1) + 15))− 5(2ξ(4ξ2 + 6ξ + 33) + 27))) + 45)2)
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