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Abstract: Under many interactive environments in the real world, there is often a need to evaluate
the minimization effects and subsequent allocation outcomes derived from these interactions under
multiple considerations. For instance, in the context of product sales, it is necessary to evaluate
how to minimize the manufacturing costs of various producing factors, and sometimes, from a
holistic perspective, it may even be necessary to evaluate situations with minimal sales benefits.
On the other hand, in order to evaluate related effects derived from interactions and subsequent
allocation outcomes, many game-theoretical studies are based on interactive models to formulate
evaluating mechanisms, and then they apply axiomatic processes to analyze the rationality of these
mechanisms. Therefore, this study first proposes a mechanism for evaluating the minimization effects
and subsequent allocation outcomes under multiple considerations. Additionally, considering that
different environmental impacts result from varying participation factors, this study also presents
several weighted derivatives based on participation factors and their behaviors. Concurrently, we
utilize axiomatic results to demonstrate the mathematical correctness and practicality for these
evaluating mechanisms.
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1. Introduction

Under interactive environments, achieving optimal or balanced states related to the
effects derived from interactions and subsequent allocations typically involves multiple
minimization considerations, which may sometimes conflict with each other. For instance, a
factory producing environmentally friendly products must operate under considerations of
minimizing energy consumption and environmental pollution within the shortest possible
timeframe. However, these considerations may incur additional costs, conflicting with
cost reducing considerations. Therefore, it is necessary to evaluate optimal or balanced
goals of production and sales under multiple minimization considerations. In the field of
mathematics, mathematical multiattribute game-theoretical analysis is often employed to
address such problems under multiple considerations. The mechanisms governing such
conditions lack suitable frameworks to articulate optimal outcomes that, unlike conven-
tional notions or perspectives, consider various objective functions. Numerous prior studies
have explored multiattribute scenarios. For instance, Bednarczuk et al. [1] transformed the
multiple-choice knapsack problem into a bi-objective optimization problem, whose solution
set encompasses solutions of the original multiple-choice knapsack problem. Goli et al. [2]
addressed the optimization of the multivariate manufacturing portfolio problem under
return uncertainty. The key achievement stems from employing an enhanced artificial
intelligence-robust optimization hybrid approach, introducing a new concept for assessing
the risk of a manufacturing portfolio. A bi-objective mathematical formulation (maximiz-
ing return and minimizing risk) is also presented. By delving into multiattribute analysis
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techniques amidst diverse and complex conditions (e.g., considering multiple perspectives
and incorporating multi-level participation factors), Guarini et al. [3] aimed to outline a
methodology for selecting the most suitable mechanism tailored to specific evaluation
requirements, often encountered in strategic decision-making contexts. A resilient combina-
torial optimization modeling approach by Mustakerov et al. [4] is advanced for multi-choice
yield with diverse strategy maker prerequisites. This approach is founded on formulating
multiattribute linear mixed-integer optimization tasks. Tirkolaee et al. [5] highlighted the
multiattribute multi-mode utility-constrained manufacturing scheduling problem with
compensation planning, where tasks can be completed through various modes, aiming to
minimize completion time and maximize net present value simultaneously.

Under conventional settings, each participation factor is either fully engaged or en-
tirely excluded from engagement with other participation factors. However, under multiple
considerations, various participation factors exhibit different corresponding participating
levels relative to different considerations. For example, the accounting department may
have different cost-evaluating principles for the manufacturing and the marketing de-
partments. In a multi-choice environment, each participation factor is allowed to operate
across a finite range of participating levels. Consequently, a multi-choice environment
can be seen as an extension of a conventional environment. Hwang and Liao [6], Liao [7],
and Nouweland et al. [8] have proposed several generalized mechanisms for traditional
allocation methods, tailored to the specific requirements of multi-choice environments, to
determine comprehensive outcomes for individual participatory elements. On the other
hand, the same participation factors or behaviors relative to different considerations may
also have varying impacts. For instance, the pollution effects caused by the same pesticide
or ingredient may differ between domestic water use and industrial water use. Therefore,
in performing multi-choice analysis, participation factors and its participating levels can be
sensibly incorporated with the concept of weighting for analysis. Building on the preceding
interpretations, there is a desire for the equitable allocation of arbitrary utility among
participation factors and its levels of participation based on weights. Typically, weights may
be assigned to either the “participation factors” or the “levels” to discern differences among
the participation factors or their levels of participation, respectively.

Within the realm of game theory, there is a branch that delves into how to achieve
optimal or equilibrium states using certain mechanisms within interactive environments.
One of the most commonly employed methods is the so-called axiomatic process, which con-
sists of the following steps: first, mathematically model the interactive environment, then
define the mechanisms to achieve optimal or equilibrium states. Subsequently, formalize
many principles of fairness and justice into mathematical models, giving rise to what is
known as the axiomatic process. To demonstrate the mathematical correctness and prac-
ticality of these mechanisms, it is essential to prove that these mechanisms uniquely and
simultaneously satisfy certain axioms, which are indispensable. In the realm of cooperative
environments, the axiomatic processes for allocation mechanisms emphasize the critical
notion of steadiness (or consistency). Steadiness, in this context, pertains to the stability
and reliability of advantageous mechanisms. It can be defined as follows: within a specific
environment, participation factors are expected to anticipate changes in the environment
and agree to compute their rewards based on these anticipations. An allocation mechanism
is said to satisfy steadiness if it assigns consistent rewards to participation factors in both
the original scenario and a hypothetical reduced environment. Hence, steadiness is a fun-
damental aspect contributing to the internal “robustness” of compromises and has been
thoroughly explored across various domains, including bargaining issues and resource
distribution scenarios. Building upon the concept of the equal allocation of non-separable
costs (EANSC) introduced by Ransmeier [9], Liao et al. [7] have devised two allocating
mechanisms. These mechanisms involve assigning weights to participation factors and
their respective levels of participation under multiattribute multi-choice situations. Taking
inspiration from Moulin’s axiomatic techniques [10], Liao et al. [7] have also extended the
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concept of a complement-reduced environment. This extension aims to demonstrate that these
two allocation mechanisms serve as fair and consistent mechanisms for distributing utility.

The above-mentioned existing findings raise the following question:

• Can evaluating mechanisms be devised by simultaneously incorporating weights for
participation factors and their participating levels under multiattribute multi-choice
considerations?

Based on the aforementioned statements, the main concepts and related achievements
of this study are as follows.

1. In order to evaluate the minimization effects derived from interactions and subsequent
allocating outcomes, we utilize the concept of EANSC within the framework of
multiattribute multi-choice environments to propose multiattribute equal minimization
of non-separable effects (MEMNSE).

2. Due to the fact that the same factors may have different impacts under different
considerations, we integrate the concepts of participation factors, participating lev-
els, and participating effect gaps into the MEMNSE, resulting in several different
weighted forms.

3. To demonstrate the mathematical correctness and practicality of these mechanisms
proposed in this study, we will use the concept of consistency to present the corre-
sponding axiomatic results for these mechanisms.

2. Preliminaries
2.1. Definitions and Notations

Let UP denote the universe of participation factors, for instance, the set comprising
humans across the Earth. Any s ∈ UP is identified as a participation factor of UP, such as a
human on Earth. For s ∈ UP and ζs ∈ N, we define PLs = {0, 1, · · · , ζs} to represent the
set of participating levels for participation factor s, and PL+

s = PLs \ {0}, where 0 indicates
no operation.

Consider P ⊆ UP as the largest set encompassing all participation factors of an
interactive system within UP, like all citizens of a country on Earth. Let PLP = ∏s∈P PLs
be the product set of participating level sets for every participation factor in P. For every
Q ⊆ P, a participation factor alliance Q corresponds, in a standard manner, to the multi-
choice alliance eQ ∈ PLP, which is a vector indicating eQ

p = 1 if p ∈ Q and eQ
p = 0 if

p ∈ P \ Q. Denote 0P as the zero vector in RP. For m ∈ N, also define 0m as the zero vector
in Rm and Nm = {1, 2, · · · , m}.

A multi-choice environment is denoted as (P, ζ, θ). P ̸= ∅ is a finite set of partici-
pation factors, such as a manufacturing plant. Any s ∈ P is identified as a participation
factor of P, such as a department of this plant. ζ = (ζs)s∈P ∈ PLP is a vector indicating the
number of participating levels for each participation factor s ∈ P, such as the number of
operating levels of each department. And θ : PLP → R is a mapping with θ(0P) = 0 that
presents the effect caused by each participating level vector λ = (λs)s∈P ∈ PLP when each
s ∈ P operates at level λs, such as the manufacturing costs caused by all departments under
different participating situations. A multiattribute multi-choice environment is denoted
by (P, ζ, Θm), where m ∈ N, Θm = (θt)t∈Nm and (P, ζ, θt) represents a multi-choice envi-
ronment for each t ∈ Nm. For instance, a manufacturing plant needs to evaluate different
considerations for cost minimization, which include financial aspects, manpower, equip-
ment depreciation, and so on. The family of all multiattribute multi-choice environments is
denoted as ME.

A mechanism is defined as a mapping τ that assigns to each (P, ζ, Θm) ∈ ME
an element

τ
(

P, ζ, Θm) = (
τt(P, ζ, Θm))

t∈Nm
,

where τt(P, ζ, Θm) =
(
τt

s
(

P, ζ, Θm))
s∈P ∈ RP and τt

s
(

P, ζ, Θm) represents the outcome
of participation factor s when s operates in

(
P, ζ, θt). Let (P, ζ, Θm) ∈ ME, K ⊆ P, and
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λ ∈ RP. We define S(λ) = {s ∈ P|λs ̸= 0} and λK ∈ RK as the restriction of λ to K. Given
s ∈ P, we also define λ−s to represent λP\{s}. Additionally, σ = (λ−s, a) ∈ RP is defined
by σ−s = λ−s and σs = a.

In order to evaluate the minimization effects derived from interactions and subse-
quent allocation outcomes, we utilize the concept of EANSC within the framework of
multiattribute multi-choice environments to propose a generalized EANSC.

Definition 1. The multiattribute equal minimization of non-separable effects (MEMNSE),
β, is defined by

βt
s(P, ζ, Θm) = βt

s(P, ζ, Θm) +
1
|P| ·

[
θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)
]

for every (P, ζ, Θm) ∈ ME, for every t ∈ Nm, and for every s ∈ P. The value βt
s(P, ζ, Θm) =

minq∈PL+
s
{θt(ζ−s, q)− θt(ζ−s, 0)} is the minimal lower-aggregate marginal effect among

all participating levels of participation factor s in (P, ζ, θt). (Here, we apply bounded multi-choice
environments, considered as the environments (P, ζ, θt), such that there exists Nh ∈ R such that
θt(λ) ≤ Nh for every λ ∈ PLP. We apply it to guarantee that βt

s(P, ζ, θt) is well defined). Under
the notion of β, all participation factors firstly evaluate its minimal marginal effects and further
distribute the rest of the effects equally.

As indicated in the Introduction, the concept of weights naturally emerges in the
context of evaluating effects. For example, weight allocating might be relevant in the distri-
bution of investment plans, where weights could represent the risks of various plan options.
Similarly, weights can be utilized in contracts agreed upon by townhouse owners to allocate
costs for maintaining or constructing shared facilities. More applications for weights also
can be found in Shapley [11]. Generally, weights can be assigned to “participation factors”
or the “participating levels” to differentiate the differences among them.

Let d : UP → R+ be a positive map. Then, d is termed as a weight map for partici-
pation factors. Similarly, let w : ∪s∈UPPL+

s → R+ be a positive map. Then, w is termed
as a weight map for levels. Based on these two forms of weight maps, we consider two
weighted extensions of the MEMNSE.

Definition 2.

• The 1-minimal weighted minimization of non-separable effects (1-MWMNSE), ηd,
is defined as follows: for every (P, ζ, Θm) ∈ ME, for every weight map d for participation
factors, for every t ∈ Nm, and for every participation factor s ∈ P,

ηd,t
s (P, ζ, Θm) = βt

s(P, ζ, Θm) +
d(s)

∑
k∈P

d(k)
·
[
θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)
]
.

According to the definition of ηd, all participation factors initially evaluate its minimal lower-
aggregate marginal effects, and the remaining effect is evaluated proportionally based on
weights for participation factors.

• The 2-minimal weighted minimization of non-separable effects (2-MWMNSE), ηw,
is defined as follows: for every (P, ζ, Θm) ∈ ME, for every weight map w for participation
factors, for every t ∈ Nm, and for every participation factor s ∈ P,

ηw,t
s (P, ζ, Θm) = βw,t

s (P, ζ, Θm) +
1
|P| ·

[
θt(ζ)− ∑

k∈P
βw,t

k (P, ζ, Θm)
]
,

where βw,t
s (P, ζ, Θm) = min

q∈PLs+
w(q) · [θt(ζ−s, q)− θt(ζ−s, 0)] is the minimal weighted

lower-aggregate marginal effect among all participating levels of participation factor s. By
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definition of ηw,t, all participation factors initially evaluate its minimal weighted lower-
aggregate marginal effects, and the remaining effect is evaluated equally.

• The weighted lower-aggregate multiattribute mechanism (WLAMM), βd,w, is defined
by for every (P, ζ, Θm) ∈ ME, for every weight map for participation factors d, for every
weight map for levels w, for every t ∈ Nm, and for every participation factor s ∈ P,

βd,w,t
s (P, ζ, Θm) = βw,t

s (P, ζ, Θm) +
d(s)

∑
k∈P

d(k)
·
[
θt(ζ)− ∑

k∈P
βw,t

k (P, ζ, Θm)
]
.

By definition of βd,w, all participation factors initially evaluate its minimal weighted lower-
aggregate marginal effects, and the remaining effect is evaluated proportionally based on
weights for participation factors.

2.2. Motivating and Practical Examples

As mentioned in the Introduction, the main aim of multiattribute analysis is to derive
optimal or balanced states when dealing with multiple considerations. Furthermore, each
participation factor may have the option to participate at different participating levels un-
der multiple considerations. Related concepts have been applied across various domains,
including information engineering, environmental analysis, biomedical sciences, logistics,
and strategic management sciences, all of which necessitate weighing multiple considera-
tions to evaluate effective interactive models. For instance, companies selling central air
conditioning systems must, under the considerations of minimizing manufacturing and
sales costs, also reduce pollution emissions and resource consumption during the manu-
facturing processes while maintaining a certain grade of quality and profitability. Under
such situations, different departments of the company must adopt corresponding levels
of involvement relative to different considerations, exemplifying a situation involving
multiple considerations and participating levels. In some cases, this may even involve
three or more objectives. Hence, this study emphasizes the framework of considering
multiattribute multi-choice considerations.

To illustrate related applied concepts in the framework of multiattribute multi-choice
considerations, we continue applying the example mentioned above.

• Let P be the set of all departments within a company selling central air conditioning
systems. Under the processes of manufacturing and selling central air conditioning
systems, each department not only performs tasks aligned with its nature but also
interacts in work due to different operational considerations. For example, based on
sales considerations, the marketing and manufacturing departments must collaborate
to devise sales strategies for products while also working with the accounting depart-
ment to control sales costs. However, the operational nature of these departments
during the producing processes may lead to positive or negative effects. For instance,
to meet environmental standards, the manufacturing department may need to update
or improve producing equipment to reduce pollution generated during the production
processes, while the accounting department must effectively control costs.

• The mapping θt can be seen as an effect assessment function when all departments
participate in the producing processes under a certain consideration. The participating
levels of all departments can be represented by the vector α = (αs)s∈P ∈ PLP. Here,
θt(α) evaluates the effect when each department s participates at level αs under this
consideration. Modeling according to this concept, a company selling central air
conditioning systems under a certain consideration can be represented as (P, ζ, θt).
The entire company’s sales producing plan under all considerations can then be
presented in a multiattribute multi-choice environment (P, ζ, Θm).

• To evaluate the minimal effect of each department, the evaluation mechanism defined
in Definition 1 can be applied. This involves assessing the minimal lower-aggregate
marginal effect caused by each department respectively based on various participating
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level vectors. The remaining effect allocating is then evenly evaluated among all
departments, as proposed in Definition 1 (the MEMNSE).

However, it may not always be appropriate to equally evaluate the remaining effects
among the concerned participation factors. Hence, it is reasonable to assign weights to
participation factors or their participating levels and evaluate the remaining effect based
on these weights.

• Since each department’s impact varies across different participating situations, they
hold different grades of related effects under different considerations. Thus, it is
reasonable to generate weights through the weight map for participation factors d.
The remaining effect should also be evaluated according to the weight proportions of
each department, as suggested in Definition 2 (the 1-MWMNSE).

• On the other hand, since each participating level may cause varying effects under
different participating environments, these participating levels naturally hold different
grades of significance across different participating environments. Hence, generating
weights through the weight map for levels w is also rational. The decisive effect of each
department should be computed first through its minimal weighted lower-aggregate
marginal effect. The remaining effect should then be evenly evaluated among all
departments, as proposed in Definition 2 (the 2-MWMNSE).

• If we combine the concepts of 1-MWMNSE and 2-MWMNSE, we can first evaluate that
the decisive effect of each department should be computed first through its minimal
weighted lower-aggregate marginal effect. The remaining effect can then be evaluated
according to the weight proportion of each department, as proposed in Definition 2
(the WLAMM).

3. Axiomatic Processes
3.1. Axiomatic Results for the MEMNSE and Its Weighted Extensions

Inspired by related axiomatic techniques of Hart and Mas-Colell [12] and Moulin [10],
several axiomatic results of the MEMNSE, the 1-MWMNSE, the 2-MWMNSE, and the
WLAMM are proposed to demonstrate the mathematical correctness and practicality of
these mechanisms.

A mechanism τ satisfies the multiattribute effectiveness (MEIN) axiom if ∑s∈P τt
s

(P, ζ, Θm) = θt(ζ) for every (P, ζ, Θm) ∈ ME and for every t ∈ Nm. The MEIN axiom
ensures that all participation factors evaluate the entire effect completely.

Lemma 1. The mechanisms β, ηd, ηw, βd,w fit MEIN.

Proof of Lemma 1. Let (P, ζ, Θm) ∈ ME, t ∈ Nm, d be a weight map for participation
factors and w be a weight map for levels. By Definitions 1 and 2,

∑
s∈P

βd,w,t
s (P, ζ, Θm) = ∑

s∈P
βw,t

s (P, ζ, Θm) + ∑
s∈P

[
d(s)

∑
k∈P

d(k) ·
[
θt(ζ)− ∑

k∈P
βw,t

k (P, ζ, Θm)
]]

= ∑
s∈P

βw,t
s (P, ζ, Θm) +

∑
s∈P

d(s)

∑
k∈P

d(k) ·
[
θt(ζ)− ∑

k∈P
βw,t

k (P, ζ, Θm)
]

= ∑
s∈P

βw,t
s (P, ζ, Θm) + θt(ζ)− ∑

k∈P
βw,t

k (P, ζ, Θm)

= θt(ζ).

The proof is finished. If all the weights for participation factors are set to 1 in the above
proof process, the MEIN property of 2-MWMNSE can be demonstrated. Similarly, if all the
weights for participating levels are set to 1 in the above proof process, the MEIN property
of 1-MWMNSE can be demonstrated. Furthermore, if all the weights for both participation
factors and participating levels are set to 1 in the above proof process, the MEIN property
of MEMNSE can be demonstrated.
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Moulin [10] introduced the reduced environment as one in which each alliance in
the subgroup could receive remunerations for its participation factors only if these re-
munerations are consistent with the original remunerations for all participation factors
outside the subgroup. A generalized reduction is defined under multiattribute multi-choice
environments as follows:

Let (P, ζ, Θm) ∈ ME, K ⊆ P, and τ be a mechanism. The reduced environment
(K, ζK, Θm

K,τ) is defined by Θm
K,τ = (θt

K,τ)t∈Nm , and for every λ ∈ PLK,

θt
K,τ(λ) =

 0 if λ = 0K,
θt(λ, ζP\K

)
− ∑

s∈P\K
τt

s (P, ζ, Θm) otherwise,

For any two-person group of participation factors in a environment, one defines a “re-
duced environment” among them by considering the amounts remaining after the rest
of the participation factors are given the effect prescribed by τ. Then, τ fits multiattribute
bilateral steadiness if, when it is applied to any reduced environment, it always yields the
same effect as in the original environment. Formally, a mechanism τ satisfies the multi-
attribute bilateral steadiness (MBSTN) axiom if τt

s (K, ζK, Θm
K,τ) = τt

s (P, ζ, Θm) for every
(P, ζ, Θm) ∈ ME, for every t ∈ Nm, for every K ⊆ P with |K| = 2, and for every s ∈ K.

Lemma 2. The mechanisms β, ηd, ηw, βd,w fit MBSTN.

Proof of Lemma 2. Let (P, ζ, Θm) ∈ ME, K ⊆ P, t ∈ Nm, d be a weight map for participa-
tion factors and w be a weight map for levels. Let |P| ≥ 2 and |K| = 2. By Definitions 1 and
2,

βd,w,t
s (K, ζK, Θm

K,βd,w) = βw,t
s (K, ζK, Θm

K,βd,w) +
d(s)

∑
k∈K

d(k) ·
[
θt

K,βd,w(ζK)− ∑
k∈K

βw,t
k (K, ζK, Θm

K,βd,w)
]

(1)

for every s ∈ K and for every t ∈ Nm. By definitions of βw,t and θt
K,βd,w ,

βw,t
s (K, ζK, Θm

K,βd,w) = min
q∈PL+

s

{w(q) · [θt
K,βd,w(ζK\{s}, q)− θt

K,βd,w(ζK\{s}, 0)]}

= min
q∈PL+

s

{w(q) · [θt(ζ−s, q)− θt(ζ−s, 0)]}

= βw,t
s (P, ζ, Θm).

(2)

Based on Equations (1) and (2) and definitions of θt
K,βd,w and βd,w,

βd,w,t
s (K, ζK, Θm

K,βd,w) = βw,t
s (P, ζ, Θm) + d(s)

∑
k∈K

d(k)

[
θt

K,βd,w(ζK)− ∑
k∈K

βw,t
k (P, ζ, Θm)

]
= βw,t

s (P, ζ, Θm) + d(s)
∑

k∈K
d(k)

[
θt(ζ)− ∑

k∈P\K
βd,w,t

k (P, ζ, Θm)− ∑
k∈K

βw,t
k (P, ζ, Θm)

]
= βw,t

s (P, ζ, Θm) + d(s)
∑

k∈K
d(k)

[
∑

k∈K
βd,w,t

k (P, ζ, Θm)− ∑
k∈K

βw,t
k (P, ζ, Θm)

]
(MEIN of βd,w)

= βw,t
s (P, ζ, Θm) + d(s)

∑
k∈K

d(k)

[ ∑
k∈K

d(k)

∑
p∈P

d(p) ·
[
θt(ζ)− ∑

p∈P
βw,t

p (P, ζ, Θm)
]]

= βw,t
s (P, ζ, Θm) + d(s)

∑
p∈P

d(p)

[
θt(ζ)− ∑

p∈P
βt

p(P, ζ, Θm)
]

= βd,w,t
s (P, ζ, Θm)

for every s ∈ K and for every t ∈ Nm. If all the weights for participation factors are set
to 1 in the above proof process, the MEIN property of 2-MWMNSE can be demonstrated.
Similarly, if all the weights for participating levels are set to 1 in the above proof process,
the MEIN property of 1-MWMNSE can be demonstrated. Furthermore, if all the weights
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for both participation factors and participating levels are set to 1 in the above proof process,
the MBSTN property of MEMNSE can be demonstrated.

The notion of the two-factor standardness is introduced by Hart and Mas-Colell [12]
initially. It asserts that all participation factors firstly evaluate their individual effects
respectively, and further evaluate the rest of effects equally under all two-factor envi-
ronments. In the following, some generalizations of the two-factor standardness due to
Hart and Mas-Colell [12] are introduced. A mechanism τ satisfies the multiattribute rule
for environments (MRFE) axiom if τ(P, ζ, Θm) = β(P, ζ, Θm) for every (P, ζ, Θm) ∈ ME
with |P| ≤ 2. A mechanism τ satisfies the 1-weighted rule for environments (1WRFE) if
τ(P, ζ, Θm) = ηd(P, ζ, Θm) for every (P, ζ, Θm) ∈ ME with |P| ≤ 2 and for every weight
map d for participation factors. A mechanism τ satisfies the 2-weighted rule for environ-
ments (2WRFE) if τ(P, ζ, Θm) = ηw(P, ζ, Θm) for every (P, ζ, Θm) ∈ ME with |P| ≤ 2 and
for every weight map w for levels. A mechanism τ fits weighted lower-aggregate rule
(WLAR) if τ(P, ζ, Θm) = βd,w(P, ζ, Θm) for every (P, ζ, Θm) ∈ ME with |P| ≤ 2, for every
weight map for participation factors d and for every weight map for levels w.

Inspired by Hart and Mas-Colell [12] and Moulin [10], we adopt MBSTN to character-
ize these mechanisms.

Theorem 1.

1. On ME, the MEMNSE is the unique mechanism fitting MRFE and MBSTN.
2. On ME, the 1-MWMNSE is the unique mechanism fitting 1WRFE and MBSTN.
3. On ME, the 2-MWMNSE is the unique mechanism fitting 2WRFE and MBSTN.
4. On ME, the WLAMM is the unique mechanism fitting WLAR and MBSTN.

Proof of Theorem 1. By Lemma 2, the mechanisms β, ηd, ηw, βd,w fit MBSTN. Clearly, the
mechanisms β, ηd, ηw, βd,w fit MRFE, 1WRFE, 2WRFE, and WLAR, respectively.

To present the uniqueness of result 4, suppose that τ fits WLAR and MBSTN. By
WLAR and MBSTN of τ, it is easy to clarify that τ also fits MEIN, thus we omit it. Let
(P, ζ, Θm) ∈ ME, d be a weight map for participation factors and w be a weight map for
levels. By WLAR of τ, τ(P, ζ, Θm) = βd,w(P, ζ, Θm) if |P| ≤ 2. For the situation where
|P| > 2: let s ∈ P, t ∈ Nm and K = {s, p} with p ∈ P \ {s}.

τt
s (P, ζ, Θm)− βd,w,t

s (P, ζ, Θm) = τt
s (K, ζK, Θm

K,τ)− βd,w,t
s (K, ζK, Θm

K,βd,w) (MBSTN of βd,w,t and τ)

= βd,w,t
s (K, ζK, Θm

K,τ)− βd,w,t
s (K, ζK, Θm

K,βd,w). (WLAR of τ)
(3)

Similar to Equation (2)

βw,t
s (K, ζK, Θm

K,τ) = βw,t
s (P, ζ, Θm) = βw,t

s (K, ζK, Θm
K,βd,w). (4)

By Equations (3) and (4),

τt
s (P, ζ, Θm)− βd,w,t

s (P, ζ, Θm) = βd,w,t
s (K, ζK, Θm

K,τ)− βd,w,t
s (K, ζK, Θm

K,βd,w)

= d(s)
d(s)+d(p) ·

[
θt

K,τ(ζK)− θt
K,βd,w(ζK)

]
= d(s)

d(s)+d(p) ·
[
τt

s (P, ζ, Θm) + τt
p(P, ζ, Θm)

− βd,w,t
s (P, ζ, Θm)− βd,w,t

p (P, ζ, Θm)
]
.

Thus, d(p) ·
[
τt

s (P, ζ, Θm)− βd,w,t
s (P, ζ, Θm)

]
= d(s) ·

[
τt

p(P, ζ, Θm)− βd,w,t
p (P, ζ, Θm)

]
. By

MEIN of βd,w,t and τ,[
τt

s (P, ζ, Θm)− βd,w,t
s (P, ζ, Θm)

]
· ∑

p∈P
d(p) = d(s) · ∑

p∈P

[
τt

p(P, ζ, Θm)− βd,w,t
p (P, ζ, Θm)

]
= d(s) ·

[
θt(ζ)− θt(ζ)

]
= 0.
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Hence, τt
s (P, ζ, Θm) = βd,w,t

s (P, ζ, Θm) for every s ∈ P and for every t ∈ Nm. If all the
weights for participation factors are set to 1 in the above proof process, the proof of
outcome 3 could be finished. Similarly, if all the weights for participating levels are set to 1
in the above proof process, the proof of outcome 2 could be finished. Furthermore, if all
the weights for both participation factors and participating levels are set to 1 in the above
proof process, the proof of outcome 1 could be finished.

In the following, some instances are exhibited to display that every one of the axioms
applied in Theorem 1 is independent of the rest of the axioms.

Example 1. We focus on the mechanism τ as follows. For every (P, ζ, Θm) ∈ ME, for every
weight map for participation factors d, for every weight map for levels w, for every t ∈ Nm, and for
every participation factor s ∈ P,

τt
s (P, ζ, Θm) =

{
βd,w,t

s (P, ζ, Θm) if |P| ≤ 2,
0 otherwise.

Clearly, τ fits WLAR, but it does not fit MBSTN.

Example 2. We focus on the mechanism τ as follows. For every (P, ζ, Θm) ∈ ME, for every
weight map for participation factors d, for every weight map for levels w, for every t ∈ Nm, and for
every participation factor s ∈ P,

τt
s (P, ζ, Θm) =

{
ηw,t

s (P, ζ, Θm) if |P| ≤ 2,
0 otherwise.

Clearly, τ fits 2WRFE, but it does not fit MBSTN.

Example 3. We focus on the mechanism τ as follows. For every (P, ζ, Θm) ∈ ME, for every
weight map for participation factors d, for every weight map for levels w, for every t ∈ Nm, and for
every participation factor s ∈ P,

τt
s (P, ζ, Θm) =

{
ηd,t

s (P, ζ, Θm) if |P| ≤ 2,
0 otherwise.

Clearly, τ fits 1WRFE, but it does not fit MBSTN.

Example 4. We focus on the mechanism τ as follows. For every (P, ζ, Θm) ∈ ME, for every
weight map for participation factors d, for every weight map for levels w, for every t ∈ Nm, and for
every participation factor s ∈ P,

τt
s (P, ζ, Θm) =

{
βt

s(P, ζ, Θm) if |P| ≤ 2,
0 otherwise.

Clearly, τ fits MRFE, but it does not fit MBSTN.

Example 5. Define a mechanism τ to be τt
s (P, ζ, Θm) = 0 for every (P, ζ, Θm) ∈ ME, for every

weight map for participation factors d, for every weight map for levels w, for every t ∈ Nm, and
for every participation factor s ∈ P. Clearly, τ fits MBSTN, but it does not fit MRFE, 1WRFE,
2WRFE, and WLAR.

3.2. Different Generalization and Revised Steadiness

In Sections 2 and 3.1, various weighted generalizations are explored by introducing
weights to both participation factors and their participating levels simultaneously. How-
ever, the fairness or legitimacy of these weight functions may be subject to scrutiny. The
assignment of weights to participation factors and their participating levels can sometimes
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be arbitrary. Therefore, a concept that utilizes relative minimal marginal effects as weights
under different circumstances naturally seems reasonable. “minimal marginal effects”
instead of “weights”, a different generalization could be considered as follows.

Definition 3. The multi-choice multiattribute interior mechanism (MMIM), η I , is defined
as follows: for every (P, ζ, Θm) ∈ ME∗, for every t ∈ Nm, and for every participation factor s ∈ P,

η I,t
s (P, ζ, Θm) = βt

s(P, ζ, Θm) +
βt

s(P, ζ, Θm)

∑
k∈P

βt
k(P, ζ, Θm)

·
[
θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)
]
,

where ME∗ = {(P, ζ, Θm) ∈ ME| ∑
k∈P

βt
k(P, ζ, Θm) ̸= 0 for every t ∈ Nm}. By definition of

η I , all participation factors initially evaluate its minimal lower-aggregate marginal effects, and
the remaining effect is then evaluated proportionally based on these minimal lower-aggregate
marginal effects.

Next, we aim to characterize the MMIM using steadiness. A mechanism τ fits the
multiattribute interior rule (MIR) if τ(P, ζ, Θm) = η I(P, ζ, Θm) for every (P, ζ, Θm) ∈ ME
with |P| ≤ 2.

It is straightforward to verify that ∑k∈K βt
k(P, ζ, Θm) = 0 for some (P, ζ, Θm) ∈ ME,

for some K ⊆ P, and for some t ∈ Nm, i.e., η I,t(K, ζK, Θm
K,η) does not exist for some

(P, ζ, Θm) ∈ ME, for some K ⊆ P, and for some t ∈ Nm. Therefore, we focus on the
multiattribute revised steadiness as follows. A mechanism τ fits the multiattribute revised-
steadiness (MRSTN) if (K, ζK, Θm

K,τ) and τ(K, ζK, Θm
K,τ) exist for some (P, ζ, Θm) ∈ ME, for

some K ⊆ P with K=2, and for some t ∈ Nm, and it holds that τs(K, ζK, Θm
K,τ) = τs(P, ζ, Θm)

for every s ∈ K. Similar to Theorem 1, the related axiomatic process of η I can also be
presented as follows.

Theorem 2.

1. The mechanism η I fits MEIN on ME∗.
2. The mechanism η I fits MRSTN on ME∗.
3. On ME∗, the MMIM is the only mechanism fitting MIR and MRSTN.

Proof of Theorem 2. To prove result 1, let (P, ζ, Θm) ∈ ME∗ and s ∈ P. By Definition 3,

∑
s∈P

η I,t
s (P, ζ, Θm) = ∑

s∈P
βt

s(P, ζ, Θm) + ∑
s∈P

[
βt

s(P,ζ,Θm)

∑
k∈P

βt
k(P,ζ,Θm)

·
[
θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)
]]

= ∑
s∈P

βt
s(P, ζ, Θm) +

∑
s∈P

βt
s(P,ζ,Θm)

∑
k∈P

βt
k(P,ζ,Θm)

·
[
θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)
]

= ∑
s∈P

βt
s(P, ζ, Θm) + θt(ζ)− ∑

k∈P
βt

k(P, ζ, Θm)

= θt(ζ).

The proof is finished. To prove result 2, let (P, ζ, Θm) ∈ ME∗, K ⊆ P with |K| = 2 and
t ∈ Nm. Assume that (K, ζK, Θm

K,η I ) and η I(K, ζK, Θm
K,η I ) exist. By Definition 3,

η I,t
s (K, ζK, Θm

K,η I ) = βt
s(K, ζK, Θm

K,η I ) +
βt

s(K,ζK ,Θm
K,η I )

∑
k∈K

βt
k(K,ζK ,Θm

K,η I )
·
[
θt

K,η I (ζK)− ∑
k∈K

βt
k(K, ζK, Θm

K,η I )
]

(5)
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for every s ∈ K and for every t ∈ Nm. By Definitions 1, 3, and the definition of θt
K,η I ,

βt
s(K, ζK, Θm

K,η I ) = min
q∈PL+

s

{θt
K,η I (ζK\{s}, q)− θt

K,η I (ζK\{s}, 0)}

= min
q∈PL+

s

{θt(ζ−s, q)− θt(ζ−s, 0)}

= βt
s(P, ζ, Θm).

(6)

Based on Equations (5) and (6) and definitions of θt
K,η I and η I ,

η I,t
s (K, ζK, Θm

K,η I ) = βt
s(P, ζ, Θm) + βt

s(P,ζ,Θm)

∑
k∈K

βt
k(P,ζ,Θm)

[
θt

K,η I (ζK)− ∑
k∈K

βt
k(P, ζ, Θm)

]
= βt

s(P, ζ, Θm) + βt
s(P,ζ,Θm)

∑
k∈K

βt
k(P,ζ,Θm)

[
θt(ζ)− ∑

k∈P\K
η I,t

k (P, ζ, Θm)− ∑
k∈K

βt
k(P, ζ, Θm)

]
= βt

s(P, ζ, Θm) + βt
s(P,ζ,Θm)

∑
k∈K

βt
k(P,ζ,Θm)

[
∑

k∈K
η I,t

k (P, ζ, Θm)− ∑
k∈K

βt
k(P, ζ, Θm)

]
(MEIN of η I)

= βt
s(P, ζ, Θm) + βt

s(P,ζ,Θm)

∑
k∈K

βt
k(P,ζ,Θm)

[ ∑
k∈K

βt
k(P,ζ,Θm)

∑
p∈P

βt
p(P,ζ,Θm)

·
[
θt(ζ)− ∑

p∈P
βt

p(P, ζ, Θm)
]]

= βt
s(P, ζ, Θm) + βt

s(P,ζ,Θm)

∑
p∈P

βt
p(P,ζ,Θm)

[
θt(ζ)− ∑

p∈P
βt

p(P, ζ, Θm)
]

= η I,t
s (P, ζ, Θm)

for every s ∈ K and for every t ∈ Nm. The proof is finished.
To prove result 3, the mechanism η I fits MRSTN by result 2. Clearly, the mechanism

η I fits MIR. To present the uniqueness of result 3, suppose that τ fits MIR and MRSTN.
By MIR and MRSTN of τ, it is easy to clarify that τ also fits MEIN, thus we omit it. Let
(P, ζ, Θm) ∈ ME∗. By MIR of τ, τ(P, ζ, Θm) = η I(P, ζ, Θm) if |P| ≤ 2.

Assume that |P| > 2. Let s ∈ P and t ∈ Nm. Fist, we consider the case of βt
s(P, ζ, Θm) +

βt
p(P, ζ, Θm) ̸= 0 for some p ∈ P \ {s} and K = {s, p}. For all q ∈ K,

τt
q(P, ζ, Θm)− η I,t

q (P, ζ, Θm) = τt
q(K, ζK, Θm

K,τ)− η I,t
q (K, ζK, Θm

K,βd,w) (MRSTN of η I,t and τ)

= η I,t
q (K, ζK, Θm

K,τ)− η I,t
q (K, ζK, Θm

K,η I ). (MIR of τ)
(7)

Similar to Equation (2)

βt
q(K, ζK, Θm

K,τ) = βt
q(P, ζ, Θm) = βt

q(K, ζK, Θm
K,η I ) for all q ∈ K. (8)

By Equations (7) and (8),

τt
s (P, ζ, Θm)− η I,t

s (P, ζ, Θm) = η I,t
s (K, ζK, Θm

K,τ)− η I,t
s (K, ζK, Θm

K,η I )

= βt
s(P,ζ,Θm)

βt
s(P,ζ,Θm)+βt

p(P,ζ,Θm)
·
[
θt

K,τ(ζK)− θt
K,η I (ζK)

]
= βt

s(P,ζ,Θm)
βt

s(P,ζ,Θm)+βt
p(P,ζ,Θm)

·
[
τt

s (P, ζ, Θm) + τt
p(P, ζ, Θm)

− η I,t
s (P, ζ, Θm)− η I,t

p (P, ζ, Θm)
]
.

So, βt
p(P, ζ, Θm) ·

[
τt

s(P, ζ, Θm)− ηI,t
s (P, ζ, Θm)

]
= βt

s(P, ζ, Θm) ·
[
τt

p(P, ζ, Θm)− ηI,t
p (P, ζ, Θm)

]
.

By MEIN of ηI,t and τ,[
τt

s (P, ζ, Θm)− η I,t
s (P, ζ, Θm)

]
· ∑

p∈P
βt

p(P, ζ, Θm) = βt
s(P, ζ, Θm) · ∑

p∈P

[
τt

p(P, ζ, Θm)− η I,t
p (P, ζ, Θm)

]
= βt

s(P, ζ, Θm) ·
[
θt(ζ)− θt(ζ)

]
= 0.

(9)
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Since (P, ζ, Θm) ∈ ME∗, ∑
p∈P

βt
p(P, ζ, Θm) ̸= 0. By Equation (9), τt

s (P, ζ, Θm) = η I,t
s (P, ζ, Θm)

for every s ∈ P and for every t ∈ Nm. Next, we consider the case of βt
s(P, ζ, Θm) +

βt
p(P, ζ, Θm) = 0 for every p ∈ P \ {s}. Since (P, ζ, Θm) ∈ ME∗, it is easy to check that

βt
s(P, ζ, Θm) = −βt

p(P, ζ, Θm) for every p ∈ P \ {s} and βt
q(P, ζ, Θm) ̸= 0 for every q ∈ P.

Similar to the above proof, τt
p(P, ζ, Θm) = η I,t

p (P, ζ, Θm) for every p ∈ P \ {s}. By MEIN of
τ and η I ,

τt
s (P, ζ, Θm) = θt(ζ)− ∑

p∈P\{s}
τt

p(P, ζ, Θm) = θt(ζ)− ∑
p∈P\{s}

η I,t
p (P, ζ, Θm) = η I,t

s (P, ζ, Θm).

The proof is finished.

In the following, some examples are exhibited to display that every one of the proper-
ties applied in Theorem 2 is independent of the rest of properties.

Example 6. We focus on the mechanism τ as follows. For every (P, ζ, Θm) ∈ ME∗, for every
t ∈ Nm, and for every participation factor s ∈ P,

τt
s (P, ζ, Θm) =

{
η I,t

s (P, ζ, Θm) if |P| ≤ 2,
0 otherwise.

Clearly, τ fits MIR, but it does not fit MRSTN.

Example 7. Define a mechanism τ to be τt
s (P, ζ, Θm) = 0 for every (P, ζ, Θm) ∈ ME∗, for every

t ∈ Nm, and for every participation factor s ∈ P. Clearly, τ fits MRSTN, but it does not fit MIR.

Subsequently, an example is provided to present (a) how the new mechanisms would
distribute effects differently than the previous mechanisms and (b) differently from each
other. Let (P, ζ, Θm) ∈ ME with P = {i, j, k}, m = 2, ζ = (2, 1, 1), PLi = {0, 1i, 2i},
PLj = {0, 1j}, PLk = {0, 1k}, d(i) = 5, d(j) = 1, d(k) = 2, w(1i) = 3, w(2i) = 4,
w(1j) = 7, w(1k) = 4. Further, let θ1(2, 1, 1) = 5, θ1(1, 1, 1) = 7, θ1(2, 1, 0) = 3,
θ1(2, 0, 1) = 2, θ1(2, 0, 0) = 9, θ1(1, 1, 0) = 3, θ1(1, 0, 1) = −4, θ1(0, 1, 1) = 4, θ1(1, 0, 0) =
−1, θ1(0, 1, 0) = 2, θ1(0, 0, 1) = −3, θ2(2, 1, 1) = 9, θ2(1, 1, 1) = 3, θ2(2, 1, 0) = 5,
θ2(2, 0, 1) = 6, θ2(2, 0, 0) = 4, θ2(1, 1, 0) = −3, θ2(1, 0, 1) = 4, θ2(0, 1, 1) = 3, θ2(1, 0, 0) = 7,
θ2(0, 1, 0) = −2, θ2(0, 0, 1) = 3 and θ1(0, 0, 0) = 0 = θ2(0, 0, 0). By Definitions 1–3,

β1
i (P, ζ, Θm) = 2

3 , β1
j (P, ζ, Θm) = 8

3 , β1
k(P, ζ, Θm) = 5

3 ,

β2
i (P, ζ, Θm) = 2

3 , β2
j (P, ζ, Θm) = 11

3 , β2
k(P, ζ, Θm) = 14

3 ,

ηd,1
i (P, ζ, Θm) = 3

8 , ηd,1
j (P, ζ, Θm) = 23

8 , ηd,1
k (P, ζ, Θm) = 14

8 ,

ηd,2
i (P, ζ, Θm) = 10

8 , ηd,2
j (P, ζ, Θm) = 26

8 , ηd,2
k (P, ζ, Θm) = 36

8 ,

ηw,1
i (P, ζ, Θm) = −16

3 , ηw,1
j (P, ζ, Θm) = 35

3 , ηw,1
k (P, ζ, Θm) = −4

3 ,

ηw,2
i (P, ζ, Θm) = −28

3 , ηw,2
j (P, ζ, Θm) = 35

3 , ηw,2
k (P, ζ, Θm) = 20

3 ,

βd,w,1
i (P, ζ, Θm) = −108

8 , βd,w,1
j (P, ζ, Θm) = 140

8 , βd,w,1
k (P, ζ, Θm) = 1,

βd,w,2
i (P, ζ, Θm) = −140

8 , βd,w,2
j (P, ζ, Θm) = 140

2 , βd,w,2
k (P, ζ, Θm) = 9,

η I,1
i (P, ζ, Θm) = 5

6 , η I,1
j (P, ζ, Θm) = 15

6 , η I,1
k (P, ζ, Θm) = 10

6 ,

η I,2
i (P, ζ, Θm) = 0, η I,2

j (P, ζ, Θm) = 27
7 , η I,2

k (P, ζ, Θm) = 36
7 .

4. Conclusions

1. Distinct from existing studies, we introduce the MEMNSE, the 1-MWMNSE, the
2-MWMNSE, the WLAMM, and associated axiomatic processes by concurrently ap-
plying weights to participation factors and their respective levels of participation in
multiattribute multi-choice situations. Instead of conventional weights, we naturally
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incorporate minimal marginal effects and introduce the MMIM and its related ax-
iomatic processes in the context of multiattribute multi-choice settings. A comparative
analysis is warranted against relevant findings in the existing literature.

• Traditional environmental mechanisms have primarily focused on either non-
participation or universal participation among all participation factors.

• The MEMNSE, the 1-MWMNSE, the 2-MWMNSE, the WLAMM, the MMIM, and
its associated axiomatic processes are initially proposed within multiattribute
multi-choice environments.

– Under the MEMNSE and the 2-MWMNSE, the remaining effect is uniformly
evaluated among all participation factors.

– Within the MEMNSE and the 1-MWMNSE, each participation factor evalu-
ates its minimal marginal effect first.

– Participation factors and their levels of participation are pivotal in multi-
attribute multi-choice environments. Hence, weights should be simulta-
neously applied to both participation factors and their levels of participa-
tion. Under the WLAMM, participation factors evaluate weighted minimal
marginal effects initially, followed by proportional evaluation of the remain-
ing effect based on weights of participation factors.

– Nonetheless, weight allocating may lack naturalness. The MMIM ensures
that all participation factors evaluate the minimal marginal effects initially,
followed by proportional evaluation of the remaining effect based on related
minimal marginal effects.

2. The mechanisms proposed in this article offer several advantages.

• Traditional allocation mechanisms in environmental settings typically consider
either non-participation or universal participation across all participation factors.
This article, however, acknowledges varying levels of participation among all
participation factors.

• In numerous studies on allocating mechanisms under multi-choice environments,
while it is acknowledged that participation factors have different levels of par-
ticipation, most of the literature evaluates the effects of a specific participation
factor at a specific level of participation. Here, we evaluate the overall effects of
each participation factor across different levels of participation.

• Reflecting real-world situations, the WLAMM is proposed to evaluate the re-
maining effect among participation factors and their levels of participation based
on simultaneously two forms of weight functions. Furthermore, the concept of
the minimal marginal effects is incorporated under the WLAMM. Considering
potential questions regarding fairness or legitimacy of the weight functions,
relative minimal marginal effects are utilized as weights under the MMIM.

3. However, there are some drawbacks to the proposed mechanisms. As highlighted in
the advantages, each participation factor has varying levels of participation. While
it is possible to determine the overall effects exerted by each participation factor,
assessing the effect of a specific participation factor at a specific level of participation
is challenging. Future research should explore alternative allocating mechanisms that
consider both overall effects and specific levels of participation simultaneously.

4. The findings of this study also present further avenues for exploration.

• Alternative mechanisms based on the minimal marginal effects under multiat-
tribute and multi-choice considerations could be derived from existing mecha-
nisms.

Readers are encouraged to delve deeper into these aspects.
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