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Abstract: As an immensely important characteristic of natural images, the nonlocal self-similarity
(NSS) prior has demonstrated great promise in a variety of inverse problems. Unfortunately, most
current methods utilize either the internal or the external NSS prior learned from the degraded image
or training images. The former is inevitably disturbed by degradation, while the latter is not adapted
to the image to be restored. To mitigate such problems, this work proposes to learn a hybrid NSS prior
from both internal images and external training images and employs it in image restoration tasks.
To achieve our aims, we first learn internal and external NSS priors from the measured image and
high-quality image sets, respectively. Then, with the learned priors, an efficient method, involving
only singular value decomposition (SVD) and a simple weighting method, is developed to learn
the HNSS prior for patch groups. Subsequently, taking the learned HNSS prior as the dictionary,
we formulate a structural sparse representation model with adaptive regularization parameters
called HNSS-SSR for image restoration, and a general and efficient image restoration algorithm
is developed via an alternating minimization strategy. The experimental results indicate that the
proposed HNSS-SSR-based restoration method exceeds many existing competition algorithms in
PSNR and SSIM values.

Keywords: image prior learning; nonlocal self-similarity; image restoration; structural sparse
representation; adaptive regularization parameter

MSC: 94A08; 68U10

1. Introduction

Along with the advancement of various optical technologies and sensors, images
have become one of the most important carriers of information. Unfortunately, image
degradation is inevitable during acquisition, transmission, and storage because of defects
in the imaging system and interference from various external factors. Therefore, image
restoration, which strives to reconstruct the underlying uncorrupted image x from the
corrupted measurement y, is essential in a lot of fields of science and engineering. In general,
the image degradation process is modeled as :

y = Φx + v, (1)

where Φ denotes the degradation operator and v represents the white Gaussian noise.
In Equation (1), different settings of Φ correspond to different image restoration problems.
To be specific, when Φ is an identity matrix, Equation (1) becomes image denoising [1];
when Φ is a blurring matrix, Equation (1) converts to image deblurring [2,3]; and when Φ

is a random projection matrix, Equation (1) denotes image compressive sensing [4,5].
As image restoration in Equation (1) is a typically ill-posed linear inverse problem,

an image prior is often required to constrain the solution space. Specifically, from the
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standpoint of maximum a posteriori (MAP) estimation, the latent high-quality image can
be inferred by solving the following regularization problem [2]:

x̂ = arg min
x

∥y − Φx∥2
2 + ηΨ(x), (2)

where ∥ · ∥2
2 denotes the l2-norm, ∥y − Φx∥2

2 is the fidelity term associated with Gaussian
noise, Ψ(x) is the regularization term that relies on the image prior, and η is employed to
balance these two terms.

Due to the curse of dimensionality, it is almost impossible to model the whole image.
A remedy is to use the image patch as the basic unit of modeling [6,7]. Thus, over the past
few decades, the patch-based prior has been extensively studied and has achieved favorable
image restoration performance, such as patch-based sparse representation [8–13] and patch-
based image modeling [6,14–16]. Recently, deep learning has also been adopted to learn
image priors in a supervised manner and has spawned promising results in various image
restoration applications [17–22]. Both the model-based and deep learning-based approaches
mentioned above, however, are dedicated to mining the local properties of images, whose
performance is restricted by largely neglecting the self-similarity and nonlocal properties
of images [1,23,24]. In addition, deep learning methods require a training set consisting of
extensive degraded/ high quality image pairs for supervised learning, which renders them
difficult to apply or causes undesirable artifacts in some tasks, such as medical imaging
and remote sensing [25,26].

As we all know, natural images have rich self-repeating structures in nonlocal re-
gions, i.e., the so-called nonlocal self-similarity (NSS) prior [27,28]. Compared to the
patch-based prior, the NSS prior enables us to cluster together nonlocal patches with
similar patterns over the whole image and use such similar patch groups as the basic
unit for restoration, which is especially helpful for recovering image structures [27–29],
such as textures and edges. Given the great success of the nonlocal means (NLM) [27]
method, a series of NSS prior-based methods have been developed successively and have
shown impressive restoration effects. These approaches can be broadly summarized into
three clusters, i.e., filter-based methods [27,29,30], patch group-based sparse representa-
tion methods [4,23,31–38], and low-rank approximation-based methods [2,39–44]. Apart
from focusing on the internal NSS prior of the corrupted image, some recent approaches
have paid attention to exploiting the external NSS prior learned from high-quality natural
images [28,45,46]. For example, Xu et al. [28] developed a patch group prior-based denois-
ing (PGPD) method for learning dictionaries from the natural image corpus. Liu et al. [46]
formulated a external NSS prior-based group sparsity mixture model for image denoising.
Although the aforementioned NSS prior-based methods have shown their potential in
recovering image structures, exploiting the internal NSS of the observed image often suffers
from overfitting data corruption [5], while the external NSS prior learned from training
images is not well-adapted to the image to be recovered [47].

To rectify the weakness of using a single NSS prior, some more recent works pro-
posed to jointly utilize internal and external NSS priors [1,3,5,7,24,26,48,49]. For instance,
Zha et al. [1] developed a denoising method based on sparse residuals by using an external
NSS prior. Liu et al. [49] proposed a group sparse representation-based super-resolution
algorithm to leverage internal and external correlations. Zha et al. [24] proposed to si-
multaneously use internal and external NSS priors for image restoration. Yuan et al. [3]
formulated a joint group dictionary-based structural sparse model for image restoration.
Zha et al. [5] developed a hybrid structural sparsification error model to jointly exploit
internal and external NSS priors. Yuan et al. [7] suggested the joint use of a low-rank prior
and an external NSS prior. These methods have led to promising restoration results, since
the complementary information of internal and external NSS priors is exploited.

Unlike the above works, in this paper, we propose to learn a hybrid NSS (HNSS)
prior for image restoration. In particular, most of existing works mainly concentrate their
attention on how to jointly utilize two priors, i.e., internal and external NSS priors, while
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this work focuses on developing a new paradigm to learn one HNSS prior from both the
internal degraded and external natural image sets and applies the learned prior to image
restoration. It can be seen that the technical route of our proposed method is quite different
from the above existing works. The flowchart of our method is presented in Figure 1. To the
best of our knowledge, how to learn an HNSS prior remains an unsolved problem, and this
paper thus takes a stab at it. We summarize the main contributions as follows:

1. We develop a flexible yet simple approach to learn the HNSS prior from both internal
degraded and external natural image sets.

2. An HNSS prior-based structural sparse representation (HNSS-SSR) model with adap-
tive regularization parameters is formulated for image restoration.

3. A general and efficient image restoration algorithm is developed by employing an
alternating minimization strategy to solve the resulting image restoration problem.

4. Extensive experimental results indicate that our proposed HNSS-SSR model exceeds
many existing competition algorithms in terms of quantitative and qualitative quality.

Figure 1. The flowchart of the proposed method.

The remainder of this paper is organized as follows. Section 2 elaborates on how to
learn the HNSS prior. Section 3 formulates an HNSS-SSR model for image restoration.
Section 4 presents the experimental results, followed by the conclusion of this paper in
Section 5.

2. Learning the Hybrid Nonlocal Self-Similarity Prior

Here, internal and external NSS priors are first learned from the observed image and
training image sets. Specifically, the Gaussian mixture model (GMM) is employed to learn
internal and external NSS priors, respectively, since Zoran and Weiss [14,50] have shown
that GMM can learn priors more efficiently, i.e., obtaining higher log likelihood scores and
better denoising performance, compared to other common methods. On this basis, the
HNSS prior is then learned by singular value decomposition (SVD) and by an efficient yet
simple weighting method.

2.1. Learning the Internal NSS Prior from a Degraded Image

Given a degraded image y, our desired goal is to learn the NSS prior of its correspond-
ing latent high-quality image x, i.e., the internal NSS prior. However, since the underlying
original image is unknown, it is first initialized to the degraded image, i.e., x = y. Then,
we divide x into N overlapped local patches xi with size

√
m ×

√
m, and the n most similar

patches for each xi are found to construct a similar patch group X i = {xi,j}n
j=1, where xi,j

is a vectorized image patch. Specifically, for patch xi, we compute the Euclidean distance
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between it and each patch, i.e., si,j = ∥xi − xj∥2
2, j = 1, . . . , N, and then select n patches

with the smallest distance as similar patches. In practice, this can be done via the K-Nearest
Neighbor (KNN) [51] method.

In view of its great success in modeling image patches [6,14,15] and patch groups [28,52],
GMM with finite Gaussian components is adopted in this paper to learn both internal and
external NSS priors (which will be introduced in the next subsection). As a result, the following
likelihood:

p(X i) =
KI

∑
k=1

πk,I

n

∏
j=1

N (xi,j|µk,I, Σk,I), (3)

is employed for each patch group X i to learn the internal NSS prior, where KI is a hyperpa-
rameter denoting the total number of Gaussian components; µk,I, Σk,I, and πk,I denote the
mean vector, covariance matrix, and weight of the k-th Gaussian component, respectively;
and ∑KI

k=1πk,I = 1. Regarding all patch groups as independent samples [1,28,52], the overall
log-likelihood function for learning the internal NSS prior can be given as:

lnLI =
N

∑
i=1

ln

(
KI

∑
k=1

πk,I

n

∏
j=1

N (xi,j|µk,I, Σk,I)

)
. (4)

By maximizing Equation (4) over all patch groups {X i}N
i=1, the parameters of the GMM

can be learned, which describe the internal NSS prior. Note that the subscript I is used to
indicate the internal NSS prior.

However, it is a fact that different patch groups contain different fine-scale details of
the image be recovered. Accordingly, in this paper, when learning the internal NSS prior,
instead of directly optimizing Equation (4), we assign an exclusive Gaussian component to
each patch group, i.e.,

p(k|X i, µk,I, Σk,I) =

{
1 when k = i,

0 otherwise.
(5)

Hence, the total number of Gaussian components for learning the internal NSS prior is
naturally set as KI = N, and for each patch group X i, its corresponding µi,I and Σi,I are
obtained by the following maximum likelihood (ML) estimate [15,52]:

(µi,I, Σi,I) = arg max
µi,I,Σi,I

log p(X i|µi,I, Σi,I). (6)

Specifically, µi,I and Σi,I can be estimated as:

µi,I =
1
n

n

∑
j=1

xi,j, (7)

Σi,I =
1
n

n

∑
j=1

(xi,j − µi,I)(xi,j − µi,I)
T. (8)

2.2. Learning the External NSS Prior from a Natural Image Corpus

With a set of pre-collected natural images, a total of L similar patch groups are first
extracted to form an external training patch group set, which is denoted as {Zl}L

l=1, where
Zl = {zl,j}d

j=1, zl,j is the j-th vectorized patch of patch group Zl , and d is the number of
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similar patches. As in Equation (4), by the use of the GMM, the log-likelihood function
over the training set {Zl}L

l=1 for learning the external NSS prior is formulated as:

lnLE =
L

∑
l=1

ln

(
KE

∑
k=1

πk,E

d

∏
j=1

N (zl,j|µk,E, Σk,E)

)
, (9)

where the subscript E is used to indicate the external NSS prior, and the other variables
have meanings similar to those in Equation (4).

Instead of capturing fine-scale details of the image be recovered, the aim of the
external NSS prior is to learn the rich structural information of the images, such as edges
with different orientations and contours with various shape. As a result, the Expectation
Maximization (EM) algorithm [53] is adopted to maximize Equation (9). In the E-step,
the posterior probability and mixing weight for the k-th component are updated as follows:

p(k|Zl , µk,E, Σk,E) =
πk,E ∏d

j=1 N (zl,j|µk,E, Σk,E)

∑KE
i=1πi,E ∏d

j=1 N (zl,j|µi,E, Σi,E)
, (10)

qk =
L

∑
l=1

p(k|Zl , µk,E, Σk,E), (11)

πk,E =
qk
L

. (12)

In the M-step, the k-th Gaussian component is calculated as:

µk,E =
∑L

l=1 p(k|Zl , µk,E, Σk,E)∑
d
j=1zl,j

qk
, (13)

Σk,E =
∑L

l=1 p(k|Zl , µk,E, Σk,E)∑
d
j=1(zl,j − µk,E)(zl,j − µk,E)

T

qk
. (14)

The external NSS prior can be progressively learned by performing the above two
steps successively until convergence. Please refer to [53] for more details about the EM
algorithm. In practice, it is notable that, as the internal NSS prior has learned the main
background information of the image be recovered, i.e., {µi,I}N

i=1, it is not a requirement to
learn them from training images. Therefore, all patch groups in {Zl}L

l=1 are preprocessed by
mean subtraction, and µk,E in Equation (13) is naturally set to be 0. This mean subtraction
operation can also greatly reduce the total number of mixing components needed to
learn [1,28].

2.3. Learning the Hybrid NSS Prior for Patch Groups

Now, for each patch group of the image be recovered, we learn the HNSS prior from its
corresponding internal and external NSS priors. As described in Section 2.1, the Gaussian
component with parameters µi,I and Σi,I depicts the internal NSS prior of X i, and the most
suitable external NSS prior for X i is determined by calculating the MAP probability:

k = arg max
v

∏n
j=1 N (xi,j − µi,I|0, Σv,E + σ2 I)

∑KE
l=1 ∏n

j=1 N (xi,j − µi,I|0, Σl,E + σ2 I)
, (15)

where I denotes the identity matrix. The corresponding Gaussian component is parameter-
ized by 0 and Σk,E.
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Next, to better characterize the structure and detail information contained in patch
group X i, we first learn a set of internal and external bases by performing SVD on Σi,I and
Σk,E, respectively:

Σi,I = Di,ISi,IDT
i,I, (16)

Σk,E = Dk,ESk,EDT
k,E. (17)

With the internal NSS prior (µi,I, Di,I) and external NSS prior Dk,E, an improved HNSS
prior for X i can then be learned by the following form:{

µi,H = µi,I

Di,H = Dk,Ediag(wk) + Di,Idiag(1 − wk),
(18)

where wk = [wk,1, · · · , wk,r, · · · , wk,m]
T with 0 ≤ wk,r ≤ 1. One can see that Equation (18)

provides a simple yet flexible way to learn the HNSS prior. Specifically, a weighting scheme
that allows different weights to be assigned to different bases is employed, and Equation (18)
can be reduced to the internal or external prior by setting wk = 0 or wk = 1.

As shown in Equation (18), the problem becomes how to learn wk. A straightforward
approach is to set w = 0.5, but it treats each basis equally. However, as Dk,E is learned from
external natural images and represents the k-th subspaces of the external NSS prior, it is
beneficial to recover the common latent structures, but it cannot be adaptive to the given
image. While Di,I can characterize the fine-scale details that are particular to the degraded
image, the common structures are disturbed by degradation. As a result, different weights
should be assigned to different bases. Actually, the SVD in Equation (17) has helped us
learn such weights implicitly. It is well-known that singular values in Sk,E characterize
the properties of singular vectors in Dk,E. Concretely, singular value vectors with large
singular values characterize the main structure of the image, while singular value vectors
with small singular values represent the fine-scale details. Hence, in this work, each weight
is computed as follows:

wk,r =
sr,E

∑m
p=1sp,E

, (19)

where sr,E is the r-th singular value of Sk,E.
By learning the HNSS prior for each patch group in the above manner, the HNSS prior

for the whole image can be formed as {(µi,H, Di,H)}N
i=1. In the next section, the learned

prior is used for image restoration.

3. Image Restoration via the Hybrid NSS Prior

In this section, we first formulate an HNSS prior-based structural sparse representation
(HNSS-SSR) model with adaptive regularization parameters and then develop a general
restoration algorithm by applying it to image restoration.

3.1. HNSS Prior-Based Structural Sparse Representation

As described in Section 2, the learned HNSS prior can characterize the common
structures and fine-scale details of the given image well. On the other hand, the struc-
tural sparse representation has exhibited notable success in many image restoration
tasks [1,4,23,24,28,35]. As a result, we incorporate the learned HNSS prior into the struc-
tured sparse representation. Specifically, by using the learned HNSS prior as the dictionary,
the proposed HNSS-SSR model is formulated as:

Âi = arg min
Ai

∥Xi − Γi − Di,H Ai∥2
F + ∥λT

i Ai∥1, (20)
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where ∥ · ∥2
F denotes the Frobenius norm, Xi = [xi,1, · · · , xi,j, · · · , xi,n] ∈ Rm×n is the

matrix form of X i, Γi = [γi,1, · · · , γi,j, · · · , γi,n] with γi,j = µi,H, Ai stands for the group
sparse coefficient, ∥ · ∥1 denotes that the l1-norm is imposed on each column in Ai, and
λi = [λi,1, · · · , λi,r, · · · , λi,m]

T is a regularization parameter vector with non-negative λi,r.
Note that, since Xi contains similar patches, the same regularization parameter λi,r is
assigned to the coefficients associated with the r-th atom in Di,H.

To make the proposed HNSS-SSR model more stable, we connect the sparse estimation
problem in Equation (20) with the MAP estimation problem to adaptively update regu-
larization parameters. Concretely, for a given patch group Xi = Γi + Di,H Ai + v, where
v ∼ N (0, σ2) is the Gaussian noise, we can form the MAP estimation of Ai as:

Âi = arg min
Ai

1
2σ2 ∥Xi − Γi − Di,H Ai∥2

F − ln p(Ai). (21)

In literature, the i.i.d. Laplacian distribution is usually used to characterize the statistical
properties of sparse coefficients [1,11,13,28,35,47]. Hence, by imposing the Laplacian
distribution with the same parameter on the coefficients associated with the same atom of
Di,H, p(Ai) can be written as:

p(Ai) =
m

∏
r=1

n

∏
j=1

1√
2θi,r

exp

(
−
√

2
θi,r

|αi,r,j|
)

, (22)

where αi,r,j is the (r, j)-th element of Ai, and θi,r is the estimated standard deviation of
{αi,r,j}n

j=1 [13,39]. Substituting Equation (22) into Equation (21) and deriving, we have the
following:

Âi = arg min
Ai

1
2σ2 ∥Xi − Γi − Di,H Ai∥2

F +
m

∑
r=1

n

∑
j=1

√
2

θi,r
|αi,r,j|. (23)

By connecting Equation (20) with Equation (23), each λi,r can be adaptively calculated as
follows:

λi,r =
2
√

2σ2

θi,r + ε
, (24)

where ε is a small constant for numerical stability.
Once the group sparse coefficient Âi is estimated by solving Equation (20), the corre-

sponding patch group can be reconstructed as:

X̂i = Di,H Âi + Γi. (25)

3.2. Image Restoration

The proposed HNSS-SSR model is now used for image restoration tasks, and we
develop a general restoration algorithm. Specifically, by embedding our proposed HNSS-
SSR of Equation (20) into the regularization problem of Equation (2), the HNSS-SSR-based
restoration framework can be first formulated as:

(x̂, {Âi}N
i=1) = arg min

x,{Ai}N
i=1

∥y − Φx∥2
2 + η

N

∑
i=1

∥Ri(x)− Γi − Di,H Ai∥2
F + ∥λT

i Ai∥1, (26)

where Ri(x) = [Ri,1x, · · · , Ri,nx] denotes the patch group extraction operation, and Ri,n is a
patch extraction matrix. With the learned HNSS prior, the proposed restoration framework
in Equation (26) can both adapt to the image to be recovered and also mitigate the overfitting
to degradation.
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Then, we employ the alternating minimization strategy to efficiently solve Equation (26).
In particular, Equation (26) can be decomposed into x sub-problem and Ai sub-problems,
which can be solved efficiently.

3.2.1. Solving the Ai Sub-Problem

Given x, Equation (26) reduces to the following Ai sub-problem:

{Âi}N
i=1 = arg min

{Ai}N
i=1

N

∑
i=1

∥Ri(x)− Γi − Di,H Ai∥2
F + ∥λT

i Ai∥1, (27)

which consists of a series of HNSS-SSR problems proposed in Equation (20). As a result,
we here adopt the Iterative Soft Thresholding Algorithm (ISTA) [54] to update Ai, i.e.,

Âi = Sλi/2c(Âi −
1
c

DT
i,H(Di,H Âi − Ri(x) + Γi)), (28)

where c represents the square spectral norm of Di,H, and Sλi/2c is the soft-thresholding
operator:

Sλ(C) = sgn(C)⊙ max(|C| − λhT, 0), (29)

where h ∈ Rn×1 with all elements 1, and ⊙ represents the element-wise multiplication
operation. Note that ISTA has been proven to converge effectively to a global optimum.

3.2.2. Solving the x Sub-Problem

Given the updated Ai, let X̂i = Di,H Âi + Γi, and we can naturally obtain the x sub-
problem as follows:

x̂ = arg min
x

∥y − Φx∥2
2 + η

N

∑
i=1

(∥Ri(x)− X̂i∥2
F), (30)

which allows for the following solution:

x̂ =

(
ΦTΦ + η

N

∑
i

n

∑
j

RT
i,jRi,j

)−1(
ΦTy + η

N

∑
i

n

∑
j

RT
i,j x̂i,j

)
, (31)

where x̂i,j stands for the j-th column vector in X̂i.
In practice, the higher performance can be achieved by alternately solving the above

Ai and x sub-problems T times. To mitigate the effect of degradation on prior learning,
in the t-th iteration, the output xt−1 of the previous iteration is used to update the HNSS
prior. Furthermore, to steadily create solutions, the iterative regularization strategy [55] is
employed to estimate σ in each iteration as follows:

σt = γ
√

σ2 − ∥xt−1 − y∥2
2, (32)

where γ denotes a constant. To conclude, Algorithm 1 fully summarizes our proposed
HNSS-SSR-based restoration algorithm.
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Algorithm 1 HNSS-SSR-based Image Restoration
Input: Degraded image y, measurement matrix Φ, and external NSS prior GMM model
Output: The restored image x̂.

1: Initialization:
Set x̂0 = y;
Set parameters m, n, T, γ, η, and σ.

2: for t = 1 to T do
3: Compute σt by Equation (32);
4: Perform KNN search on x̂t−1 to get {X t−1

i };
5: for Each X t−1

i do
6: Learn internal NSS prior by Equations (7) and (8);
7: Select the most suitable external prior by Equation (15);
8: Learn HNSS prior (µi,H, Di,H) by Equations (16)–(19);
9: Update λi by Equation (24);

10: Update Âi by Equation (28);
11: Recover X̂i by Equation (25);
12: end for
13: Reconstruct x̂t by Equation (31).
14: end for
15: Return The final restored image x̂T .

4. Experimental Results

Here, we conduct image denoising and deblurring experiments to reveal the valid-
ity of our learned HNSS prior and proposed restoration algorithm. Figure 2 illustrates
16 test images used in this work. As the human vision system is susceptible to variations
in illuminance, the restoration for color images is only focused on the luminance chan-
nel. To objectively assess the different restoration algorithms, the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [56] are jointly used as evaluation metrics.
To achieve fair comparisons, we run the source codes released by the authors to obtain the
restoration results of other competing approaches. In external NSS prior learning, the total
number of Gaussian components KE and the number of similar patches d are set to 32 and
10, respectively. The patch groups for learning were extracted from the Kodak photoCD
dataset (http://r0k.us/graphics/kodak/, accessed on 13 September 2022).

Figure 2. Test images in experiments.

4.1. Image Denoising

This subsection performs image denoising experiments using our proposed HNSS-SSR
restoration algorithm. It is worth noting that image denoising is an ideal benchmark for
evaluating image priors and restoration algorithms. The noisy observations are generated
by disturbing test images with additive white Gaussian noises. The detailed parameter
settings for denoising experiments are given below. The size of the image patch

√
m×

√
m is

set to 7 × 7, 8 × 8, and 9 × 9 for σ ≤ 30, 30 < σ ≤ 60, and 60 < σ, respectively. The number
of similar patches n, scaling factor γ, and iteration times T are set to (70, 0.70, 8), (90, 0.68, 8),
(120, 0.65, 8), and (140, 0.64, 10) for σ ≤ 20, 20 < σ ≤ 40, 40 < σ ≤ 60, and 60 < σ,
respectively. We empirically fix the regularization parameter η = 0.14 for all cases.

To objectively demonstrate its denoising capability, our proposed HNSS-SSR is first
contrasted with several existing superior denoising algorithms, which include BM3D [29],
NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], and SNSS [24]. Among them, BM3D,

http://r0k.us/graphics/kodak/
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NCSR, and RRC utilize the internal NSS prior, while PGPD uses the external NSS prior.
Moreover, GSRC-ENSS and SNSS jointly use internal and external NSS priors and achieve
superior denoising effects. Tables 1 and 2 illustrate the denoising results of various compet-
ing approaches, and we mark the highest objective metric values in bold. It is obvious that
our proposed HNSS-SSR delivers admirable denoising capabilities. Specifically, in Table 1,
one can observe that our proposed HNSS-SSR has the highest PSNR in a majority of cases.
Furthermore, in terms of average PSNR, our proposed HNSS-SSR enjoys a performance
gain over BM3D by 0.35 dB, over NCSR by 0.50 dB, over PGPD by 0.18 dB, over GSRC-ENSS
by 0.25 dB, over RRC by 0.22 dB, and over SNSS by 0.17 dB. In Table 2, it can be observed
that the SSIM results of the proposed HNSS-SSR exceed other competing approaches in
most cases. In terms of average SSIM, our proposed HNSS-SSR realizes 0.0112–0.0278,
0.0116–0.0228, 0.0044–0.0254, 0.0149–0.0225, 0.0058–0.0170, and 0.0075–0.0133 gains over
the other six denoising methods respectively mentioned above. Moreover, the visual de-
noising results of various approaches are presented in Figures 3 and 4. From Figure 3, we
can observe that the comparison methods have a tendency to over-smooth edge details.
In Figure 4, it can be observed that the comparison algorithms not only are likely to smooth
the latent structure, but also suffer from different degrees of undesired artifacts. Fortu-
nately, our proposed HNSS-SSR is extremely beneficial in recovering the latent structure
and fine-scale details while effectively suppressing artifacts.

Table 1. PSNR comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24],
and HNSS-SSR for image denoising.

σ = 30 σ = 50

Methods BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR

Bear 28.89 28.76 29.01 28.78 28.89 28.96 29.09 26.82 26.71 26.81 26.67 26.74 26.77 26.84
Bike 25.91 25.94 26.11 25.91 26.11 26.06 26.42 23.00 23.05 23.39 23.23 23.36 23.39 23.57

Buddhist 31.87 31.45 31.82 31.54 31.81 31.64 31.82 29.48 29.09 29.36 29.05 29.43 29.19 29.38
Butterfly 27.55 27.94 27.74 28.23 28.27 28.18 28.59 24.79 25.05 25.21 25.64 25.59 25.51 25.83

Cameraman 28.64 28.58 28.54 28.20 28.43 28.58 28.75 26.13 26.15 26.46 26.30 26.27 26.39 26.48
Corn 26.59 26.83 26.72 27.15 27.02 26.91 27.35 23.76 23.77 23.77 24.39 24.22 24.20 24.54

Cowboy 27.61 27.56 27.66 27.65 27.73 27.67 27.92 24.75 24.74 25.05 25.02 25.03 25.08 25.21
Flower 27.97 27.91 28.11 28.10 28.12 28.14 28.47 25.49 25.32 25.64 25.63 25.72 25.83 26.00
Flowers 27.84 27.66 28.04 27.83 27.96 27.99 28.29 25.39 25.10 25.51 25.38 25.47 25.51 25.59

Girls 26.29 26.25 26.44 26.26 26.28 26.29 26.61 23.66 23.57 23.90 23.70 23.78 23.88 24.03
Hat 29.77 29.79 29.91 29.58 29.87 29.87 30.21 27.60 27.46 27.88 27.67 27.91 27.97 28.06
Lake 26.74 26.76 26.90 26.98 26.89 26.83 27.14 24.29 24.19 24.49 24.51 24.48 24.44 24.63

Leaves 27.81 28.14 27.99 28.15 28.35 28.25 28.69 24.68 24.95 25.02 25.23 25.30 25.25 25.52
Lena 29.68 29.57 29.81 29.65 29.88 29.82 29.96 27.14 27.18 27.38 27.12 27.39 27.41 27.49

Plants 30.70 30.26 30.73 30.50 30.90 30.87 30.96 28.11 27.66 28.25 27.87 28.32 28.38 28.29
Starfish 27.65 27.77 27.67 28.03 27.95 27.81 28.19 25.04 25.09 25.11 25.44 25.34 25.25 25.53
Average 28.22 28.20 28.46 28.28 28.40 28.37 28.65 25.63 25.57 25.92 25.80 25.90 25.90 26.06

σ = 75 σ = 100

Methods BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR

Bear 25.34 25.13 25.30 25.27 25.13 25.13 25.28 24.28 24.08 24.35 24.25 24.10 23.97 24.20
Bike 21.12 21.01 21.42 21.33 21.32 21.47 21.60 19.94 19.68 20.09 19.91 20.01 20.22 20.33

Buddhist 27.56 27.10 27.51 27.29 27.42 27.19 27.50 26.22 25.81 26.21 26.11 26.18 25.84 26.06
Butterfly 22.83 22.95 23.03 23.51 23.35 23.41 23.72 21.38 21.31 21.48 22.06 21.77 22.03 22.23

Cameraman 24.33 24.23 24.64 24.52 24.46 24.59 24.71 23.08 22.93 23.23 23.22 23.02 23.40 23.46
Corn 21.83 21.68 21.75 22.20 21.99 22.08 22.42 20.54 20.26 20.49 20.80 20.55 20.71 20.99

Cowboy 22.88 22.65 23.04 23.04 23.02 23.11 23.23 21.68 21.26 21.71 21.69 21.60 21.81 21.91
Flower 23.82 23.50 23.83 23.87 23.77 24.06 24.11 22.66 22.23 22.66 22.50 22.46 22.73 22.77
Flowers 23.99 23.47 24.00 23.76 23.86 23.97 23.95 23.12 22.49 23.15 22.83 22.83 22.90 22.77

Girls 22.06 21.86 22.15 22.02 21.95 22.13 22.26 21.04 20.73 21.07 20.88 20.71 21.03 21.11
Hat 26.08 25.89 26.30 26.23 26.49 26.53 26.60 25.00 24.74 25.18 25.21 25.27 25.50 25.44
Lake 22.63 22.50 22.76 22.71 22.64 22.61 22.81 21.56 21.38 21.64 21.63 21.37 21.55 21.64

Leaves 22.49 22.60 22.61 22.90 22.91 22.98 23.17 20.90 20.86 20.95 21.46 21.22 21.48 21.54
Lena 25.38 25.23 25.51 25.49 25.55 25.66 25.78 24.08 23.82 24.22 24.30 24.35 24.54 24.56

Plants 26.25 25.75 26.34 26.03 26.40 26.39 26.39 24.98 24.48 25.07 24.71 24.91 25.08 25.02
Starfish 23.27 23.20 23.23 23.45 23.32 23.32 23.57 22.10 21.91 22.08 22.10 21.98 22.08 22.25
Average 23.87 23.67 24.00 23.98 23.97 24.04 24.19 22.66 22.37 22.70 22.73 22.65 22.80 22.89
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Denoising visual results for Starfish with σ = 50. (a) Original image; (b) BM3D [29]
(PSNR = 25.04 dB, SSIM = 0.7433); (c) NCSR [13] (PSNR = 25.09 dB, SSIM = 0.7453); (d) PGPD [28]
(PSNR = 25.11 dB, SSIM = 0.7454); (e) GSRC-ENSS [1] (PSNR = 25.44 dB, SSIM=0.7606); (f) RRC [41]
(PSNR = 25.34 dB, SSIM = 0.7589); (g) SNSS [24] (PSNR = 25.25 dB, SSIM = 0.7491); (h) HNSS-SSR
(PSNR = 25.53 dB , SSIM = 0.7671).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Denoising visual results for Leaves with σ = 75. (a) Original image; (b) BM3D [29]
(PSNR = 22.49 dB, SSIM = 0.8072); (c) NCSR [13] (PSNR = 22.60 dB, SSIM=0.8233); (d) PGPD [28]
(PSNR = 22.61 dB, SSIM = 0.8121); (e) GSRC-ENSS [1] (PSNR = 22.90 dB, SSIM = 0.8339); (f) RRC [41]
(PSNR = 22.91 dB, SSIM = 0.8377); (g) SNSS [24] (PSNR = 22.98 dB, SSIM = 0.8365); (h) HNSS-SSR
(PSNR = 23.17 dB, SSIM = 0.8465).
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Table 2. SSIM comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24],
and HNSS-SSR for image denoising.

σ = 30 σ = 50

Methods BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR

Bear 0.7807 0.7780 0.7822 0.7784 0.7817 0.7815 0.7889 0.7111 0.7110 0.7113 0.7100 0.7169 0.7123 0.7187
Bike 0.8269 0.8203 0.8290 0.8194 0.8247 0.8208 0.8393 0.7146 0.7073 0.7262 0.7157 0.7285 0.7250 0.7360

Buddhist 0.8702 0.8672 0.8664 0.8623 0.8705 0.8673 0.8706 0.8170 0.8177 0.8087 0.8048 0.8194 0.8167 0.8202
Butterfly 0.9019 0.9073 0.9047 0.9092 0.9164 0.9143 0.9184 0.8440 0.8565 0.8574 0.8658 0.8729 0.8704 0.8755

Cameraman 0.8373 0.8394 0.8259 0.8204 0.8281 0.8285 0.8378 0.7828 0.7835 0.7774 0.7732 0.7801 0.7843 0.7883
Corn 0.8679 0.8716 0.8712 0.8793 0.8787 0.8741 0.8856 0.7774 0.7786 0.7793 0.8052 0.8041 0.7982 0.8137

Cowboy 0.8558 0.8544 0.8553 0.8540 0.8580 0.8520 0.8614 0.7837 0.7833 0.7882 0.7879 0.7968 0.7913 0.7978
Flower 0.8194 0.8176 0.8217 0.8214 0.8240 0.8230 0.8369 0.7283 0.7222 0.7331 0.7340 0.7413 0.7446 0.7552
Flowers 0.7950 0.7868 0.7980 0.7935 0.7989 0.7992 0.8122 0.6963 0.6885 0.6994 0.6949 0.7103 0.7061 0.7150

Girls 0.8065 0.8023 0.8089 0.8011 0.8001 0.7961 0.8152 0.7029 0.6962 0.7129 0.7044 0.7118 0.7096 0.7217
Hat 0.8326 0.8411 0.8319 0.8225 0.8360 0.8338 0.8456 0.7737 0.7776 0.7775 0.7710 0.7879 0.7883 0.7925
Lake 0.8287 0.8290 0.8298 0.8327 0.8323 0.8250 0.8418 0.7433 0.7431 0.7489 0.7515 0.7571 0.7482 0.7653

Leaves 0.9278 0.9324 0.9301 0.9343 0.9366 0.9337 0.9415 0.8680 0.8794 0.8793 0.8888 0.8910 0.8888 0.8977
Lena 0.8619 0.8637 0.8663 0.8625 0.8712 0.8675 0.8749 0.7971 0.8069 0.8047 0.7974 0.8125 0.8096 0.8182

Plants 0.8373 0.8297 0.8372 0.8346 0.8459 0.8461 0.8477 0.7669 0.7602 0.7672 0.7585 0.7789 0.7878 0.7796
Starfish 0.8289 0.8305 0.8276 0.8351 0.8304 0.8258 0.8397 0.7433 0.7453 0.7454 0.7606 0.7589 0.7491 0.7671
Average 0.8424 0.8420 0.8492 0.8413 0.8458 0.8430 0.8536 0.7657 0.7661 0.7778 0.7702 0.7793 0.7769 0.7851

σ = 75 σ = 100

Methods BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR BM3D NCSR PGPD GSRC-
ENSS RRC SNSS HNSS-

SSR

Bear 0.6538 0.6604 0.6532 0.6597 0.6619 0.6555 0.6645 0.6110 0.6260 0.6087 0.6179 0.6273 0.6177 0.6277
Bike 0.6166 0.6056 0.6263 0.6208 0.6254 0.6311 0.6396 0.5460 0.5293 0.5470 0.5366 0.5478 0.5618 0.5696

Buddhist 0.7576 0.7707 0.7567 0.7557 0.7684 0.7647 0.7746 0.7111 0.7360 0.7062 0.7093 0.7383 0.7285 0.7348
Butterfly 0.7882 0.8121 0.8005 0.8188 0.8274 0.8262 0.8324 0.7348 0.7638 0.7449 0.7777 0.7834 0.7904 0.7947

Cameraman 0.7340 0.7413 0.7301 0.7251 0.7214 0.7445 0.7466 0.6928 0.7057 0.6776 0.6816 0.6553 0.7130 0.7111
Corn 0.6839 0.6769 0.6792 0.7114 0.7044 0.7000 0.7275 0.6036 0.5837 0.5954 0.6236 0.6110 0.6137 0.6467

Cowboy 0.7143 0.7126 0.7188 0.7201 0.7313 0.7277 0.7335 0.6589 0.6559 0.6552 0.6578 0.6739 0.6746 0.6793
Flower 0.6482 0.6417 0.6472 0.6541 0.6499 0.6698 0.6728 0.5862 0.5763 0.5803 0.5795 0.5846 0.6047 0.6070
Flowers 0.6269 0.6176 0.6274 0.6199 0.6334 0.6356 0.6399 0.5848 0.5747 0.5779 0.5707 0.5690 0.5855 0.5885

Girls 0.6223 0.6156 0.6272 0.6248 0.6203 0.6299 0.6413 0.5651 0.5567 0.5639 0.5620 0.5505 0.5721 0.5828
Hat 0.7238 0.7367 0.7294 0.7325 0.7504 0.7530 0.7557 0.6833 0.7048 0.6813 0.6922 0.7170 0.7242 0.7232
Lake 0.6716 0.6739 0.6764 0.6786 0.6822 0.6731 0.6918 0.6178 0.6229 0.6173 0.6223 0.6233 0.6231 0.6403

Leaves 0.8072 0.8233 0.8121 0.8339 0.8377 0.8365 0.8465 0.7482 0.7627 0.7467 0.7883 0.7811 0.7900 0.7986
Lena 0.7359 0.7488 0.7424 0.7426 0.7565 0.7588 0.7657 0.6815 0.6989 0.6855 0.6945 0.7178 0.7205 0.7208

Plants 0.7006 0.7008 0.7014 0.6970 0.7172 0.7252 0.7180 0.6525 0.6593 0.6475 0.6428 0.6680 0.6776 0.6737
Starfish 0.6670 0.6695 0.6637 0.6807 0.6741 0.6691 0.6900 0.6053 0.6068 0.6021 0.6111 0.6081 0.6112 0.6288
Average 0.6970 0.7005 0.7070 0.7047 0.7101 0.7125 0.7213 0.6427 0.6477 0.6451 0.6480 0.6535 0.6630 0.6705

We also evaluate the proposed HNSS-SSR on the BSD68 dataset [57]. In addition to
the above methods, two recently proposed methods with excellent denoising performance,
i.e., GSMM [46] and LRENSS [7], are also used to compare with our method. Table 3 lists
the corresponding PSNR and SSIM results. Note that the denoising results of GSMM are
quoted from Reference [46]. From Table 3, it can be seen that the proposed HNSS-SSR
consistently outperforms all other methods except LRENSS. Furthermore, the denoising
results of the proposed HNSS-SSR are comparable to LRENSS in terms of PSNR and SSIM.

Table 3. Average denoising result comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1],
RRC [41], SNSS [24], GSMM [46], LRENSS [7], and HNSS-SSR on the BSD68 dataset [57].

Methods BM3D NCSR PGPD GSRC-ENSS RRC SNSS GSMM LRENSS HNSS-SSR

σ = 15 31.08 0.8722 31.19 0.8770 31.13 0.8696 31.06 0.8670 31.06 0.8644 31.29 0.8765 31.32 0.8804 31.36 0.8819 31.37 0.8829
σ = 25 28.56 0.8016 28.62 0.8045 28.62 0.7994 28.55 0.7985 28.56 0.7936 28.72 0.8007 28.80 0.8108 28.87 0.8122 28.85 0.8108
σ = 50 25.62 0.6866 25.59 0.6864 25.75 0.6870 25.61 0.6815 25.67 0.6840 25.73 0.6876 25.85 0.6959 25.90 0.7018 25.87 0.7012

Average 28.42 0.7868 28.37 0.7893 28.50 0.7853 28.41 0.7823 28.43 0.7806 28.58 0.7883 28.66 0.7957 28.71 0.7986 28.70 0.8013

The validity of our proposed HNSS-SSR is further demonstrated by comparing it with
the deep learning-based denoising approaches. Specifically, we evaluate our proposed
HNSS-SSR, TNRD [19], and S2S [58] on the Set12 dataset [20]. The average PSNR and
SSIM results are listed in Table 4, with the best results highlighted in bold. It can be seen
that the proposed HNSS-SSR is better than TNRD and S2S across the board. In particular,
the proposed HNSS-SSR achieves {0.19 dB, 0.43 dB} average PSNR gains, and {0.0072,
0.0196} average SSIM gains over TNRD and S2S, respectively.
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Table 4. Average denoising result comparison of TNRD [19], S2S [58], and HNSS-SSR on the Set12
dataset [20].

Methods σ = 15 σ = 25 σ = 50 Average

TNRD 32.51 0.8967 30.06 0.8520 26.81 0.7666 29.78 0.8384
S2S 32.09 0.8894 30.04 0.8493 26.50 0.7392 29.54 0.8260

HNSS-SSR 32.64 0.8999 30.24 0.8566 27.02 0.7803 29.97 0.8456

4.2. Image Deblurring

In this subsection, we apply the proposed HNSS-SSR to image deblurring. Following
prior works [13,24], we adopt the uniform blur kernel with size 9 × 9 and the Gaussian
kernel with standard deviation 1.6 to assess all deblurring approaches. For each test image,
it is first blurred by a blur kernel and then corrupted by the additive white Gaussian noise
with standard deviation

√
2 to generate the degraded image. In deblurring experiments,

we set (
√

m ×
√

m, n, T, η, γ) to (6 × 6, 30, 200, 0.04, 1), respectively.
The deblurring performance of our proposed HNSS-SSR is verified by comparing

it with several leading methods, including BM3D [59], EPLL [14], NCSR [13], JSM [60],
MS-EPLL [6], and SNSS [24]. Note that BM3D, EPLL, and NCSR are three typical de-
blurring approaches, and JSM, MS-EPLL, and SNSS are recently developed algorithms
with advanced performance. The single NSS prior is utilized by all comparison methods
except SNSS, which uses both internal and external NSS priors. The deblurring results of
different algorithms are presented in Tables 5 and 6. We can observe that our proposed
HNSS-SSR has the highest PSNR and SSIM in most cases compared to other competing
deblurring approaches, and only SNSS is slightly better than the proposed HNSS-SSR in
individual cases. Furthermore, for uniform blur, the proposed HNSS-SSR achieves {1.35 dB,
3.25 dB, 0.33 dB, 3.16 dB, 2.85 dB, 0.18 dB} average PSNR gains and {0.0391, 0.0391, 0.0135,
0.1672, 0.0340, 0.0030} average SSIM gains over BM3D, EPLL, NCSR, JSM, MS-EPLL,
and SNSS, respectively. For Gaussian blur, our proposed HNSS-SSR achieves {1.22 dB,
5.51 dB, 0.67 dB, 1.64 dB, 4.78 dB, 0.35 dB} average PSNR gains and {0.0265, 0.0440, 0.0214,
0.0675, 0.0408, 0.0034} average SSIM gains over BM3D, EPLL, NCSR, JSM, MS-EPLL,
and SNSS, respectively. The visual deblurring results of different approaches are presented
in Figures 5 and 6. It can be obviously observed that BM3D, NCSR, JSM, and MS-EPLL
produce a lot of unpleasant artifacts, while EPLL and SNSS cause over-smoothing phenom-
ena. In comparison, our proposed HNSS-SSR method effectively eliminates artifacts while
delivering a friendly visual perception.

The proposed HNSS-SSR is also tested on the Set14 dataset [61], and compared with
the recently proposed JGD-SSR model [3] and LRENSS prior [7]. Note that JGD-SSR jointly
utilizes the internal and external NSS priors, while LRENSS jointly utilizes the low-rank
prior and external NSS prior. The average PSNR and SSIM results are listed in Table 7. It
can be seen that the proposed HNSS-SSR has performance comparable to JGD-SSR and
LRENSS and has considerable PSNR and SSIM gains compared to other methods.

The benefit of our proposed HNSS-SSR is further evidenced by making a comparison
with deep learning-based approaches, specifically involving RED [62], IRCNN [63], and H-
PnP [64], on the Set14 dataset [61]. Table 8 presents the deblurring results. One can clearly
see that our proposed HNSS-SSR is far preferable to RED. Meanwhile, the proposed HNSS-
SSR not only yields comparable PSNR results with IRCNN and H-PnP, but also has the
best SSIM results. As we all know, SSIM is more consistent with human vision than PSNR,
so SSIM can usually lead to a more objective quantitative evaluation [56]. In particular,
the SSIM gains of our proposed HNSS-SSR over RED, IRCNN, and H-PnP are 0.0081,
0.0045, and 0.0038, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Deblurring results for Lake with uniform kernel. (a) Original image; (b) BM3D [59]
(PSNR = 27.32 dB, SSIM = 0.8230); (c) EPLL [14] (PSNR = 25.12 dB, SSIM = 0.8285); (d) NCSR [13]
(PSNR = 28.12 dB, SSIM = 0.8471); (e) JSM [60] (PSNR = 25.90 dB, SSIM = 0.7021); (f) MS-EPLL [6]
(PSNR = 25.74 dB, SSIM = 0.8288); (g) SNSS [24] (PSNR = 28.06 dB, SSIM = 0.8538); (h) HNSS-SSR
(PSNR = 28.41 dB, SSIM = 0.8609).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Deblurring results for Flowers with Gaussian kernel. (a) Original image; (b) BM3D [59]
(PSNR = 29.84 dB, SSIM = 0.8592); (c) EPLL [14] (PSNR = 25.14 dB, SSIM = 0.8397); (d) NCSR [13]
(PSNR = 30.20 dB, SSIM = 0.8617); (e) JSM [60] (PSNR = 29.51 dB, SSIM = 0.8081); (f) MS-EPLL [6]
(PSNR = 27.20 dB, SSIM = 0.8569); (g) SNSS [24] (PSNR = 30.25 dB, SSIM = 0.8773); (h) HNSS-SSR
(PSNR = 30.52 dB, SSIM = 0.8827).
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Table 5. PSNR comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24],
and HNSS-SSR for image deblurring.

Uniform Blur, σ =
√

2 Gaussian Blur, σ =
√

2

Methods BM3D EPLL NCSR JSM MS-
EPLL SNSS HNSS-

SSR BM3D EPLL NCSR JSM MS-
EPLL SNSS HNSS-

SSR

Bear 30.49 28.87 31.14 28.09 29.15 31.37 31.48 31.99 27.63 32.25 31.30 29.99 32.66 32.82
Bike 24.57 23.19 25.41 23.89 23.92 25.47 25.26 26.65 22.92 26.98 26.65 23.49 26.90 27.22

Buddhist 34.33 33.44 35.02 29.93 33.29 35.35 35.59 36.91 34.46 36.90 34.42 33.55 38.24 38.35
Butterfly 26.80 24.44 28.83 25.65 25.26 29.14 29.52 28.58 22.00 29.78 28.79 22.75 30.20 31.00

Cameraman 27.30 26.02 28.59 26.20 26.82 28.67 28.67 27.46 26.62 28.31 27.45 27.43 28.13 28.24
Corn 26.75 24.56 27.87 25.55 25.26 28.24 28.58 28.91 23.89 29.69 29.00 24.42 30.08 30.45

Cowboy 27.19 25.93 27.99 25.90 26.54 28.09 28.02 28.05 24.86 28.45 27.95 26.59 28.47 28.65
Flower 28.58 27.04 29.38 26.88 27.61 29.37 29.55 30.41 26.64 30.82 30.01 27.34 31.08 31.42
Flowers 28.54 26.31 29.28 26.87 26.74 29.31 29.42 29.84 25.14 30.20 29.51 27.20 30.25 30.52

Girls 26.47 24.00 27.15 25.29 24.00 27.22 27.34 27.82 22.70 28.11 27.72 23.21 28.15 28.50
Hat 30.63 29.22 31.30 28.23 29.44 31.45 31.60 31.78 29.20 32.24 31.06 28.04 32.53 32.76
Lake 27.32 25.12 28.12 25.90 25.74 28.06 28.41 29.17 22.60 29.48 28.91 26.23 29.63 29.91

Leaves 26.89 23.46 28.98 25.48 23.48 29.08 29.60 29.00 21.38 30.34 29.16 21.53 30.69 31.63
Lena 30.35 28.13 31.26 28.00 28.46 31.32 31.53 32.24 28.00 32.67 31.46 26.64 33.02 33.33

Plants 32.07 29.83 33.12 28.88 29.58 33.52 33.78 33.99 30.18 34.65 32.87 31.35 35.59 35.93
Starfish 28.08 26.32 29.20 26.63 27.08 29.42 29.63 30.20 26.20 30.98 30.08 26.35 31.40 31.76
Average 28.52 26.62 29.54 26.71 27.02 29.69 29.87 30.19 25.90 30.74 29.77 26.63 31.06 31.41

Table 6. SSIM comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24],
and HNSS-SSR for image deblurring.

Uniform Blur, σ =
√

2 Gaussian Blur, σ =
√

2

Methods BM3D EPLL NCSR JSM MS-
EPLL SNSS HNSS-

SSR BM3D EPLL NCSR JSM MS-
EPLL SNSS HNSS-

SSR

Bear 0.8074 0.8251 0.8269 0.6621 0.8263 0.8386 0.8405 0.8618 0.8560 0.8618 0.8134 0.8673 0.8836 0.8852
Bike 0.7589 0.7393 0.7996 0.7046 0.7741 0.8081 0.8019 0.8511 0.8082 0.8599 0.8403 0.8274 0.8678 0.8730

Buddhist 0.8979 0.9158 0.9026 0.6701 0.8926 0.9205 0.9246 0.9337 0.9434 0.9256 0.8481 0.9297 0.9583 0.9563
Butterfly 0.8714 0.8743 0.9076 0.7629 0.8852 0.9212 0.9251 0.9157 0.8840 0.9220 0.8814 0.8922 0.9422 0.9470

Cameraman 0.8258 0.8345 0.8568 0.6731 0.8256 0.8592 0.8631 0.8416 0.8486 0.8547 0.7845 0.8271 0.8732 0.8756
Corn 0.8406 0.8175 0.8692 0.7753 0.8324 0.8844 0.8909 0.8970 0.8619 0.9079 0.8860 0.8678 0.9221 0.9264

Cowboy 0.8452 0.8544 0.8668 0.7181 0.8580 0.8766 0.8776 0.8861 0.8698 0.8880 0.8452 0.8838 0.9031 0.9045
Flower 0.8119 0.7984 0.8392 0.6937 0.8173 0.8445 0.8484 0.8701 0.8511 0.8773 0.8340 0.8608 0.8925 0.8975
Flowers 0.8022 0.7980 0.8273 0.6553 0.8105 0.8402 0.8402 0.8592 0.8397 0.8617 0.8081 0.8569 0.8773 0.8827

Girls 0.7907 0.7853 0.8216 0.7240 0.8081 0.8307 0.8310 0.8537 0.8203 0.8626 0.8404 0.8353 0.8732 0.8780
Hat 0.8427 0.8435 0.8505 0.6428 0.8220 0.8597 0.8645 0.8637 0.8673 0.8674 0.7938 0.8384 0.8909 0.8930
Lake 0.8230 0.8285 0.8471 0.7021 0.8288 0.8538 0.8609 0.8836 0.8566 0.8865 0.8457 0.8633 0.9021 0.9061

Leaves 0.8947 0.8792 0.9345 0.8179 0.8950 0.9410 0.9470 0.9338 0.8922 0.9452 0.9153 0.8986 0.9587 0.9654
Lena 0.8563 0.8649 0.8753 0.6966 0.8606 0.8862 0.8903 0.9028 0.8976 0.9036 0.8485 0.8944 0.9246 0.9267

Plants 0.8563 0.8636 0.8745 0.6707 0.8579 0.8932 0.8969 0.9042 0.9000 0.9057 0.8405 0.9011 0.9336 0.9349
Starfish 0.8178 0.8205 0.8521 0.7238 0.8290 0.8621 0.8652 0.8849 0.8653 0.8937 0.8612 0.8696 0.9094 0.9136
Average 0.8339 0.8339 0.8595 0.7058 0.8390 0.8700 0.8730 0.8839 0.8664 0.8890 0.8429 0.8696 0.9070 0.9104

Table 7. Average deblurring result comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60],
MS-EPLL [6], SNSS [24], JGD-SSR [3], LRENSS [7], and HNSS-SSR on the Set14 dataset [61].

Methods BM3D EPLL NCSR JSM MS-EPLL SNSS JGD-SSR LRENSS HNSS-SSR

Uniform 29.13 0.8026 27.23 0.7979 30.03 0.8239 27.22 0.6819 27.26 0.8050 30.00 0.8222 30.38 0.8294 30.25 0.8308 30.34 0.8289

Gaussian 30.20 0.8544 27.21 0.8371 30.74 0.8529 29.86 0.8080 28.69 0.8434 30.96 0.8631 31.35 0.8683 31.30 0.8703 31.38 0.8697

Average 29.67 0.8285 27.22 0.8175 30.39 0.8384 28.54 0.7450 28.19 0.8242 30.48 0.8427 30.87 0.8489 30.78 0.8506 30.86 0.8493

Table 8. Average deblurring result comparison of RED [62], IRCNN [63], H-PnP [64], and HNSS-SSR
on the Set14 dataset [61].

Methods Uniform Blur Gaussian Blur Average

RED 30.03 0.8238 30.91 0.8566 30.47 0.8402
IRCNN 30.30 0.8281 31.29 0.8596 30.78 0.8438
H-PnP 30.25 0.8238 31.33 0.8651 30.79 0.8445

HNSS-SSR 30.34 0.8289 31.38 0.8697 30.86 0.8493
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4.3. Computational Time

In this subsection, we report the running time of different denoising and deblurring
methods on the 256 × 256 image in Table 9. All methods are tested on Intel® Core™ i7-9700
3.00 GHz CPU PC under the MATLAB 2019a environment. Note that the experimental
results of GSMM are obtained from Reference [46], so its running time is not reported here.
One can see that, for image denoising, the proposed HNSS-SSR is slower than only BM3D
and PGPD, and for image deblurring, the proposed HNSS-SSR is faster than SNSS and
LRENSS.

Table 9. Running time in seconds (s) of different denoising and deblurring methods.

Image Denoising (σ = 50)

Methods BM3D [29] NCSR [13] PGPD [28] GSRC-ENSS [1] RRC [41] SNSS [24] GSMM [46] LRENSS [7] HNSS-SSR
Time (s) 0.8 224.3 8.3 369.2 226.6 602.1 - 108.6 49.4

Image Deblurring

Methods BM3D [59] EPLL [14] NCSR [13] JSM [60] MS-EPLL [6] SNSS [24] JGD-SSR [3] LRENSS [7] HNSS-SSR
Time (s) 0.9 49.7 98.1 158.9 214.2 4830.4 405.8 707.6 690.3

5. Conclusions

This paper proposed to learn a new NSS prior, namely the HNSS prior, from both
internal and external image data and applied it to the image restoration problem. Two
sets of GMMs for depicting internal and external NSS priors were first learned from the
degraded observation and natural image sets, respectively. Subsequently, based on learned
internal and external priors, the HNSS prior that can better characterize the image structure
and detail information was efficiently learned by SVD and a simple weighting method.
An HNSS prior-based structural sparse representation (HNSS-SSR) model with adaptive
regularization parameters was then formulated for the image restoration problem. Further,
we adopted an alternate minimization strategy to solve the corresponding restoration prob-
lem, resulting in a general restoration algorithm. Experimental results have validated that,
compared to many classical or excellent approaches, our proposed HNSS-SSR algorithm
not only provides better visual results but also yields competitive PSNR and SSIM metrics.
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