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Abstract: The Least Absolute Shrinkage and Selection Operator (LASSO) regression technique has
proven to be a valuable tool for fitting and reducing linear models. The trend of applying LASSO to
compositional data is growing, thereby expanding its applicability to diverse scientific domains. This
paper aims to contribute to this evolving landscape by undertaking a comprehensive exploration
of the L1-norm for the penalty term of a LASSO regression in a compositional context. This implies
first introducing a rigorous definition of the compositional Lp-norm, as the particular geometric
structure of the compositional sample space needs to be taken into account. The focus is subsequently
extended to a meticulous data-driven analysis of the dimension reduction effects on linear models,
providing valuable insights into the interplay between penalty term norms and model performance.
An analysis of a microbial dataset illustrates the proposed approach.
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1. Introduction

Linear regression serves as a powerful framework for modelling relationships between
variables, as it aims to capture the underlying patterns that govern the variability in the
response variable. For instance, in the microbiome domain, there is a particular interest in
identifying which taxa are associated with a variable of interest, for example, the inflamma-
tory parameter sCD14. To address such complex problems, adopting LASSO regression
methods [1] has emerged as a popular choice for variable selection. LASSO regression
strategically applies the Euclidean L1-norm penalisation to the model coefficients, wherein
the L1-norm represents the sum of the absolute values of these coefficients. The penalised
term shrinks some regression parameters towards zero, facilitating variable selection.

While conventional regression models assume independence among covariates, this
assumption fails when dealing with compositional explanatory variables. These variables
are called parts of a whole, and are usually expressed in proportions, percentages, or ppm.
Historically [2], the sample space of the compositional data (CoDa) is designed as the
D-part unit simplex SD = {x ∈ RD : xj > 0; ∑ xj = 1; j = 1, . . . , D}. The fundamental
idea in the analysis of CoDa is that the information is relative, and is primarily contained
in the ratios between parts, not the absolute amounts of the parts. Therefore, the use of
log-ratios is advocated. The analysis of CoDa, pioneered by [2], has witnessed increasing
significance across such diverse fields as environmental science, geochemistry, microbiol-
ogy, and economics. However, the integration of CoDa as covariates in regression models
introduces particular challenges. The existing literature addresses these challenges, pro-
viding methodologies for regression model simplification with CoDa. The first works on
penalised regression with compositional covariates [3–6] restricted the Euclidean L1-norm
on the centered log-ratio (clr) subspace when defining the penalty term. Saperas et al. [7]
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introduced a new norm, called the pairwise log-ratio (L1-plr), as a part of a methodology
on penalised regression to simplify the log-ratios on the explanatory side of the model.
These log-ratios are also known as balances [8].

The primary objective of this article lies in comprehensive comparison of the effects of
different norms on the penalty term within LASSO regression with different compositional
explanatory variables. The choice of a norm in the penalty term is a pivotal aspect that
significantly influences the regularization mechanism, and consequently the characteristics
of the resulting models. To accomplish this, a precise and rigorous definition of the induced
Lp-norms for CoDa (CoDa Lp-norms) within the compositional space is necessary. A
comparison between the CoDa L1-norm and other norms for compositions established in
the literature is provided. Through this analysis, we seek to contribute valuable insights
into the characteristics and implications of these norms in penalised regression.

The rest of this article is organised as follows. In Section 2, fundamental concepts
related to the geometric structure of CoDa are outlined. In addition, some popular measures
of central tendency are written as the solution of a variational problem using Lp-norms
in real space. Section 3 is devoted to defining the CoDa Lp-norms on the compositional
space. In Section 4, after describing the basic concepts of standard penalty regression, we
analyse LASSO regression with compositional covariates using three different L1-norms
in the penalty term, with the CoDa L1-norm among them. A comparison of the different
norms is illustrated in Section 5 using a microbiome dataset. Finally, Section 6 concludes
with some closing remarks.

2. Some Basic Concepts
2.1. Elements of the Aitchison Geometry

CoDa conveys relative information because the variables describe relative contribu-
tions to a given total [2]. The formal geometrical framework for the analysis of CoDa,
coined the Aitchison geometry, first appeared in [9,10]. The Aitchison geometry is based
on two specific operations on SD, called perturbation and powering, respectively defined as
x ⊕ y = (x1y1, x2y2, . . . , xDyD) and α ⊙ x = (xα

1 , xα
2 , . . . , xα

D) for x, y ∈ SD, α ∈ R. In order
to interpret the results of these operations, one can perform closure on the result, that is,
normalise the resulting vector to a unit sum by dividing each component by its total sum.
Note that the closure operation provides a compositionally equivalent vector. With a vector
space structure, a metric structure can be easily defined using the clr-scores of a D-part
composition x = (x1, . . . , xD) [2]:

clr(x) = (clr(x)1, . . . , clr(x)D) =

(
ln

x1

g(x)
, . . . , ln

xD
g(x)

)
,

where g(·) is the geometric mean of the composition. Note that clr-scores are collinear,
because it holds that ∑D

j=1 clr(x)j = 0.
The basic metric elements of the Aitchison geometry are the inner product (< ·, · >A),

L2-norm (|| · ||A), and distance (dA(·, ·)), defined as follows:

< x, y >A=< clr(x), clr(y) >E , ∥x∥2
A =< x, x >A , dA(x, y) = ∥x ⊖ y∥A, for x, y ∈ SD, (1)

where “A” means the Aitchison geometry, “E” the typical Euclidean geometry, and “⊖” the
perturbation difference x ⊖ y = x ⊕ ((−1)⊙ y). Log-ratios, like clr-scores, have become a
cornerstone of CoDa analysis; nevertheless, in the literature the concept of balance between
two non-overlapping groups of parts is frequently used. A balance is defined as the log-
ratio between the geometric means of the parts within each group multiplied by a constant
that depends on the number of parts in each group [8].
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An important scale-invariant function is the log-contrast, which plays the typical role of
the linear combination of variables. Given a D-part composition x, a log-contrast is defined
as any linear combination of the logarithms of the compositional parts

D

∑
j=1

aj ln xj, with
D

∑
j=1

aj = 0, aj ∈ R.

Given a dependent variable y and an explanatory D-part composition x, the definition
of a linear regression model in terms of a log-contrast [11] is

y = α0 +
D

∑
j=1

αj ln xj, with
D

∑
j=1

αj = 0, αj ∈ R, (2)

whereas in terms of metric elements the model formulation [12] is

y = β0 + ⟨β, x⟩A = β0 + ⟨clr(β), clr(x)⟩E, (3)

where β is the compositional gradient vector. The expressions in both Equations (2) and
(3) are equivalent when one considers α0 = β0 and α = clr(β). Because the sum of the
clr-scores is zero (∑D

j=1 clr(β)j = ∑D
j=1 clr(x)j = 0), the inner product of clr transformed

vectors is equal to

⟨clr(β), clr(x)⟩E = ⟨clr(β), ln(x)⟩E = ⟨ln β, clr(x)⟩E. (4)

For simplicity and to avoid overloading the notation, we denote β∗ = ln β, and write the
linear regression model in terms of the Euclidean inner product as y = β0 + ⟨β∗, clr(x)⟩E.

2.2. Norms and Measures of Central Tendency

The most popular measures of the central tendency of a real variable are the median
and the arithmetic mean. Both can be defined as solving a variational problem [13]; indeed,
the median Med(z) of a dataset z = {z1, . . . , zD| zi ∈ R} is the value that minimises the

average absolute deviation Med(z) = arg min
λ

1
D

D

∑
j=1

|zj − λ|. The arithmetic mean z of a

dataset z = {z1, . . . , zD| zi ∈ R} is the value that minimises the mean squared deviation

z = arg min
λ

1
D

D

∑
j=1

(
zj − λ

)2. In addition, the mid-range MR(z) of a dataset z is the value

that minimises the maximum absolute deviation MR(z) = arg min
λ

(max
j

|zj − λ|). These

definitions can be generalised to any Lp-norm [13] (Chapter 3).

Definition 1. Let z = {z1, . . . , zD} be a dataset and let p ≥ 1; furthermore, let µp be the
p-measure of central tendency that minimises the total p-deviation function TDp(λ):

µp = arg min
λ

{
TDp(λ) = ∥z − Λ∥p

p =
1
D

D

∑
j=1

(
zj − λ

)p
}

,

where Λ = (λ, . . . , λ), λ ∈ R .

With this definition, the median (µ1 = Med(z)), arithmetic mean (µ2 = z), and
mid-range (µ∞ = MR(z)) follow as special cases for the norms L1, L2, and L∞, respectively.

Remark 1. Convexity of the total p-deviation function TDp(λ):

• For p = 1, the average absolute deviation TD1(λ) is a convex function of λ; however, it is not
strictly convex. Thus, the median may be a non-unique value.
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• For p > 1, the total p-deviation function TDp(λ) is strictly convex; thus, if µp(Z) exists,
this is unique.

3. Lp-Norms on the Compositional Space

To define induced Lp-norms on the compositional space (CoDa Lp-norms) in a com-
patible way with the Aitchison geometry, one must capture the geometric structure of the
SD [14]. To achieve this objective, we initially define the induced Lp-norm within the quo-
tient space LD = {z + λ1D| z ∈ RD, 1D = (1, . . . , 1)}. Following Brezis [15] (Chapter 11.2),
an induced Lp-norm on the quotient space LD can be defined by inducing the Euclidean Lp-
norm in RD on LD. The underlying idea is to assign to an equivalence class the minimum
value of the Lp-norm among the elements belonging to the same equivalence class.

Definition 2. Let z ∈ LD be a log-composition. The induced Lp-norm, denoted by ∥z∥p,LD , is

∥z∥p,LD = min
λ

∥z + λ1D∥p,

where 1D = (1, . . . , 1) and ∥ · ∥p denotes the typical Lp-norm in the real space.

Using the logarithmic isomorphism [14], the Lp-norm can be extended to the composi-
tional space.

Definition 3. Let x ∈ SD be a composition. The CoDa Lp-norm, denoted by ∥x∥p,SD , is

∥x∥p,SD = ∥ln x∥p,LD = min
λ

∥ ln x + λ1D∥p.

Proposition 1. The CoDa Lp-norm on SD is ∥x∥p,SD , and verifies the properties of the Aitchison
geometry [16]:

• Scale invariance: ∥x∥p,SD = ∥kx∥p,SD , k > 0.
• Permutation invariance: ∥(x1, . . . , xi, . . . , xj, . . . , xD)∥p,SD = ∥(x1, . . . , xj, . . . , xi, . . . , xD)∥p,SD .
• Subcompositional dominance: ∥x∥p,SD ≥ ∥sub(x)∥p,Sd , where sub(x) ∈ Sd denotes any

subset formed by d parts of x.

Proof of Proposition 1. The proof directly follows from the Definition 3.

Following Definition 3 and the measures of central tendency described in Section 2.2,
the CoDa Lp-norms L1, L2, and L∞ can be developed:

• The CoDa L1-norm on SD is

∥x∥1,SD = ∥ ln x − Med(ln x)1D∥1 =
∥∥ ln

x
Med(x)

∥∥
1 =

D

∑
j=1

∣∣∣∣ln xj

Med(x)

∣∣∣∣,
where Med(ln x) and Med(x) are the median of the sets {ln x1, . . . , ln xD} and {x1, . . . ,
xD}, respectively. As the logarithm function is strictly increasing, as per Definition 1,
the set of points that serve as solutions to the variational problem TD1 when applied to
log-transformed values µ1 = Med(ln(x)) precisely corresponds to the log-transformed
set of points that are solutions to the variational problem TD1 when applied to the
raw data, that is, ln(Med(x)).
Wu et al. [17] proposed the median of a D-part composition as an alternative denom-
inator to the geometric mean in an attempt to extend the definition of clr-scores. In
general, the performance of the median as a robust estimator of the midpoint of a
dataset is better when the data have high asymmetry. The CoDa L1-norm captures the
distance between two points when movement is restricted to paths that run parallel
to the clr-axes (ln( xi

g(x) )), as is the case in a grid or city street network (Manhattan

distance, Figure 1). The CoDa L1-norm has an equivalent expression that captures
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the information about the ratio between the components of a composition; indeed,
the median is the central point that divides a set into two equal parts, with half of
the values falling below this central position and half above it. Therefore, half of the
log-ratios ln(

xj
Med(x) ) are positive and the other half are negative. If we rearrange the

parts of a composition in increasing order (small to large), i.e., x(1) ≤ . . . ≤ x(D), then
the CoDa L1-norm can be written in the following manner:

* ∥x∥1,SD = ln

(
x(n+1) · . . . · x(2n)

x(1) · . . . · x(n)

)
if D = 2n;

* ∥x∥1,SD = ln

(
x(n+1) · . . . · x(2n−1)

x(1) · . . . · x(n−1)

)
if D = 2n − 1.

Thus, the CoDa L1-norm is a balance between the large parts and small parts.

Figure 1. The Manhattan distance based on the CoDa L1-norm in the simplex S3: the distance
between two points x = C

[
e3, 1, e

]
and y = C

[
1, e2, e

]
in a grid-based system, where C[·] is the closure

operation, is represented by three paths (red, orange, and blue) of the same length (five units).

• The CoDa L2-norm on SD is

∥x∥2,SD = ∥ ln x − ln(x)1D∥2 = ∥ ln x − ln(g(x))1D∥2 =
∥∥ ln

x
g(x)

∥∥
2 =

(
D

∑
j=1

(
ln

xj

g(x)

)2
) 1

2

,

where g(x) is the geometric mean of the set {x1, . . . , xD}. Because ln x
g(x) ∈ clr-

subspace, the CoDa L2-norm is the restricted Euclidean L2-norm on the clr-subspace.
This norm is commonly referred to as Aitchison’s norm ∥x∥A [18].

• The CoDa L∞-norm on SD is

∥x∥∞,SD = ∥ ln x − MR(ln x)1D∥∞ =
∥∥ ln

x
GR(x)

∥∥
∞ = max

j

{∣∣ ln
xj

GR(x)
∣∣},

where MR(ln x) and GR(x) are respectively the mid-range and geometric mid-range
of the sets {ln x1, . . . , ln xD} and {x1, . . . , xD}. Note that MR(ln(x)) = ln(GR(x));

thus, GR(x) =

(
max

i
{xi} · min

j
{xj}

) 1
2
, i, j = 1, . . . , D. The CoDa L∞-norm can be

interpreted as a form of log-pairwise, as the CoDa L∞-norm represents half of the
log-pairwise between the largest part against the smallest part. This log-pairwise is
the greatest among all log-pairwise in the composition:
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∥x∥∞,SD =
1
2

ln

max
i

{xi}

min
j
{xj}

 =
1
2

max
i,j

{
ln

xi
xj

}
.

4. Penalised Regression with a Compositional Covariate

The LASSO regression model is formulated as the combination of the L2-norm cost
function and the L1-norm regularisation term [1]. For a real dataset Z with n observations
and D predictors along with a real response vector Y of length n, the LASSO regression
model can be formulated as follows:

min
{

1
2
∥Y − β0 − ⟨β, Z⟩E∥2

2 + λ∥β∥1

}
(5)

where β0 is the intercept, the vector β is the gradient, and λ is the penalty parameter that
controls the amount of regularisation. Note that ∥ · ∥2 and ∥ · ∥1 refer to the Euclidean
L2 and L1 norms in real space, respectively. For λ = 0, the LASSO regression model
(Equation (5)) provides the classical least squares regression model. The larger the value of
λ, the greater the number of coefficients in β that is forced to be zero. The optimal value of
λ can be chosen based on cross-validation techniques and related methods [19].

In the case of CoDa, additional considerations must be taken into account in order to
respect the compositional nature of both the covariate X and the intercept β. In variable
selection, [3,20] wrote the LASSO model in terms of β∗ = ln β and the log-transformed data
instead of the clr-scores; consequently, a linear constraint on the compositional gradient
coefficient β∗ is necessary:

min
{

1
2
∥Y − β0 − ⟨β∗, ln(X)⟩E∥2

2 + λ∥β∗∥1

}
, subject to

D

∑
j=1

β∗
j = 0. (6)

Most of the literature addressing the topic of penalised regression with a compositional
covariate has predominantly employed the Euclidean L1-norm in the penalty term, leading
to a clr-variable selection ([3–6,20–22]).

In Equation (6), the constraint ∑D
j=1 β∗

j = 0 can be incorporated in the minimising

function. The constraint ∑D
j=1 β∗

j = 0 forces the β∗ parameter to be an element in the
clr-subspace. Therefore, per Equation (4), the inner product ⟨β∗, ln(X)⟩E is equivalent to
⟨clr(β), clr(X)⟩E = ⟨β, X⟩A. Thus, the constrained LASSO (Equation (6)) is equivalent to
the following definition.

Definition 4. Given yi, i = 1, . . . , n, the sample of the response variable X, and the n × D matrix
whose rows Xi = (xi1, . . . , xiD) for i = 1, . . . , n contain the compositional sample, the L1-clr
LASSO estimator is defined as

β ∈ argmin
β0, β

{
1
2
∥Y − β0 − ⟨β, X⟩A∥2

2 + λ∥β∥1−clr

}
, (7)

where ∥β∥1−clr = ∑D
j=1 |clr(β)j| = ∑D

j=1

∣∣∣ln β j
g(β)

∣∣∣.
The key innovation here is that the linear constraint becomes embedded in the penalty

term through the L1-clr norm. This change in approach is not merely an algebraic or formal
change; rather it implies a deeper understanding of the variable selection process in CoDa.
The penalty term imposes a constraint on the sum of the absolute values of clr-scores within
the gradient vector β. This constraint compels the model to shrink or eliminate certain
clr-scores, effectively driving them to zero. Consequently, this results in a balance selection.
Without loss of generality, let us assume that the balance ln β1

g(β)
is zero. This implies that

the corresponding balance ln x1
g(x) has no influence on the response variable y. Therefore,
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the maximum variation in y is concentrated in the subspace orthogonal to the balance
ln x1

g(x) , i.e., the subspace of balances among the subcomposition (x2, . . . , xD). This selective
regularization process facilitates variable selection, as x1 does not influence the response
variable y.

In order to establish a unified framework, the generalised LASSO problem [23] can be
adapted to penalised linear models with a compositional covariate:

min
{

1
2
∥Y − β0 − ⟨β∗, clr(X)⟩E∥2

2 + λ∥D · β∗∥1

}
, (8)

where ∥ · ∥2 and ∥ · ∥1 respectively refer to the Euclidean L2 and L1 norms in real space.
The generalised LASSO problem allows for a broader range of applications by considering
a matrix D associated with the penalty term. The matrix D is related to the L1-norm
considered in the penalty term. The choice of one norm over another determines the type of
regularization. Different models can be formulated within the framework of the generalised
LASSO problem and addressed through convex optimization algorithms. Solving each of
these different penalised regression models yields distinct coefficients, each characterised
by unique properties. Indeed, Definition 4 can be expressed as a generalised LASSO
problem in the following manner:

β∗ ∈ argmin
β0, β∗

{
1
2

n

∑
i=1

(yi − β0 − ⟨β∗, clr(X)i⟩E)
2 + λ∥CDβ∗∥1

}
, (9)

where β∗ = ln β and D = CD is the centering matrix on the clr-subspace, with
CDβ∗ = β∗ − β∗1D.

On the other hand, following [7], it is possible to consider the matrix D equal to F,

that is, the matrix associated with the linear transformation F(β∗
1, . . . , β∗

D) =
1

D − 1
(β∗

1 −

β∗
2, β∗

1 − β∗
3, . . . , β∗

1 − β∗
D, β∗

2 − β∗
3, . . . , β∗

2 − β∗
D, . . . , β∗

D−1 − β∗
D). Note that β∗

i − β∗
j = ln

(
βi
β j

)
,

which is a log-pairwise. In this case, the penalty term in a generalised LASSO problem
can be written as ∥F · β∗∥1, meaning that the generalised LASSO problem results in the
following:

β∗ ∈ argmin
β0, β∗

{
1
2

n

∑
i=1

(yi − β0 − ⟨β∗, clr(X)i⟩E)
2 + λ∥Fβ∗∥1

}
. (10)

The model can be defined as follows.

Definition 5. Given yi, i = 1, . . . , n, the sample of the response variable X, and the n × D matrix
whose rows, Xi = (xi1, . . . , xiD) for i = 1, . . . , n contain the compositional sample, the L1-plr
LASSO estimator is defined as

β ∈ argmin
β0, β

{
1
2
∥Y − β0 − ⟨β, X)⟩A∥2

2 + λ∥β∥1−plr

}
, (11)

where ∥β∥1−plr =
1

D−1 ∑i<j

∣∣∣ln( βi
β j

)∣∣∣.
Importantly, because ln βi

β j
= clr(β)i − clr(β)j, the penalty term shrinks the absolute

value of the differences of the clr-scores within the gradient vector, which forces some pair-
wise differences of clr-scores to be zero, i.e., it forces equality on some clr-scores. Therefore,
each set of equal clr-scores defines a subcomposition with non-influential balances within
its parts. This selective regularization process facilitates balanced selection [7].

Finally, using the CoDa L1-norm introduced in Section 3, it is possible to define another
generalised LASSO problem.
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Definition 6. Given yi, i = 1, . . . , n, the sample of the response variable X, and the n × D matrix
whose rows Xi = (xi1, . . . , xiD) for i = 1, . . . , n contain the compositional sample, the CoDa
L1-norm LASSO estimator is defined as

β ∈ argmin
β0, β

{
1
2
∥Y − β0 − ⟨β, X)⟩A∥2

2 + λ∥β∥1,SD

}
, (12)

where ∥β∥1,SD = ∑D
j=1

∣∣∣ln β j
Med(β)

∣∣∣.
In this case, the penalty term compels certain parts β j to be equal to the median of

the parts, ensuring equality among them in particular. Consequently, the effect produced
is also a balance selection, as in the previous case; however, unlike the L1-plr LASSO
estimator, with the CoDa L1-norm estimator there is only one set of equal clr-scores, and all
non-influential balances belong to a single subcomposition.

As there is no algebraic formula to express the median, Med(β), it is necessary to
include a new variable m ∈ R in the penalty term when formulating the minimization
problem (Equation (12)) as a generalised LASSO problem:

β∗ ∈ argmin
β0, β∗ , m

{
1
2

n

∑
i=1

(yi − β0 − ⟨β∗, clr(X)i⟩E)
2 + λ∥G · (β∗, m)∥1

}
, (13)

where β∗ = ln β, D = G, and the matrix associated with the transformation G(β∗, m) =
(β∗

1 − m, β∗
2 − m, . . . , β∗

D − m).

5. Study Case

We used the microbial dataset analyzed in [24,25] to compare the different L1-norms in
a CoDa LASSO regression problem. The dataset, collected and explained in [24], comprises
the compositions of D = 60 taxa spanning various taxonomic levels (e.g., g for genus, f for
family, o for order, and k for kingdom) within a set of n =151 individuals. The dependent
variable y is an inflammatory parameter, specifically, the levels of soluble CD14 (sCD14
variable) measured for each individual. These data are available in the R package [26]. An
individual having a zero value recorded for some parts indicates that certain taxa were not
detected. A zero value prevents the application of the log-ratio methodology. Following a
more analogous procedure than in [26], the genus Thalassospira, unclassified genus of the
class Alphaproteobacteria, and unclassified genus of the family Porphyromonadaceae, all with
more than 80% of zeros, were removed. The rest of the zeros recorded in the remaining
57 taxa were replaced by a small value using an imputation method [27,28]. Because the
zeros are of count type, it is appropriate to apply methods based on Dirichlet-multinomial
duality [29].

To solve the convex optimizations problems in Equations (9), (10), and (13), we first
select the optimal λ parameter for the penalised model by performing a ten-fold cross-
validation. Each iteration involves dividing the data into ten equal parts, training the
model on nine of them, and then evaluating it on the remaining part to produce the lowest
Mean Squared Error (MSE). With the parameter λ selected, we proceeded to solve the
optimization problem in order to find the parameters β0 and β∗. The CVXR package in R
version 4.3.2 [30] offers an interface for defining and solving convex optimization problems.
CVXR utilises a domain-specific language, making it user-friendly and allowing users to
express optimization problems. The package supports various solvers, enabling users to
choose the one that best suits their needs. In our case, we opted for the Operator Splitting
Quadratic Program (OSQP). The OSQP is a solver for quadratic programming problems
and employs an operator-splitting method [31]. This solver is highly efficient even in
cases where the matrices are not full-rank, such as our situation, because the clr-scores are
used. Referring to the procedure detailed above, we have outlined an Algorithm 1 for a
generalised LASSO method below.
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The algorithm is applied in the three cases discussed in the previous section, namely,
when considering the three different L1 norms in the penalty term, i.e., the L1-clr (Definition 4),
L1-plr (Definition 5), and CoDa L1-norms (Definition 6).

For the L1-clr estimator, the LASSO regression algorithm is applied iteratively within
the cross-validation framework. Figure 2 illustrates the cross-validated MSE across different
λ values. The optimal λ is determined by selecting the point on the curve where the mean
squared error is minimised: λmin = 35,769.42.

Figure 2. L1-clr: cross-validation MSE curve for different log-transformed values of the penalty
parameter (ln(λ)). The circle (◦) is the arithmetical mean of the ten-fold CV. The red lines (above
and below the mean) indicate the mean ± stdev value, where stdev is the standard deviation of the
ten-fold CV. The vertical line represents the log-transformed values of lambda.min = 35,769.42.

Algorithm 1 Generalised LASSO for CoDa

1. Fit the generalised LASSO model with tuning parameter λ (Equations (9), (10) or (13)).
2. Calculate the clr-representative: β∗ − β∗

3. Express the generalised LASSO model in terms of clr-scores.

For λmin = 35,769.42, the generalised LASSO (Equation (9)) identifies which ones
among all the β∗

i are set to β∗, particularly ensuring equality among them. Importantly,
when computing the representative β∗ − β∗1D ∈ clr-subspace, we find that some clr-scores
are equal to zero. Therefore, the regularization process effectively splits the composition
into two subcompositions. The first subcomposition represents the 33 non-influential
parts, where coefficients clr(β)k, k = 1, . . . , 33 are driven to zero, contributing to model
simplicity. The second subcomposition identifies the 24 parts that actively contribute to
the influential balances on the response variable y (see Table A1). The intercept β0 is equal
to 6563.19. Figure 3a shows the non-zero clr-scores for parameter β. We highlight that
the most influential pairwise is formed by the genus Subdoligranulum and the unclassified
genus of the family Lachnospiraceae.

For the CoDa L1-norm estimator (Equation (13)), the LASSO regression algorithm
is applied with the same cross-validation partition used in the L1-clr estimator. Figure 4
illustrates the model’s performance across different regularization parameters λ. The
optimal value is λmin = 45,582.21

For λmin = 45,582.21, the generalised LASSO (Equation (13)) identifies which ones
among all the β∗

i are set to the median of β∗, particularly ensuring equality among them.
This equality among some β∗

i indicates that the balances involving their respective parts xi
have a non-influential role in the response variable y. However, in contrast to the L1-clr
scenario when computing the representative β∗ − β∗, in general, all clr-scores are non-zero.
Consequently, variable selection cannot be performed in this case. The regularization pro-
cess effectively splits the composition into two subcompositions. The first subcomposition
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represents the 36 internally independent parts, that is, a subcomposition in which the balances
between the respective parts do not influence y [32]. The coefficients clr(β)k, k = 1, . . . , 36
are driven to the median of β∗ (6.44), contributing to model simplicity. The second subcom-
position identifies the 21 parts that actively contribute to the influential balances on the
response variable y (see Table A1).

(a)

(b)

(c)
Figure 3. Comparison of the clr(β) parameter, with the taxon order maintained on the vertical axis
to facilitate comparison: (a) clr-scores for the L1-clr LASSO estimator, (b) clr-scores for the L1-CoDa
LASSO estimator, and (c) clr-scores for the L1-plr LASSO estimator.
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To highlight the model’s simplicity, it is crucial to accurately summarise the informa-
tion contained in the first subcomposition. Without loss of generality, let (x1, . . . , xk) be an
internally independent subcomposition. The linear model in clr-scores is

y = β0 +
k

∑
j=1

clr(β)j ln xi +
D

∑
j=k+1

clr(β)j ln xj, clr(β)1 = . . . = clr(β)k.

Figure 4. CoDa L1-norm: cross-validation MSE curve for different log-transformed values of the
penalty parameter (ln(λ)). The circle (◦) is the arithmetical mean of the ten-fold CV. The red lines
(above and below the mean) represent the value mean ± stdev, where stdev is the standard deviation
of the ten-fold CV. The vertical line represents the log-transformed values of lambda.min = 45,582.21.

As explained by [16] in Chapter 4, the best approach to represent a subcomposition is
through its geometric mean, denoted as gsub = (x1 · . . . · xk)

1
k . Therefore, the linear model is

y = β0 + kclr(βsub) ln gsub +
D

∑
j=k+1

clr(β)j ln xj,

where clr(βsub) = clr(β)1 = . . . = clr(β)k. This model has D − k degrees of freedom, as
opposed to the D − 1 degrees of freedom of the general linear model. The intercept value
is β0 = 7023.879, and Figure 3b shows the clr-scores of β.

L1-clr regularization creates a subcomposition that is both internally and externally
independent [32], that is, both the balances within the parts of the subcomposition and
the full balance between the parts of the subcomposition and the rest of the parts are
all non-influential. In contrast, CoDa L1-norm regularization relaxes the conditions and
establishes only one subcomposition that is internally independent. In this context, the
CoDa L1-norm is somewhat more permissive. When comparing the results, we observe
that both are quite similar; what stands out is the significance of the new variable gsub in the
CoDa L1-norm penalised linear model. L1-clr regularization eliminates the balance ln gsub

g(x)
without prior analysis. This observation prompts us to consider that the direct application
of L1-clr regularization might be premature. Furthermore, when dealing with a penalised
model, it is always possible to subsequently test the nullity of any parameter [33].

L1-clr and CoDa L1-norm regularization share the fact that both shrink the difference
between β∗

i coefficients and a central measure, respectively, the mean and the median;
consequently, each regularization technique generates a unique subcomposition with
certain properties related to its influence on the dependent variable y. Because the goal of
a CoDa analysis is to describe the subcompositional structure of the data, the use of the
L1-clr and CoDa L1-norms in the penalty term leads to a result that has to be considered as
limited. To overcome this limitation, the L1-plr norm enables the construction of more than
one internally independent subcomposition, which can better capture the subcompositional
structure of the data regarding the variable y [7].
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With the same data partition as executed in previous cases, we performed cross-
validation to find the optimal lambda value for the L1-plr estimator. The optimal parameter
is λ = 69,669.31 (Figure 5).

Figure 5. L1-plr: cross-validation MSE curve for different log-transformed values of the penalty
parameter (ln(λ)). The circle (◦) is the arithmetical mean of the ten-fold CV. The red lines (above and
below the mean) represent the value mean ± stdev, where stdev is the standard deviation of the
ten-fold CV. The vertical line represents the log-transformed values of lambda.min = 69,669.31.

For λ = 69,669.31, the generalised LASSO (Equation (13)) splits the composition into
six distinct subcompositions: five internally independent subcompositions on response
variable y and one subcomposition comprising 14 parts actively contributing to the in-
fluential balances on the response variable y (see Table A1 to compare L1-plr estimator
with L1-clr and L1-CoDa estimators, and Table A2 to explore its subcompositional struc-
ture). Each of the five internally independent subcompositions related to y contributes to
reducing the dimension of the linear model. This reduction is achieved by substituting
each subcomposition with its geometric mean (g − subcompk, k = 1, . . . , 5), following the
approach outlined in the CoDa L1-norm estimator. The intercept value is β0 = 7023.879
and Figure 3c shows the clr-scores of β.

The L1-plr estimator is the simplest and provides us with the most information about
the subcompositional structure of the composition as regards the variable y.

6. Discussion

This paper has rigorously defined CoDa Lp-norms, providing a foundation for their
application. The specific cases of the CoDa L1, L2, and L∞ norms have been studied,
interpreting these metrics in terms of log-ratios to enhance the reader’s understanding.
Additionally, a unified treatment of three distinct L1-norms tailored for compositional data
has been presented in the context of a generalised LASSO problem. Through a detailed
examination of the regularization effects of each norm, we have uncovered valuable insights.
The L1-clr norm is well suited for variable selection, creating a unique subcomposition
that is both internally and externally independent. The CoDa L1-norm, on the other hand,
emphasises internal independence. Lastly, the L1-plr norm showcases a balance selection
effect. Consequently, the L1-plr norm enables more detailed study of the subcompositional
structure of the compositional covariate x in relation to the explained variable y.

In this article, we have expanded the methodological toolkit for performing penalised
regression with compositional covariates. For low dimensions, our recommendation is to
run penalised regression with the L1-plr norm. However, we cannot ignore that variable
selection becomes imperative for higher dimensions. Therefore, we suggest conducting
an initial examination using the CoDa L1-norm or L1-plr norm to gain insights into the
subcompositional structure. Following this analysis, it is possible to proceed with penalised
regression employing the L1-clr norm.
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As part of our future work, we aim to investigate penalised regression models that
effectively integrate both the L1-plr and L1-clr norms into the penalty term. This research
is expected to offer deeper insight into the underlying structure of compositional data,
allowing for a more thorough understanding. Moreover, our aim is to improve the flexibility
of modelling, especially in datasets with high dimensionality. This holistic approach
will contribute to advancing the applicability and effectiveness of penalised regression
techniques in the context of compositional data analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

LASSO Least Absolute Shrinkage and Selection Operator
CoDa Compositional Data
clr Centered Log-Ratio
L1-plr Pairwise Log-Ration norm
L1-clr Centered Log-Ration norm
TD Total p-Deviation Function
MSE Mean Squarred Error
OSQP Operator-Splitting Quadratic Program

Appendix A

Table A1. clr-scores for the three LASSO estimators grouped into subcompositions.

Taxon L1-clr L1-CoDa L1-plr

Intercept 6563.19 7023.88 7244.88
g_Subdoligranulum 455.51 409.93 249.27
f_Lachnospiraceae_g_Incertae_Sedis 245.69 77.35
g_Dialister 229.23 182.53
g_Bacteroides 193.46 186.23
g_Dorea 159.97 104.06
g_Desulfovibrio 88.32 53.57
f_Peptostreptococcaceae_g_Incertae_Sedis 70.37 37.38 26.54
g_Faecalibacterium 63.74 33.07
g_Paraprevotella 45.15 38.71
f_Defluviitaleaceae_g_Incertae_Sedis 39.35 34.48 54.86
g_Alistipes 27.18 14.05
g_Clostridium_sensu_stricto_1 20.52
g_Brachyspira 4.33
g_Elusimicrobium 2.25
g_Butyricimonas 0.16
k_Bacteria_g_unclassified −7.48 −33.79 −41.56
g_Streptococcus −11.71
g_Catenibacterium −21.83 −12.10 −19.66
g_Succinivibrio −34.64 −31.51 −10.83
g_Lachnospira −40.80 −4.21 −29.65
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Table A1. Cont.

Taxon L1-clr L1-CoDa L1-plr

g_Parabacteroides −52.41 −0.28
o_Clostridiales_g_unclassified −111.82 −107.08 −85.66
g_Mitsuokella −219.27 −192.13 −144.62
g_Collinsella −233.08 −235.68 −228.94
g_Bifidobacterium −263.23 −225.95 −154.34
f_Lachnospiraceae_g_unclassified −626.20 −563.00 −365.84
g_subcomp 231.83
g_subcomp_1 212.52
g_subcomp_2 248.34
g_subcomp_3 41.25
g_subcomp_4 255.78
g_subcomp_5 −27.66

Table A2. Details of the subcompositional structure for the L1-plr LASSO estimator.

Taxon clr(β)

g_Subdoligranulum 249.27

g_subcomp_1: 212.52
g_Bacteroides, g_Dialister

f_Defluviitaleaceae_g_Incertae_Sedis 54.86

g_subcomp_2: 248.34
f_Lachnospiraceae_g_Incertae_Sedis, g_Dorea, g_Faecalibacterium,
g_Alistipes, g_Desulfovibrio, g_Paraprevotella

f_Peptostreptococcaceae_g_Incertae_Sedis 26.54

g_Clostridium_sensu_stricto_1 20.52

g_subcomp_3: 41.25
g_Escherichia-Shigella, f_Ruminococcaceae_g_unclassified, g_Butyricimonas

g_subcomp_4: 255.78
g_Brachyspira, g_Barnesiella, g_Blautia, f_Rikenellaceae_g_unclassified,
g_Odoribacter, f_Erysipelotrichaceae_g_unclassified, g_Streptococcus,
g_Anaerostipes, g_Phascolarctobacterium, g_Acidaminococcus,
g_Anaerovibrio, g_Roseburia, g_Alloprevotella,
f_Erysipelotrichaceae_g_Incertae_Sedis, g_Megasphaera, g_Coprococcus,
g_Intestinimonas, g_Solobacterium, g_Oribacterium, g_Anaeroplasma,
g_Victivallis, f_Ruminococcaceae_g_Incertae_Sedis, o_NB1-n_g_unclassified,
g_Sutterella, o_Bacteroidales_g_unclassified, g_Prevotella, g_RC9_gut_group,
f_Christensenellaceae_g_unclassified, g_Anaerotruncus

g_Parabacteroides −0.28

g_subcomp_5: −27.66
g_Ruminococcus, g_Elusimicrobium, f_vadinBB60_g_unclassified

g_Succinivibrio −10.83

g_Catenibacterium −19.66

g_Lachnospira −29.65

k_Bacteria_g_unclassified −41.56

o_Clostridiales_g_unclassified −85.66

g_Mitsuokella −144.62

g_Bifidobacterium −154.34

g_Collinsella −228.94

f_Lachnospiraceae_g_unclassified −365.84
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