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1. Introduction

Recently, there has been great interest in fractional differential equations, since fractional
orders models are more accurate than integer models. For theoretical development in fractional
calculus and differential equations of fractional order, see the monographs [1–8], while for an
extensive study of boundary value problems of fractional order, see the monograph [9].
In the literature, there exist a variety of fractional derivative operators such as Riemann–
Liouville, Caputo, Hadamard, Erdélyi-Kober, Katugampola, Hilfer fractional derivatives,
etc. As argued in [10,11], fractional derivatives of non-integer orders do not satisfy the
Leibniz rule and chain rule. However, a partial answer to this fact has been discussed
in [10–12]. Note that the fractional derivatives, defined in terms of integrals, are nonlocal
in nature and are only valid for specific domains. The linearity of the integral operator
involved in the definition of the fractional derivative may lead to its linearity. For a different
fractional analysis, see [13,14]. The ψ-Riemann–Liouville integral and derivative fractional
operators were introduced in [2]. The (k, ψ)-Riemann–Liouville integral and derivative
fractional operators were defined in [15,16], respectively. The Hilfer fractional derivative
defined in [17] extends both Riemann–Liouville and Caputo fractional derivative operators.
The ψ-Hilfer fractional derivative was defined in [18]. For applications of Hilfer fractional
derivatives in mathematics, physics, etc., see [19–24]. For recent results on boundary value
problems for differential equations and inclusions of fractional order with Hilfer fractional
derivatives, see the survey paper by Ntouyas [25].

Recently, in the papers [26–29], the authors have studied the existence and unique-
ness results for Hilfer differential equations of fractional order subject to a variety of
boundary conditions. In [26], the authors studied a class of fractional sequential boundary
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value problems involving Hilfer-type fractional derivative operators supplemented with
Riemann–Stieltjes integral multi-strip boundary conditions of the form

(
HDa,b + k HDa−1,b

)
φ(ω) = F(ω, φ(ω)), ω ∈ [x1, x2],

φ(x1) = 0, φ(x2) = λ
∫ x2

x1

φ(s)dH(s) +
n

∑
i=1

µi

∫ ξi

ηi

φ(s)ds.
(1)

In [27], the authors studied a boundary value problems involving a (k, ϑ)-Hilfer
fractional derivative operator of order in (1, 2], subject to nonlocal integro-multi-point
boundary conditions of the form

k,HDa,b;ϑφ(ω) = F(ω, φ(ω)), ω ∈ (x1, x2],

φ(x1) = 0,
∫ x2

x1

ϑ′(s)φ(s)ds =
m

∑
j=1

ηj φ(ξ j),
(2)

while in [28], the authors studied a boundary value problem consisting of a (k, ϑ)-Hilfer
generalized proportional fractional derivative operator, equipped with integro-multi-point
nonlocal boundary conditions, of the form

k,HDa,b,σ,ϑ
x+1

φ(ω) = F(ω, φ(ω)), ω ∈ [x1, x2],

φ(x1) = 0, φ(x2) =
m

∑
i=1

λi φ(ξi) + λ kIb,σ,ϑ
x+1

φ(η).
(3)

Finally, in [29], a coupled system of (k, ϑ)-Hilfer fractional derivative operators subjected
to nonlocal integro-multi-point boundary conditions was investigated.

A common characteristic of all the boundary conditions above is the zero initial
condition, which is necessary for the solution to be well defined. Thus, we cannot study
some classes of Hilfer fractional boundary value problems, including for example boundary
conditions of the form

• φ(0) = −φ(τ), φ′(0) = −φ′(τ) (anti-periodic),
• φ(0) + λ1 φ′(0) = 0, φ(τ) + λ1 φ′(τ) = 0 (separated),
• φ(0) + λ1 φ(τ) = 0, φ′(0) + λ2 φ′(τ) = 0 (non-separated), etc.

To overcome this difficulty and study Hilfer fractional boundary value problems
subject to boundary conditions as above, anti-periodic, separated or non-separated, we
propose in the present research a combination of Hilfer and Caputo fractional derivatives,
which give us the possibility to discuss boundary value problems subject to boundary
conditions as above. To be more precisely, in the present paper, we investigate a sequential
fractional boundary value problem which contain a combination of Hilfer and Caputo
fractional derivative operators and non-separated boundary conditions of the form

HDa,b,ϑ(CDδ,ϑφ)(ω) = F
(
ω, φ(ω), Ic,ϑφ(ω),

∫ τ

0
φ(s)dv(s)

)
, ω ∈ [0, τ],

φ(0) + λ1 φ(τ) = 0,

CDγ+δ−1,ϑφ(0) + λ2
CDγ+δ−1,ϑφ(τ) = 0,

(4)

where HDa,b,ϑ and CDδ,ϑ, CDγ+δ−1,ϑ, 0 < a, b, δ < 1, γ = a + b(1 − a), γ + δ > 1 are the
ϑ-Hilfer and ϑ-Caputo fractional derivative operators, respectively. Moreover, λ1, λ2 ∈ R,
Ic,ϑ is the Riemann–Liouville fractional integral operator of order c > 0 with respect to a
function ϑ, F : [0, τ]×R×R×R −→ R is a nonlinear continuous function,

∫ τ
0 φ(s)dv(s) is

the Riemann–Stieltjes integral and v : [0, τ] → R is a function of bounded variation.
We establish the existence and uniqueness results with the help of classical fixed-

point theorems. First, we establish the existence of a unique solution of the fractional
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Hilfer–Caputo sequential boundary value problem (4) via the Banach fixed point theorem,
and next, we prove the existence of at least one solution of the fractional Hilfer–Caputo
sequential boundary value problem (4) by using the Leray–Schauder nonlinear alternative.
Finally, examples are provided to demonstrate the results obtained.

The novelty of the present study lies in the fact that we consider a sequential fractional
boundary value problem which contains a combination of Hilfer and Caputo fractional
derivative operators supplemented with non-separated boundary conditions. As far as we
know, this topic is new in the literature. The method we used to establish our results is
standard, but its configuration in the fractional Hilfer–Caputo sequential boundary value
problem (4) is new.

The remainder of this article is organized as follows: Section 2 consists of essential
concepts and definitions needed to construct our results. Also, a lemma dealing with a
linear variant of the fractional Hilfer–Caputo sequential boundary value problem (4), which
is the basic key to transform the nonlinear problem (4) into a fixed-point problem, is studied.
In Section 3, we present our main existence and uniqueness results based on fixed-point
theory. In Section 4, examples are provided to verify the reliability of the proposed results,
while the paper closes with some concluding remarks in Section 5.

2. Preliminaries

Now, some essential concepts and definitions from fractional calculus are presented.
Assume that ϑ ∈ C1([0, τ],R) with ϑ′(ω) > 0 for all ω ∈ [0, τ].

Definition 1 ([2]). The ϑ-Riemann–Liouville fractional integral operator of order a > 0 of a
function g ∈ C([0, τ],R) with respect to ϑ is defined by

Ia,ϑg(ω) =
1

Γ(a)

∫ ω

0
ϑ′(s)(ϑ(ω)− ϑ(s))a−1g(s)ds,

where Γ(a) is the Euler Gamma function given by Γ(a) =
∫ ∞

0
ta−1e−tdt.

Definition 2 ([18]). Let n − 1 < a < n, n ∈ N and g, ϑ ∈ Cn([0, τ],R). The ϑ-Hilfer fractional
derivative operator HDa,b,ϑ(·) of order a of function g with a parameter b ∈ [0, 1] is defined by

HDa,b;ϑg(ω) = Ib(n−a);ϑ
(

1
ϑ′(ω)

d
dω

)n
I(1−b)(n−a);ϑg(ω).

Definition 3 ([30]). The ϑ-Caputo fractional derivative operator CDa,ϑ(·) of order a of a function
g is presented as

CDa;ϑg(ω) = In−a,ϑ
( 1
ϑ′(ω)

d
dω

)n

g(ω), (5)

where n − 1 < a < n, n ∈ N and g, ϑ ∈ Cn([0, τ],R).

Lemma 1 ([18]). Let a1, a2, a > 0, a1 < a2, and a + δ > 1 be constants. Then, we have

(i) Ia1,ϑIa2,ϑg(ω) = Ia1+a2,ϑg(ω);

(ii) Ia,ϑ(ϑ(ω)− ϑ(0))δ−1 =
Γ(δ)

Γ(a + δ)
(ϑ(ω)− ϑ(0))a+δ−1,

(iii) CDa,ϑ(ϑ(ω)− ϑ(0))δ−1 =
Γ(δ)

Γ(δ − a)
(ϑ(ω)− ϑ(0))a−δ+1,

(iv) CDa1,ϑIa2,ϑg(ω) = Ia2−a1,ϑg(ω).
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Lemma 2 ([31]). Let g ∈ L(0, τ), n − 1 < a ≤ n, n ∈ N, 0 ≤ b ≤ 1, γ = a + nb − ab,(
I(n−a)(1−b),ϑg

)
∈ ACk[0, τ]. (ACk[0, τ] is the k times absolutely continuous functions on

[0, τ].) Then, we have

(
Ia,ϑ HDa,b;ϑg

)
(ω) = g(ω)−

n

∑
i=1

(ϑ(ω)− ϑ(0))γ−i

Γ(γ − i + 1)
g
[n−i]
ϑ

(
I(1−b)(n−a);ϑg

)
(0),

where g[n−i]
ϑ =

( 1
ϑ′(ω)

d
dω

)n−i

and

(
Ia,ϑ CDa;ϑg

)
(ω) = g(ω)−

n−1

∑
i=0

g
[i]
ϑ (0)

i!
(ϑ(ω)− φ(0))i.

In the following lemma, a linear variant of the sequential fractional Hilfer–Caputo
boundary value problem (4) is studied. This lemma is essential to transform the nonlinear
problem (4) into an integral equation and consequently into a fixed-point problem.

Lemma 3. Let g ∈ C([0, τ],R) and λ1, λ2 ̸= −1. Then, the sequential linear fractional Hilfer–
Caputo boundary value problem

HDa,b,ϑ(CDδ,ϑφ)(ω) = g(ω), ω ∈ [0, τ],

φ(0) + λ1 φ(τ) = 0,

CDγ+δ−1,ϑφ(0) + λ2
CDγ+δ−1,ϑφ(τ) = 0,

(6)

is equivalent to the integral equation

φ(ω) =
1

1+ λ1

[
− λ1Ia+δ,ϑg(τ) +

λ1λ2

(1+ λ2)Γ(γ + δ)
(ϑ(τ)− ϑ(0))γ+δ−1Ia−γ+1,ϑg(τ)

]
− λ2

Γ(γ + δ)(1+ λ2)
(ϑ(ω)− ϑ(0))γ+δ−1Ia−γ+1,ϑg(τ) + Ia+δ,ϑg(ω). (7)

Proof. Taking the fractional integral operator Ia,ϑ on both sides of the first equation in (6)
and using Lemma 2, we obtain

CDδ,ϑφ(ω) = c1(ϑ(ω)− ϑ(0))γ−1 + Ia,ϑg(ω), (8)

where γ = a + b(1 − a) and c1 ∈ R. Now, by taking the fractional integral Iδ,ϑ on both
sides of Equation (8) and applying Lemma 1, we obtain

φ(ω) = c2 +
Γ(γ)

Γ(γ + δ)
c1(ϑ(ω)− ϑ(0))γ+δ−1 + Ia+δ,ϑg(ω). (9)

By Lemma 1, we have

CDγ+δ−1,ϑφ(ω) = Γ(γ)c1 + Ia−γ+1,ϑg(ω).

Now, combining the boundary conditions φ(0) + λ1 φ(τ) = 0 and CDγ+δ−1,ϑφ(0) +
λ2

CDγ+δ−1,ϑφ(τ) = 0 with (9), we obtain

c2 + λ1c2 + λ1
Γ(γ)

Γ(γ + δ)
(ϑ(τ)− ϑ(0))γ+δ−1c1 + λ1Ia+δ,ϑg(τ) = 0,

Γ(γ)c1 + λ2Γ(γ)c1 + λ2Ia−γ+1,ϑg(τ) = 0.
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From the above equations, we obtain

c1 =
−λ2

(1 + λ2)Γ(γ)
Ia−γ+1,ϑg(τ),

c2 =
1

1 + λ1

[
− λ1Ia+δ,ϑg(τ) +

λ1λ2

(1 + λ2)Γ(γ + δ)
(ϑ(τ)− ϑ(0))γ+δ−1Ia−γ+1,ϑg(τ)

]
.

Replacing the values c1 and c2 in (9), we obtain the solution (7). On the other hand, operating
the fractional differential operators ϑ-Caputo and ϑ-Hilfer of orders, δ and a, respectively,
on both sides of the solution (7), we obtain the first equation in (6). It is easy to verify
that (7) satisfies the existent boundary conditions in (6). Thus, the proof is completed.

Remark 1. In Lemma 3, we have that λ1, λ2 ̸= −1, which means that our study does not cover the
periodic case for the problem (4).

Remark 2. If the sequential fractional differential equation in (6) is interchanged as

CDδ,ϑ(HDa,b,ϑφ)(ω) = g(ω), (10)

then we have

φ(ω) = c2(ϑ(ω)− ϑ(0))γ−1 +
c1

Γ(a + 1)
(ϑ(ω)− ϑ(0))a + Iδ+a,ϑg(ω),

where c1, c2 ∈ R. Since γ = a + b(1 − a) ∈ (0, 1), we have c2 = 0 when ω → 0. This mean that
the fractional differential Equation (10) needs an initial condition φ(0) = 0.

3. Main Results

Consider the space X = C([0, τ],R) of all continuous functions φ from [0, τ] into R.
This space, endowed with the norm ∥φ∥ = sup{|φ(ω)| : ω ∈ [0, τ]}, is a Banach space.

Using Lemma 3, we define an operator S : X −→ X by

(S φ)(ω) =
1

1 + λ1

[
− λ1Ia+δ,ϑF

(
τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)
+

λ1λ2

(1 + λ2)Γ(γ + δ)
(ϑ(τ)− ϑ(0))γ+δ−1

×Ia−γ+1,ϑF
(

τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)]
− λ2

Γ(γ + δ)(1 + λ2)
(ϑ(ω)− ϑ(0))γ+δ−1

×Ia−γ+1,ϑF
(

τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)
+Ia+δ,ϑF

(
ω, φ(ω), Ic,ϑφ(ω),

∫ τ

0
φ(s)dv(s)

)
, ω ∈ [0, τ]. (11)

The next lemma will be used in the sequent.

Lemma 4 ([32]). If φ ∈ V([0, τ] → R) and v : [0, τ] → R is a bounded variation function on
[0, τ], then ∣∣∣∣∫ τ

0
φ(s)dv(s)

∣∣∣∣ ≤ max
ω∈[0,τ]

|φ(ω)| · Vτ
0 v,

where Vτ
0 v denotes the variation of function v defined by

Vτ
0 v = sup

P

n

∑
i=1

|v(si)− v(si−1)|,
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and P : 0 = s0 < s1 < . . . < sn = τ is an arbitrary partition of [0, τ].

Recall that v is called a bounded variation function on [0, τ] if Vτ
0 v < ∞.

In the following, to simplify the computations, we set

Θz(y) =
(ϑ(y)− ϑ(0))z

Γ(z+ 1)
.

and

W0 = 1 +Θc(τ) + Vτ
0 v,

W1 =
1

|1 + λ1|

[
|λ1|Θa+δ(τ) +

|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Θa−γ+1(τ)

]
+

|λ2|
|1 + λ2|

Θγ+δ(τ)Θa−γ+1(τ) +Θa+δ(τ). (12)

We are ready to prove our first result, the existence of a unique solution for the
sequential fractional Hilfer–Caputo boundary value problem (4), via the Banach fixed-point
theorem [33].

Theorem 1. Assume that F : [0, τ]×R3 −→ R is such that:

(G1)There exists K > 0 such that

|F(ω, x1, y1, z1)− F(ω, x2, y2, z2)| ≤ K(|x1 − x2|+ |y1 − y2|+ |z1 − z2|),

for all ω ∈ [0, τ] and xi, yi, zi ∈ R, i = 1, 2.

If
W0W1K < 1,

where W0,W1 are defined by (12); then, the fractional Hilfer–Caputo sequential boundary value
problem (4) has a unique solution on [0, τ].

Proof. Let M = sup{|F(ω, 0, 0, 0)| : ω ∈ [0, τ]} and Bx∗ = {φ ∈ X : ∥φ∥ ≤ x∗} with

x∗ ≥ W1M
1 −KW0W1

.

Using (G1), we have:∣∣∣F(ω, φ(ω), Ic,ϑφ(ω),
∫ τ

0
φ(s)dv(s)

)∣∣∣
≤

∣∣∣F(ω, φ(ω), Ic,ϑφ(ω),
∫ τ

0
φ(s)dv(s)

)
− F(ω, 0, 0, 0)

∣∣∣+ |F(ω, 0, 0, 0)|

≤ K
(
|φ(ω)|+ Ic,ϑ|φ(ω)|+

∣∣∣ ∫ τ

0
φ(s)dv(s)

∣∣∣)+M

≤ K
(
∥φ∥+Θc(τ)∥φ∥+ ∥φ∥VT

0 w
)
+M

≤ Kx∗
(

1 +Θc(τ) + VT
0 w
)
+M

= Kx∗W0 +M.

We will show that DBx∗ ⊆ Bx∗ . For all φ ∈ X, we have

|(Sφ)(ω)| ≤ 1
1 + λ1

[
|λ1|Ia+δ,ϑ

(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)∣∣∣)
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+
|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)∣∣∣)]
+

|λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)∣∣∣)
+Ia+δ,ϑ

(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)∣∣∣)
≤ 1

|1 + λ1|

[
|λ1|Ia+δ,ϑ(Kx∗W0 +M)

+
|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ(Kx∗W0 +M)
]

+
|λ2|

|1 + λ2|
Θγ+δ(τ)Ia−γ+1(Kx∗W0 +M) + Ia+δ,ϑ(Kx∗W0 +M)

≤ (Kx∗W0 +M)

{
1

|1 + λ1|

[
|λ1|Θa+δ(τ) +

|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Θa−γ+1(τ)

]

+
|λ2|

|1 + λ2|
Θγ+δ(τ)Θa−γ+1(τ) +Θa+δ(τ)

}
= (Kx∗W0 +M)W1 ≤ x∗.

Hence, SBx∗ ⊆ Bx∗ . Next, we will show that the operator S is a contraction. For φ1,
φ2 ∈ Bx∗ , we have

|(Sφ1)(ω)− (Sφ2)(ω)|

≤ 1
1 + λ1

[∣∣∣λ1|Ia+δ,ϑ
(∣∣∣F(τ, φ1(τ), Ic,ϑφ1(τ),

∫ τ

0
φ1(s)dv(s)

)
−F
(

τ, φ2(τ), Ic,ϑφ2(τ),
∫ τ

0
φ2(s)dv(s)

)∣∣∣)
+

|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ1(τ), Ic,ϑφ1(τ),

∫ τ

0
φ1(s)dv(s)

)
−F
(

τ, φ2(τ), Ic,ϑφ2(τ),
∫ τ

0
φ2(s)dv(s)

)∣∣∣]
+

|λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ1(τ), Ic,ϑφ1(τ),

∫ τ

0
φ1((s)dv(s)

)
−F
(

τ, φ2(τ), Ic,ϑφ2(τ),
∫ τ

0
φ2(s)dv(s)

)∣∣∣)
+Ia+δ,ϑ

(∣∣∣F(τ, φ1(τ), Ic,ϑφ1(τ),
∫ τ

0
φ1(s)dv(s)

)
−F
(

τ, φ2(τ), Ic,ϑφ2(τ),
∫ τ

0
φ2(s)dv(s)

)∣∣∣)
≤ KW0∥φ1 − φ2∥

{
1

|1 + λ1|

[
|λ1|Θa+δ(τ) +

|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Θa−γ+1(τ)

]

+
|λ2|

|1 + λ2|
Θγ+δ(τ)Θa−γ+1(τ) +Θa+δ(τ)

}
= W0W1K∥φ1 − φ2∥.

Thus, ∥(Sφ1)− (Sφ2)∥ ≤ KW0W1∥φ1 − φ2∥, and since KW0W1 < 1, S is a contraction.
By Banach fixed-point theorem, the operator S has a unique solution. Thus, the fractional
Hilfer–Caputo sequential boundary value problem (4) has a unique solution on [0, τ].

Our second result, concerning the existence of at least one solution to the fractional
Hilfer–Caputo sequential boundary value problem (4), is proved by using the Leray–
Schauder nonlinear alternative [34].
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Theorem 2. Let F ∈ C([0, τ]×R3,R) such that:

(G2)There exist P ∈ C([0, ∞), [0, ∞)), v1, v2 ∈ C([0, τ] [0, ∞)) such that P is nondecreasing
and for all ω ∈ [0, τ] and xi ∈ R, i = 1, 2, 3, we have

|F(ω, x1, x2, x3)| ≤ v1(ω)P(|x1|+ |x2|+ |x3|) + v2(ω).

(G3)There exists Z0 ∈ R+ such that

Z0

∥v1∥P(Z0W0) + ∥v2∥
> 1.

Then, the fractional sequential Hilfer–Caputo boundary value problem (4) has at least one solution
on [0, τ].

Proof. The operator S is obviously continuous, since F is continuous. Now, the compact-
ness property of the operator S is proved on Bx, where Bx = {φ ∈ X : ∥φ∥ ≤ x}. For all
φ ∈ X, we have

|(Sφ)(ω)| ≤ 1
1 + λ1

[
|λ1|Ia+δ,ϑ

(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)∣∣∣)
+

|λ1λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)∣∣∣)]
+

|λ2|
|1 + λ2|

Θγ+δ(τ)Ia−γ+1,ϑ
(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)∣∣∣)
+Ia+δ,ϑ

(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),
∫ τ

0
φ(s)dv(s)

)∣∣∣)
≤ 1

|1 + λ1|

[
|λ1|Θa+δ(τ)

(
∥v1∥P(∥φ∥W0) + ∥v2∥

)
+

|λ1λ2|
|1 + λ2|

Θa−γ+1(τ)Θγ+δ(τ)
(
∥v1∥P(∥φ∥W0) + ∥v2∥

)]
+

|λ2|
|1 + λ2|

Θa−γ+1(τ)Θγ+δ(τ)
(
∥v1∥P(∥φ∥W0) + ∥v2∥

)
+Θa+δ(τ)

(
∥v1∥P(∥φ∥W0) + ∥v2∥

)
≤ W1

(
∥v1∥P(xW0) + ∥v2∥

)
:= Φ,

which implies that ∥Sφ∥ ≤ Φ, and thus, the operator S is uniformly bounded on Bx. To
show the equicontinuity property of S(Bx), let ω1,ω2 ∈ [0, τ] with ω1 < ω2. Then, for all
φ ∈ Bx, we have

|(Sφ)(ω2)− (Sφ)(ω1)|

≤ |λ2|
|1 + λ2|Γ(γ + δ)

|(ϑ(ω2)− ϑ(0))γ+δ−1 − (ϑ(ω1)− ϑ(0))γ+δ−1|

×Ia−γ+1,ϑ
(∣∣∣F(τ, φ(τ), Ic,ϑφ(τ),

∫ τ

0
φ(s)dv(s)

)∣∣∣)
+
∣∣∣ 1
Γ(a + δ)

∫ ω1

0
ϑ′(s)[(ϑ(ω2)− ϑ(s))a+δ−1 − (ϑ(ω1)− ϑ(s))a+δ−1]

×F
(

s, φ(s) Ic,ϑφ(s),
∫ τ

0
φ(s)dv(s)

)
ds

+
∫ ω2

ω1

ϑ′(s)(ϑ(ω2)− ϑ(s))a+δ−1F
(

s, φ(s) Ic,ϑφ(s),
∫ τ

0
φ(s)dv(s)

)
ds
∣∣∣∣

≤ |λ2|
|1 + λ2|

|Θγ+δ(ω2)−Θγ+δ(ω1)|Θa−γ+1(τ)
(
∥v1∥P(xW0) + ∥v2∥

)
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+
(
∥v1∥P(xW0) + ∥v2∥

)[2(ϑ(ω2)− ϑ(ω1))
a+δ

Γ(a + δ + 1)
+ |Θγ+δ(ω2)−Θγ+δ(ω1)|

]
.

When ω1 −→ ω2, the right-hand side of the above inequality, independently of φ, tends to
zero. Hence, S(Bx) is an equicontinuous set. Consequently, the operator S is completely
continuous, by the Arzelá–Ascoli theorem.

Finally, we indicate that the set

Ξ = {φ ∈ X : φ = λ(Sφ), 0 < λ < 1}

is bounded. Let φ ∈ Ξ; then, φ = λ(Sφ) for some λ ∈ (0, 1). Following the computations
used in the first step, for all ω ∈ [0, τ], we have

|φ(ω)| = λ|(Sφ)(ω)|

≤ W1

(
∥v1∥P(∥φ∥W0) + ∥v2∥

)
,

and hence
∥φ∥

W1

(
∥v1∥P(∥φ∥W0) + ∥v2∥

) ≤ 1.

Due to (G3), ∥φ∥ ̸= Q. Now, we define E = {φ ∈ Bx : ∥φ∥ < Z0}. Obviously, the operator
S : E −→ X is continuous and completely continuous. Therefore, there is no φ ∈ ∂E such
that φ = λ(Sφ) with 0 < λ < 1. By the Leray–Schauder nonlinear alternative, the operator
D has a fixed point φ ∈ E, which is a solution of the sequential fractional Hilfer–Caputo
boundary value problem (4).

The following corollaries concern some special cases of the function P, which is useful
in checking the the existence of solutions.

Corollary 1. If P in condition (G2) is given by P(u) ≡ L, L > 0, then the boundary value
problem of sequential Hilfer and Caputo fractional operators (4) has at least one solution.

Corollary 2. If P in condition (G2) is given by P(u) = Au + B, where A ≥ 0 and B > 0 and if
A∥v1∥W0 < 1, then the non-separated boundary value problem of sequential Hilfer and Caputo
fractional operators (4) has at least one solution on [0, τ].

Corollary 3. Suppose that the function P in condition (G2) is given by P(u) = Cu2 + D, where
C, D > 0 are constants and 4C∥v1∥W2

0(∥v1∥D + ∥v2∥) < 1. Then, the non-separated boundary
value problem of sequential Hilfer and Caputo fractional operators (4) has at least one solution
on [0, τ].

4. Examples

In this section, some examples of the sequential Hilfer and Caputo fractional differen-
tial equation containing the Riemann–Stieltjes and fractional integrals with non-separated
boundary conditions, by varying a nonlinear function F, can be considered. Consider the
following sequential Hilfer and Caputo fractional boundary value problem:

HD
3
4 , 1

2 ,ω2+
√
ω(CD

1
4 ,ω2+

√
ωφ)(ω) = F

(
ω, φ(ω), Ic,ϑφ(ω),

∫ τ

0
φ(s)dv(s)

)
, ω ∈

[
0,

3
2

]
,

φ(0) +
3
7

φ

(
3
2

)
= 0,

CD
1
8 ,ω2+

√
ωφ(0) +

5
7

CD
1
8 ,ω2+

√
ωφ(τ) = 0.

(13)
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Setting a = 3/4, b = 1/2, δ = 1/4, ϑ = ω2 +
√
ω, τ = 3/2, λ1 = 3/7, λ2 = 5/7, then

we obtain γ = 7/8, which leads to γ + δ − 1 = 1/8. In addition, we have Θa+δ(τ) ≈
3.474744872, Θγ+δ(τ) ≈ 3.832247090, Θa−γ+1(τ) ≈ 3.118972472 and W1 ≈ 10.99153297.

(i) Assume that the nonlinear function F is given by

F

(
ω, φ, Ic,ϑφ,

∫ τ

0
φ(s)dv(s)

)
= 1 +

1
2
ω2 +

1
2(ω+ 48)

(
φ2 + 2|φ|
1 + |φ|

)
+

1
ω2 + 49

I
2
3 ,ω2+

√
ωφ +

1√
ω+ 50

∫ 3
2

0
φ(s)de−s. (14)

Note that the function v is v(s) = e−s and the order of fractional integration is c = 2/3. Then,
we obtain Vτ

0 v = 1 − e−
3
2 ≈ 0.7768698399, Θc(τ) ≈ 2.541265551 and W0 ≈ 4.318135391.

Further, we can check the Lipschitz condition of the function in (14) by

|F(ω, x1, y1, z1)− F(ω, x2, y2, z2)| ≤
1

48
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|), ∀xi, yi, zi ∈ R,

for i = 1, 2, with the Lipschitz constant K = 1/48. Therefore, the relation

W0W1K ≈ 0.9888109900 < 1,

holds. Hence, by the conclusion of Theorem 1, we have that the mixed Hilfer–Caputo
fractional Riemann–Stieltjes integro-differential equation with non-separated boundary
conditions (13) with F given by (14) has a unique solution on the interval [0, 3/2].

(ii) Now, let the nonlinear function F be given by

F

(
ω, φ, Ic,ϑφ,

∫ τ

0
φ(s)dv(s)

)

= (
√
ω+ 1) sin2 φ + (

√
ω+ 2)

∣∣∣I 2
3 ,ω2+

√
ωφ
∣∣∣

1 +
∣∣∣I 2

3 ,ω2+
√
ωφ
∣∣∣

+(
√
ω+ 3) cos4

(∫ 3
2

0
φ(s)d(s2 + 1)

)
+

1
4
ω+

1
3

. (15)

In this case, we have

|F(ω, x, y, z)| ≤ 3(
√
ω+ 3) +

1
4
ω+

1
3

, x, y, z ∈ R.

Applying Corollary 1 with P = 3, the non-separated BVP (13), with F given by (15), has at
least one solution on [0, 3/2].

(iii) Consider the nonlinear function F expressed by

F

(
ω, φ, Ic,ϑφ,

∫ τ

0
φ(s)dv(s)

)
=

1
ω+ 2

[
2φ2

5(1 + |φ|) +
1
3

(
I

4
5 ,ω2+

√
ωφ
)

e−φ4

+
2
7

cos8 φ
∫ 3

2

0
φ(s)d(ln(1 + s)) +

1
6

]
+

1
3
ω2 +

1
4

. (16)
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We have v(s) = ln(1 + s) and c = 4/5, which yield Vτ
0 v ≈ 0.9162907319, Θc(τ) ≈

2.908102246 and W0 ≈ 4.824392978. Now, we obtain

|F(ω, x, y, z)| ≤ 1
ω+ 2

[
2
5
(|x|+ |y|+ |z|) + 1

6

]
+

1
3
ω2 +

1
4

, x, y, z ∈ R,

and hence P(u) = (2/5)|u|+ (1/6), v1(ω) = 1/(ω+ 2) and v2(ω) = (1/3)ω2 + (1/4).
Consequently, A = 2/5 and ∥v1∥ = 1/2. Then, we can compute that A∥v1∥W0 ≈
0.9648785956 < 1. By using Corollary 2, the non-separated Hilfer–Caputo boundary
value problem (13), with F given by (16), has at least one solution on [0, 3/2].

(iv) Finally, let the nonlinear function F be presented by

F

(
ω, φ, Ic,ϑφ,

∫ τ

0
φ(s)dv(s)

)

=
1

ω2 + 15

[
1
3

(
φe−φ2

+
(

sin4 φ
)
I

5
4 ,ω2+

√
ωφ + cos6 φ

∫ 3
2

0
φ(s)d( 3

√
s + 1)

)2

+
1
5

]

+
1√

ω+ 4
. (17)

Choosing v(s) = ( 3
√

s+ 1) and c = 5/4, we obtain Vτ
0 v ≈ 1.144714242, Θc(τ) ≈ 4.187188923

and W0 ≈ 6.331903165. By considering

|F(ω, x, y, z)| ≤ 1
ω2 + 15

[
1
3
(|x|+ |y|+ |z|)2 +

1
5

]
+

1√
ω+ 4

, x, y, z ∈ R,

and set P(u) = (1/3)u2 + (1/5), v1(ω) = 1/(ω2 + 15) and v2(ω) = 1/(
√
ω+ 4), we

obtain C = 1/3, D = 1/5, ∥v1∥ = 1/15 and ∥v2∥ = 1/4. These information give
4C∥v1∥W2

0(∥v1∥D + ∥v2∥) ≈ 0.9384731311 < 1. The conclusion of Corollary 3 tells us that
the non-separated BVP of sequential Hilfer and Caputo fractional operators (13), with F

given by (17), has at least one solution on [0, 3/2].

5. Conclusions

In studying fractional boundary value problems involving Hilfer fractional derivative
operators of order in (1, 2], it is necessary to have a zero initial condition. In the present
paper, we proposed a combination of Hilfer and Caputo fractional derivatives to avoid
this difficulty. Thus, in this research, we investigated a sequential fractional boundary
value problem subject to non-separated boundary conditions in which we combined Hilfer
and Caputo fractional derivative operators. We proved the existence and uniqueness
results by using fixed-point theory. The existence of a unique solution is proved via
Banach’s fixed point theorem, while an existence result was established via the Leray–
Schauder nonlinear alternative. The obtained results are well illustrated by the constructed
numerical examples.

The results are new and contribute significantly to this new research subject. For
future work, we plan to apply this new method to study other kinds of boundary value
problems with nonzero initial conditions as well as coupled systems of fractional differential
equations containing a combination of Hilfer and Caputo fractional derivative operators.
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