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Abstract: In this paper, we obtain multifractals (attractors) in the framework of Hausdorff b-metric
spaces. Fractals and multifractals are defined to be the fixed points of associated fractal operators,
which are known as attractors in the literature of fractals. We extend the results obtained by Chifu
et al. (2014) and N.A. Secelean (2015) and generalize the results of Nazir et al. (2016) by using
the assumptions imposed by Dung et al. (2017) to the case of ciric type generalized multi-iterated
function system (CGMIFS) composed of ciric type generalized multivalued G-contractions defined
on multifractal space C(U ) in the framework of a Hausdorff b-metric space, where U = U1 ×U2 ×
· · · ×UN , N being a finite natural number. As an application of our study, we derive collage theorem
which can be used to construct general fractals and to solve inverse problem in Hausdorff b-metric
spaces which are more general spaces than Hausdorff metric spaces.

Keywords: generalized multivalued G—Contraction; generalized multivalued iterated function
systems; Hausdorff b metric space; fractal space; multifractal space; fixed point

1. Introduction

Dynamic systems characterization has been intensively investigated in diverse areas of
physics [1–5], population biology [6–10], neural networks [11–14], mathematical modeling [15–17],
etc. Especially fractals and multifractals play an important role in applications such as signal and
image compression, creation of digital photographs, soil mechanics, fluid mechanics, computer
graphics and so on. Most of these fractals and multifractals are obtained by using iterated function
(or multifunction) systems (IFS). In 1981, Hutchinson [18] defined iterated function systems (IFS) and
Barnsley [19] enriched the theory of IFS. This theory is known as Hutchinson–Barnsley (HB) theory.
Hutchinson defined IFS as a finite collection of contractive self mappings and introduced HB operator
on hyperspace of nonempty compact sets. He defined the unique fixed point of HB operator as a fractal
(attractor). Thus, fixed point theory plays prominent role in the construction of fractals. For years,
IFS has been an emerging technique for researchers to generate and analyze new fractal objects. In the
sequel, numerous developments and extensions of IFS to construct fractals and similar sets are made
(see, e.g., [20–22] and references therein).

Mathematics 2019, 7, 967; doi:10.3390/math7100967 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0498-5268
https://orcid.org/0000-0003-3133-7119
https://orcid.org/0000-0002-0732-226X
http://www.mdpi.com/2227-7390/7/10/967?type=check_update&version=1
http://dx.doi.org/10.3390/math7100967
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 967 2 of 17

Banach contraction principle [23] contributed a lot in fixed point theory. Several researchers
enhanced the Banach contraction principle either by generalizing the domain [24–27] or by taking
more general contractive conditions on mappings [28–30]. Further, several fixed point results were
obtained by generalizing the concept of metric space [31]. For other new fixed point results and their
applications, see [32–34].

The idea of a b-metric space was given by Czerwik [35]. This opened a new door for researchers
and they published several research papers of fixed point theory (see, e.g., [35–38]). Kamran et al. [39]
and Ali et al. [40] introduced F-contraction mappings in the framework of b metric spaces. They proved
several fixed point results and applied their results to solve Fredholm and Volterra integral equations,
respectively. In 2014, Chifu et al. [41] proved some results for multivalued fractals by using ciric type
contractive conditions. Secelean [42] considered the generalized iterated function systems, defined
on product of metric spaces to improve some fixed point results. Dung et al. [43] revised the results
of Nazir et al. [37,44] by adding a commutativity assumption on the maps. Inspired by their work,
we attempt to extend their results to find the multifractals using ciric type generalized multivalued
G-contraction mappings in the framework of Hausdorff b-metric spaces.

The structure of our paper is divided into five sections. Section 2 is dedicated to some
basic definitions and results concerning b-metric spaces and IFS. Section 3 deals with the notion
of generalized multi-iterated function systems (GMIFS) in Hausdorff b-metric spaces. Moreover,
some results regarding the existence and uniqueness of attractors (multifractals) are obtained.
We derive collage theorem in Section 4. In Section 5, we conclude our findings. The results obtained by
us may be further generalized and extended.

2. Preliminaries

Definition 1 ([35]). Consider a nonempty set Y and let s ∈ R, where s ≥ 1. A function d : Y× Y → R+ is
called a b-metric if following axioms are satisfied:

(b1) d(p, q) = 0 if and only if p = q;
(b2) d(p, q) = d(q, p); and
(b3) d(p, r) ≤ s[d(p, q) + d(q, r)] (triangle inequality).

The pair (Y, d) is said to be a b-metric space.

Remark 1. For s = 1, the b-metric space can be reduced in metric space. This shows that every metric space is
a b-metric space, but in general the converse is not true (see [35,45,46]).

Remark 2. In general, every metric is a continuous functional in both variables while a b-metric need not posses
this property, i.e., a b-metric space need not be continuous (see Example 2, [47]).

Example 1 ([35]). Consider a space Lp[0, 1] of all real functions y(u), u ∈ [0, 1] and 0 < p < 1 such that∫ 1
0 |y(u)|

pdu < ∞, together with a metric defined by

d(y, z) =
(∫ 1

0
|y(u)− z(u)|pdu

) 1
p
∀ y, z ∈ Lp[0, 1],

then this space is not a metric space but it is a b-metric space with s = 2
1
p .

Definition 2 ([35,45]). A sequence {an}n∈N in a b-metric space (U, d) is:

(i) Convergent iff for each ε > 0 and n(ε) ∈ N there exists a ∈ U such that d(an, a) < ε. i.e., d(an, a)→ 0
as n→ +∞. Here, a is the limit of the sequence and can be written as lim

n→+∞
an = a.

(ii) Cauchy iff for each ε > 0 there is some n(ε) ∈ N for which d(an, am) < ε ∀ n, m ≥ n(ε) i.e.,
d(an, am)→ 0 as n, m→ +∞.
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Definition 3 ([35]). Let (U, d) be a b-metric space. Then, a subset K of U is:

(a) Closed iff each sequence {an}n∈N of elements of K has a limit, e.g. a, then a ∈ K. (i.e., K = K)
(b) Compact iff every sequence in K has a convergent subsequence in K.

Definition 4 ([35]). A complete b-metric space (U, d) is a b-metric space in which each Cauchy sequence is
convergent in U.

Definition 5 ([44]). Let (U, d) be a metric space and C(U) be the family of all nonempty compact subsets of U.
Then, for all L, M ∈ C(U), the Hausdorff metric is defined by

Hd(L, M) = max

{
sup
l∈L

d(l, M), sup
m∈M

d(m, L)

}
, (1)

where d(l, M) = inf {d(l, m) : m ∈ M}. The pair (C(U), Hd) is said to be Hausdorff metric space and also
known as a Fractal space (see [19]).

Definition 6 ([19]). The Hausdorff metric space (C(U), Hd) is complete iff (U, d) is complete. Analogously,
(C(U), Hd) becomes a complete Hausdorff b-metric space iff (U, d) is a complete b-metric space.

Definition 7 ([48]). Consider a family G of all the mappings of the form G : R+ → R satisfying the
following axioms:

(G1) G is strictly increasing mapping, i.e., ∀ u, v ∈ R+, u < v implies that G(u) < G(v);
(G2) inf G = −∞, i.e., if un ∈ R+ is a sequence, then lim

n→∞
un = 0 and lim

n→∞
G(un) = −∞ both are

equivalent.
(G3) There exists δ ∈ (0, 1) for which lim

u→0+
uδG(u) = 0.

G-contraction is a self map g on U, if there exists τ > 0 for which following holds:

τ + G(d(g(u), g(v))) ≤ G(d(u, v)) ∀ u, v ∈ U, g(u) 6= g(v). (2)

Further, from (G1) together with Equation (2), we have

d(g(u), g(v)) < d(u, v), ∀ u, v ∈ U, g(u) 6= g(v). (3)

This shows that every G-contraction is contractive and, therefore, continuous.

Lemma 1. Let (Ui, di) be b-metric spaces for i = 1, 2, ..., N. Let (C(Ui), Hdi
) be corresponding Hausdorff

b-metric spaces. For Pi, Qi, Ri, Si ⊂ C(Ui), i = 1, 2, ...., N, following hold:

(a) Qi ⊆ Ri ⇒ suppi∈Pi
di(pi, Ri) ≤ suppi∈Pi

di(pi, Qi).
(b) supxi∈Pi∪Qi

di(xi, Ri) = max{suppi∈Pi
di(pi, Ri), supqi∈Qi

d(qi, Ri)}.
(c) Hdi

(Pi ∪Qi, Ri ∪ Si) ≤ max{Hdi
(Pi, Ri), Hdi

(Qi, Si)}.

Definition 8 (see [49]). Let (Ui, di) be metric spaces, where i ∈ I (a finite indexed set). Then, the product
space is the space D = ∏i∈I Ui containing all I-tuples {Ui}i∈I . Consider a metric ρ : D → R defined as
ρ(yi, zi) = supi∈I di(yi, zi). Now, let I = 1, 2, ..., N, then

ρ(yi, zi) = sup
i=1,2,...,N

di(yi, zi) ∀ yi, zi ∈ D, (4)

where yi = (y1, y2, ..., yN), zi = (z1, z2, ..., zN) and yi, zi ∈ ∏i∈I Ui for i = 1, 2, ..., N. Then, (D, ρ) is a
metric space with product metric ρ.
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Definition 9 ([42]). Let ρ be a product metric on D, then a mapping g : D → D, where D = ∏i∈I Ui, is
considered as a generalized multivalued G-contraction if there is a mapping G ∈ G and τ > 0 for which

τ + G(ρ(g(yi), g(zi))) ≤ G( sup
i=1,2,...,N

di(yi, zi)), (5)

for all yi = (y1, y2, ..., yN), zi = (z1, y2, ..., zN) ∈ D and g(yi) 6= g(zi) for i = 1, 2, 3, ..., N.

Remark 3. From Equation (5), we have

G(ρ(g(yi), g(zi))) < G( sup
i=1,2,...,N

di(yi, zi)).

Now, using (G1), we obtain

ρ(g(yi), g(zi)) < sup
i=1,2,...,N

di(yi, zi),

for all yi = (y1, y2, ..., yN), zi = (z1, z2, ..., zN) ∈ D and g(yi) 6= g(zi) for 1 ≤ i ≤ N. Thus, every
generalized multivalued G-contraction on a product space is contractive and hence continuous.

Definition 10 ([50]). Let (U , ρ) be a product metric space on U = ∏i∈I Ui, i = 1, 2, ..., N. Consider the
family C(U ) of all compact subsets of U , then the multifractal space (C(U ), Hρ) with metric Hρ is defined as

Hρ(P ,Q) = max
i=1,2,...,N

{Hdi
(Pi, Qi)}, (6)

where P = (P1, P2, ..., PN),Q = (Q1, Q2, ..., QN) ∈ C(U ) and Hdi
is the Hausdorff distance between Pi and

Qi for i = 1, 2, ..., N.

Lemma 2 ([51]). The metric space (C(U ), Hρ) is a complete metric space if (C(Ui), Hdi
) for each i = 1, 2, ..., N

are complete metric spaces.

Definition 11 ([52]). Let (Ui, di), i = 1, 2, ..., N be complete metric spaces and tk
ij : Uj → Ui with

k = 1, 2, ..., lij, i, j = 1, 2, ..., N be contraction mappings having contractivity factors rk
ij, then multi-iterated

function system (MIFS) is defined by

{Uj, j = 1, 2, ..., N; tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N},

having contractive factor as r, where r = max{rk
ij, k = 1, 2, ..., lij, i, j = 1, 2, ..., N}.

Definition 12 ([52]). Assume that (Ui, di), i = 1, 2, ..., N are complete metric spaces and {Uj, j =

1, 2, ..., N; tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} is an MIFS. Then, the Multi-Hutchinson–Barnsley

(MHB) operator of MIFS is a function F : C(U )→ C(U ) defined by

F (S) =
N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(Ai), ∀ S ∈ C(U ).

Lemma 3. Let (Ui, di), i = 1, 2, ..., N be N complete metric spaces and {Uj, j = 1, 2, ..., N; tk
ij : Uj → Ui, k =

1, 2, ..., lij, i, j = 1, 2, ..., N} be an MIFS. Then, MHB operator F is a contraction mapping on (C(U ), Hρ).

Theorem 1 ([52]). Consider N complete metric spaces (Ui, di), i = 1, 2, ..., N and {Uj; j = 1, 2, ..., N,
tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} be an MIFS. Then, there exists unique compact invariant set

(multi-attractor or fractal) S∞ of MIFS such that S∞ ∈ C(U ) of HB operator F .
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Throughout this paper, we consider b-metric spaces (Ui, di) in such a way that b-metric is
continuous functional on Ui ×Ui for i = 1, 2, ..., N and (C(Ui), Hdi

), i = 1, 2, ..., N are corresponding
Hausdorff b-metric spaces such that b-metric is continuous functional on C(Ui)× C(Ui).

3. Main Results

Now, we obtain multifractals (attractors) for commutative self mappings defined on complete
Hausdorff b-metric spaces.

Theorem 2. The metric space (C(U ), Hρ) is a complete b-metric space iff (C(Ui), Hdi
) are complete b-metric

spaces for each i = 1, 2, ..., N.

Proof. Let (C(Ui), Hdi
), i = 1, 2, ..., N be complete b-metric spaces. Suppose that Pn is a Cauchy

sequence in (C(U ), Hρ), then by definition of a Cauchy sequence, we have for each ε > 0, there exists
n(ε) ∈ N such that

Hρ(Pn,Pm) < ε, ∀ n, m > n(ε),

where Pn = (Pn
1 , Pn

2 , ..., Pn
N), Pm = (Pm

1 , Pm
2 , ..., Pm

N ) and Pn,Pm ∈ C(U ).

⇒ Hρ((Pn
1 , Pn

2 , ..., Pn
N), (Pm

1 , Pm
2 , ..., Pm

N )) < ε, ∀ n, m > n(ε)

⇒ max{Hdi
(Pn

i , Pm
i )} < ε, f or i = 1, 2, ..., N and ∀ n, m > n(ε)

⇒ Hdi
(Pn

i , Pm
i ) < ε, ∀ n, m > n(ε), i = 1, 2, ..., N.

Thus, {Pn
i }∞

n=0 is a Cauchy sequence in C(Ui). Now, for i = 1, 2, ..., N, (C(Ui), Hdi
) are complete

b-metric spaces, then there exists Pi ∈ C(Ui) such that Hdi
(Pn

i , Pi) → 0 as n → ∞. This gives
Hρ(Pn,P)→ 0 as n→ ∞, wherePn = Pn

i = (Pn
1 , Pn

2 , ..., Pn
N) and P = Pi = (P1, P2, ..., PN). This proves

that (C(U ), Hρ) is a complete b-metric space.
By reversing the above process, we can show that (C(Ui), Hdi

) are complete b-metric spaces for
each i = 1, 2, ..., N.

Theorem 3. Let (Ui, di) be b-metric spaces for i = 1, 2, ..., N and (C(Ui), Hdi
) be the corresponding Hausdorff

b-metric spaces. Let tk
ij : Uj → Ui, k = 1, 2, ..., lij, i = j = 1, 2, ..., N be commutative generalized multivalued

G-contractions, then following hold:

(1) tk
ij maps elements of C(Ui) to elements in C(Ui).

(2) If tk
ij(Pi) = {tk

ij(pi); pi ∈ Pi, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} for any Pi ∈ C(Ui), then the mapping

tk
ij : C(Uj) → C(Ui), k = 1, 2, ..., lij; i, j = 1, 2, ..., N is a generalized multivalued G-contraction on
(C(Ui), Hdi

).

Proof. (1) The mapping tk
ij is continuous being generalized multivalued G-contraction and under a

continuous mapping the image of a compact set is compact. Therefore, we have

Pi ∈ C(Ui)⇒ tk
ij(Pi) ∈ C(Ui).

(2) Let Pi, Qi ∈ C(Ui). As tk
ij : Uj → Ui is a generalized multivalued G-contraction, we have

0 < di(tk
ij(pi), tk

ij(qi)) < di(pi, qi) ∀pi ∈ Pi, qi ∈ Qi. (7)

Then, using Equation (7), we have

di(tk
ij(pi), tk

ij(Qi)) = inf
qi∈Qi

di(tk
ij(pi), tk

ij(qi)) < inf
qi∈Qi

di(pi, qi) = di(pi, Qi), (8)
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and
di(tk

ij(qi), tk
ij(Pi)) = inf

pi∈Pi
di(tk

ij(qi), tk
ij(pi)) < inf

pi∈Pi
di(qi, pi) = di(qi, Pi). (9)

Now, consider

Hdi
(tk

ij(Pi), tk
ij(Qi)) = max{ sup

pi∈Pi

di(tk
ij(pi), tk

ij(Qi)), sup
qi∈Qi

di(tk
ij(qi), tk

ij(Pi))}.

Using Equations (8) and (9), the above equation reduces to

Hdi
(tk

ij(Pi), tk
ij(Qi)) < max{ sup

pi∈Pi

di(pi, Qi), sup
qi∈Qi

di(qi, Pi)}

= Hdi
(Pi, Qi)

⇒ Hdi
(tk

ij(Pi), tk
ij(Qi)) < Hdi

(Pi, Qi). (10)

Since G is strictly increasing, we have

G(Hdi
(tk

ij(Pi), tk
ij(Qi))) < G(Hdi

(Pi, Qi)). (11)

For some τ > 0, Equation (11) becomes

τ + G(Hdi
(tk

ij(Pi), tk
ij(Qi))) ≤ G(Hdi

(Pi, Qi)).

Hence, the mapping tk
ij : C(Uj) → C(Ui) is a generalized multivalued G-contraction on

(C(Ui), Hdi
).

Theorem 4. Assume that (C(Ui), Hdi
), i = 1, 2, ..., N are complete Hausdorff b-metric spaces and {Uj, j =

1, 2, ..., N; tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} is a finite family of commutative generalized

multivalued G-contractions. Then, the generalized multi-Hutchinson–Burnsley (GMHB) operator F : C(U )→
C(U ) defined by

F (S) =
N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(Sj), ∀ S ∈ C(U ), (12)

is a generalized multivalued G-contraction on C(U ).

Proof. Let P ,Q ∈ C(U ), where P = (P1, P2, ..., PN) andQ = (Q1, Q2, ..., QN) then using Equation (12),
we observe

τ + G(Hρ(F (P),F (Q))) = τ + G

Hρ

 N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(Pj),

N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(Qj)

 f or Pj, Qj ∈ C(Uj)

= τ + G

 max
i=1,2,...,N

Hdi

 N⋃
j=1

lij⋃
k=1

tk
ij(Pj),

N⋃
j=1

lij⋃
k=1

tk
ij(Qj)


 f or Pj, Qj ∈ C(Uj)

= τ + G

 max
i=1,2,...,N

 max
j=1,2,...,N

Hdij
(

lij⋃
k=1

tk
ij(Pj),

lij⋃
k=1

tk
ij(Qj))


 f or Pj, Qj ∈ C(Uj).

By using Lemma 1, we have

τ + G(Hρ(F (P),F (Q))) ≤ τ + G

[
max

i=1,2,...,N

{
max

j=1,2,...,N

(
max

k=1,2,...,lij

(
Hdk

ij

(
(tk

ij(Pj), tk
ij(Qj)

)))}]
.
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From Theorem 3, we obtain

τ + G(Hρ(F (P),F (Q))) < τ + G

[
max

i=1,2,...,N

{
max

j=1,2,...,N

(
max

k=1,2,...,lij

(
Hdk

ij
(Pj, Qj)

))}]
f or Pj, Qj ∈ C(Uj)

= τ + G
[

max
i=1,2,...,N

{
max

j=1,2,...,N

(
Hdij

(Pj, Qj)
)}]

f or Pj, Qj ∈ C(Uj)

≤ τ + G
{

max
i=1,2,...,N

(
Hdi

(Pi, Qi)
)}

f or Pi, Qi ∈ C(Ui)

≤ G
(

Hρ(P ,Q)
)

⇒ τ + G(Hρ(F (P),F (Q))) ≤ G
(

Hρ(P ,Q)
)

f or P ,Q ∈ C(U ).

Hence, the generalized multi-Hutchinson Burnsley (GMHB) operator F : C(U ) → C(U ) is a
generalized multivalued G-contraction on C(U ).

Definition 13. Let (C(Ui), Hdi
), i = 1, 2, ..., N be Hausdorff b-metric spaces. Then, the mappingF : C(U )→

C(U ) is a ciric type generalized multivalued G-contraction if for P ,Q ∈ C(U ), G ∈ G and τ > 0 the
following satisfies:

τ + G(Hρ(F (P),F (Q))) ≤ F(WF (P ,Q)), (13)

where

WF (P ,Q) = max
{

Hρ(P ,Q), Hρ(P ,F (P)), Hρ(Q,F (Q)),
Hρ(P ,F (Q)) + Hρ(Q,F (P))

2s
, Hρ(F 2(P),F (P)),

Hρ(F 2(P),Q), Hρ(F 2(P),F (Q))
}

.

Definition 14. Let (C(Ui), Hdi
), i = 1, 2, ..., N be Hausdorff b-metric spaces and tk

ij : Uj → Ui with
k = 1, 2, ..., lij, i, j = 1, 2, ..., N be commutative ciric type generalized multivalued G-contraction mappings,
then ciric type generalized multi-iterated function system (CGMIFS) is expressed as

{Uj, j = 1, 2, ..., N; tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N}. (14)

Theorem 5. Let (C(Ui), Hdi
), i = 1, 2, ..., N be complete Hausdorff b-metric spaces and {Uj; j =

1, 2, ..., N, tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} be a CGMIFS, where the mappings tk

ij are
commutative mappings. Then, the mapping F : C(U )→ C(U ) defined by

F (S) =
N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(Sj), (15)

where S = S1, S2, ..., SN ∈ C(U ), is a ciric type generalized multi-Hutchinson–Barnsley (CGMHB) operator.

Proof. The result holds by using Theorem 4 together with generalized multivalued G-contraction
property (G1).

Definition 15. A nonempty family S∗ ∈ C(U ) of compact sets is said to be multi-attractor with respect to
GMIFS if and only if S∗ = F (S∗) where S∗ = Si = S1, S2, ..., SN ∈ C(U ), i.e., S∗ is the fixed point of
associated generalized multi-Hutchinson–Barnsley (GMHB) operator F .
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Theorem 6. Let (C(Ui), Hdi
) for i = 1, 2, ..., N be complete Hausdorff b-metric spaces and {Uj, j =

1, 2, ..., N; tk
ij : Uj → Ui, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} be a CGMIFS and F : C(U )→ C(U ) be CGMHB

operator. Then, there exists unique attractor S∗ ∈ C(U ), i.e.,

S∗ = F (S∗) =
N

∏
i=1

N⋃
j=1

lij⋃
k=1

tk
ij(S
∗
j ), ∀ S∗ ∈ C(U ), (16)

where S∗ = (S∗1 , S∗2 , ..., S∗N) ∈ C(U ).
In addition, the sequence {V0,F (V0),F 2(V0), ...} of compact sets for each initial family V0 ∈ C(U ) converges
to a unique attractor S∗ of CGMHB operator F .

Proof. To prove the existence of an attractor S∗, let us consider V0 ∈ C(U ), where V0 = (V0
1 , V0

2 , ..., V0
N).

If Hρ(Vm,F (Vm)) = Hdi
(Vm

i , Vm+1
i ) = Hdi

(Vm
i ,F (Vm

i )) = 0 for i = 1, 2, ..., N and m ∈ N, then Vm
i =

F (Vm
i ) i.e., Vm = F (Vm). Then, X ∗ = Vm is an attractor of F , which completes the proof. Thus, let

us suppose that Hρ(V k,F (V k)) > 0 ∀ k ∈ N. Then from Equation (13), we have

τ + G(Hρ(V k+1,V k+2)) = τ + G(Hρ(F (V k),F (V k+1)))

≤ G(WF (V k,V k+1)) = G(WF (Vk
i , Vk+1

i )), i = 1, 2, ..., N.

⇒ τ + G(Hρ(V k+1,V k+2)) ≤ G(WF (Vk
i , Vk+1

i )), i = 1, 2, ..., N, (17)

where

WF (Vk
i , Vk+1

i ) = max
{

Hdi
(Vk

i , Vk+1
i ), Hdi

(Vk
i ,F (Vk

i )), Hdi
(Vk+1

i ,F (Vk+1
i )),

Hdi
(Vk

i ,F (Vk+1
i )) + Hdi

(Vk+1
i ,F (Vk

i ))

2s
, Hdi

(F 2(Vk
i ),F (Vk

i )),

Hdi
(F 2(Vk

i ), Vk+1
i ), Hdi

(F 2(Vk
i ),F (Vk+1

i ))
}

= max
{

Hdi
(Vk

i , Vk+1
i ), Hdi

(Vk
i , Vk+1

i ), Hdi
(Vk+1

i , Vk+2
i ),

Hdi
(Vk

i , Vk+2
i ) + Hdi

(Vk+1
i , Vk+1

i )

2s
, Hdi

(Vk+2
i , Vk+1

i ),

Hdi
(Vk+2

i , Vk+1
i ), Hdi

(Vk+2
i , Vk+2

i )
}

.

Thus,
WF (Vk

i , Vk+1
i ) = max{Hdi

(Vk
i , Vk+1

i ), Hdi
(Vk+1

i , Vk+2
i )}. (18)

If WF (Vk
i , Vk+1

i ) = Hdi
(Vk+1

i , Vk+2
i ), then from Equation (17),

F(Hdi
(Vk+1

i , Vk+2
i )) ≤ G(Hdi

(Vk+1
i , Vk+2

i ))− τ. (19)

This gives
τ ≤ 0,

which is a contradiction, since τ > 0.
Therefore, we have WT (Vk

i , Vk+1
i ) = Hdi

(Vk
i , Vk+1

i ).
Now, using Equation (17), we have

G(Hdi
(Vk+1

i , Vk+2
i )) ≤ G(Hdi

(Vk
i , Vk+1

i ))− τ

⇒ G(Hdi
(Vk+1

i , Vk+2
i )) < G(Hdi

(Vk
i , Vk+1

i )). (20)
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From Equation (20) together with (G1),we have

Hdi
(Vk+1

i , Vk+2
i ) < Hdi

(Vk
i , Vk+1

i ), ∀ k ∈ N

⇒ Hdi
(Vk

i , Vk+1
i ) < Hdi

(Vk−1
i , Vk

i ) ∀ i = 1, 2, ..., N and k ∈ N. (21)

Therefore, {Hdi
(Vk

i , Vk+1
i )}k∈N is a non-negative decreasing sequence and hence convergent.

Now,
G(Hdi

(Vk
i , Vk+1

i )) ≤ G(Hdi
(Vk−1

i , Vk
i ))− τ

≤ G(Hdi
(Vk−2

i , Vk−1
i ))− 2τ

≤ · · · ≤ G(Hdi
(V0

i , V1
i ))− nτ

⇒ G(Hdi
(Vk

i , Vk+1
i )) ≤ G(Hdi

(V0
i , V1

i ))− nτ, (22)

which gives lim
k→∞

G(Hdi
(Vk

i , Vk+1
i )) = −∞ and using (G2), we have lim

k→∞
Hdi

(Vk
i , Vk+1

i )) = 0. Thus,

we have
lim
k→∞

Hdi
(Vk

i , Vk+1
i )) = lim

k→∞
Hdi

(Vk
i ,F (Vk

i )) = 0. (23)

Now, we have to prove that {Vk
i }∞

k=1 is a Cauchy sequence. On the contrary, suppose that there
exists ε > 0 and two sequences {αm

i }∞
m=1 and {βm

i }∞
m=1 such that

αm
i > βm

i > m, Hdi
(V

αm
i

i , V
βm

i
i ) ≥ ε and Hdi

(V
αm

i −1
i , V

βm
i

i ) < ε, (24)

for all i = 1, 2, ..., N and m ∈ N.
Now, using Equation (24) together with triangular inequality of a b-metric space, we have

ε ≤ Hdi
(V

αm
i

i , V
βm

i
i ) ≤ s{Hdi

(V
αm

i
i , V

αm
i −1

i ) + Hdi
(V

αm
i −1

i , V
βm

i
i )}

≤ sHdi
(V

αm
i

i , V
αm

i −1
i ) + sε.

Then, from Equation (23), we get

ε ≤ lim
m→∞

sup Hdi
(V

αm
i

i , V
βm

i
i ) ≤ sε. (25)

Again, by using triangle inequality of a b-metric space, we have

ε ≤ Hdi
(V

αm
i

i , V
βm

i
i ) ≤ s{Hdi

(V
αm

i
i , V

βm
i +1

i ) + Hdi
(V

βm
i +1

i , V
βm

i
i )}. (26)

Furthermore,

Hdi
(V

αm
i

i , V
βm

i +1
i ) ≤ s{Hdi

(V
αm

i
i , V

βm
i

i ) + Hdi
(V

βm
i

i , V
βm

i +1
i )}. (27)

Using Equations (23) and (25) in Equation (27), we have

lim
m→∞

Hdi
(V

αm
i

i , V
βm

i +1
i ) ≤ s2ε. (28)

In addition, together with Equations (23) and (26), Equation (28) becomes

ε

s
≤ 1

s
lim

m→∞
sup Hdi

(V
αm

i
i , V

βm
i

i ) ≤ lim
m→∞

sup Hdi
(V

αm
i

i , V
βm

i +1
i ) ≤ s2ε

⇒ ε

s
≤ lim

m→∞
sup Hdi

(V
αm

i
i , V

βm
i +1

i ) ≤ s2ε. (29)
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Again, using the same process, we have

ε

s
≤ lim

m→∞
sup Hdi

(V
αm

i +1
i , V

βm
i

i ) ≤ s2ε. (30)

Consider,
Hdi

(V
αm

i
i , V

βm
i +1

i ) ≤ s{Hdi
(V

αm
i

i , V
αm

i +1
i ) + Hdi

(V
αm

i +1
i , V

βm
i +1

i )}. (31)

Using Equation (23) in Equation (31), we have

lim
m→∞

sup Hdi
(V

αm
i

i , V
βm

i +1
i ) ≤ s lim

m→∞
sup Hdi

(V
αm

i +1
i , V

βm
i +1

i ). (32)

Using Equations (29) and (32) becomes

ε

s2 ≤
1
s

lim
m→∞

sup Hdi
(V

αm
i

i , V
βm

i +1
i ) ≤ lim

m→∞
sup Hdi

(V
αm

i +1
i , V

βm
i +1

i )

⇒ ε

s2 ≤ lim
m→∞

sup Hdi
(V

αm
i +1

i , V
βm

i +1
i ). (33)

Consider,

Hdi
(V

αm
i +1

i , V
βm

i +1
i ) ≤ s{Hdi

(V
αm

i +1
i , V

βm
i

i ) + Hdi
(V

βm
i

i , V
βm

i +1
i )}

≤ s2{Hdi
(V

αm
i +1

i , V
αm

i
i ) + Hdi

(V
αm

i
i , V

βm
i

i )}

+sHdi
(V

βm
i

i , V
βm

i +1
i ).

Using Equations (23) and (25), we obtain

lim
m→∞

sup Hdi
(V

αm
i +1

i , V
βm

i +1
i ) ≤ s3ε. (34)

Now, from Equations (33) and (34), we have

ε

s2 ≤ lim
m→∞

sup Hdi
(V

αm
i +1

i , V
βm

i +1
i ) ≤ s3ε. (35)

Thus, from Equations (23) and (24), we can select m1 ∈ N in such a way that

Hdi
(V

αm
i

i ,F (Vαm
i

i )) < ε < Hdi
(V

αm
i

i , V
βm

i
i ), ∀ m ≥ m1.

Therefore, for all m ≥ m1, we have

G(Hdi
(V

αm
i +1

i , V
βm

i +1
i )) ≤ G(WF (V

αm
i

i , V
βm

i
i ))− τ(Hdi

(V
αm

i
i , V

βm
i

i )). (36)

Using (G1) together with Equation (36), we have



Mathematics 2019, 7, 967 11 of 17

Hdi
(V

αm
i +1

i , V
βm

i +1
i ) < WF (V

αm
i

i , V
βm

i
i )

= max
{

Hdi
(V

αm
i

i , V
βm

i
i ), Hdi

(V
αm

i
i , F (Vαm

i
i )), Hdi

(V
βm

i
i ,F (Vβm

i
i )),

Hdi
(V

αm
i

i ,F (Vβm
i

i )) + Hdi
(V

βm
i

i ,F (Vαm
i

i ))

2s
, Hdi

(F 2(V
αm

i
i ,F (Vαm

i
i )),

Hdi
(F 2(V

αm
i

i ), V
βm

i
i ), Hdi

(F 2(V
αm

i
i ),F (Vβm

i
i ))

}
= max

{
Hdi

(V
αm

i
i , V

βm
i

i ), Hdi
(V

αm
i

i , V
αm

i +1
i ), Hdi

(V
βm

i
i , V

βm
i +1

i ),

Hdi
(V

αm
i

i , V
βm

i +1
i )) + Hdi

(V
βm

i
i , V

αm
i +1

i )

2s
, Hdi

(V
αm

i +2
i , V

αm
i +1

i ),

Hdi
(V

αm
i +2

i , V
βm

i
i ), Hdi

(V
αm

i +2
i , V

βm
i +1

i )
}

.

Thus, we have

Hdi
(V

αm
i +1

i , V
βm

i +1
i ) < WF (V

αm
i

i , V
βm

i
i )

= max
[

Hdi
(V

αm
i

i , V
βm

i
i ), Hdi

(V
αm

i
i , V

αm
i +1

i ), Hdi
(V

βm
i

i , V
βm

i +1
i ),

Hdi
(V

αm
i

i , V
βm

i +1
i )) + Hdi

(V
βm

i
i , V

αm
i +1

i )

2s
, Hdi

(V
αm

i +2
i , V

αm
i +1

i ),

s{Hdi
(V

αm
i +2

i , V
αm

i +1
i ) + Hdi

(V
αm

i +1
i , V

βm
i

i )},

s{Hdi
(V

αm
i +2

i , V
αm

i +1
i ) + Hdi

(V
αm

i +1
i , V

βm
i +1

i )}
]

.

(37)

Now, taking limit supremum as m→ ∞ on each side of Equation (37) and using Equations (23),
(25) and (28), respectively, we obtain

ε ≤ lim
m→∞

sup WF (V
αm

i
i , V

βm
i

i ) = max{sε, 0, 0,
s2ε + s2ε

2s
, 0, s(0 + s2ε), s(0 + sε)} ≤ s3ε.

⇒ ε ≤ lim
m→∞

sup WF (V
αm

i
i , V

βm
i

i ) ≤ s3ε. (38)

Using the same argument, we can prove that

ε ≤ lim
m→∞

inf WF (V
αm

i
i , V

βm
i

i ) ≤ s3ε. (39)

Now, taking limit supremum as m→ ∞ in Equation (36) and using Equations (25), (33), (35), (38)
and (39), respectively, we have

G(s3ε) = G(s5 ε

s2 ) ≤ G( lim
m→∞

sup Hdi
(V

αm
i +1

i , V
βm

i +1
i ))

≤ G( lim
m→∞

sup WF (V
αm

i
i , V

βm
i

i ))− τ.

This gives
G(s3ε) ≤ G(s3ε)− τ. (40)

This implies that τ < 0, which is a contradiction. Thus, our supposition is wrong. Hence,
{Vk

i }∞
k=1 is a Cauchy sequence in C(Ui), i.e., {V k}∞

k=1 is a Cauchy sequence in C(U ). Since (C(U ), Hρ)

is complete, the sequence {V k}∞
k=1 converges to S∗ as k→ ∞ for some S∗ ∈ C(U ). Thus, the sequence

{V0,F (V0),F 2(V0), ...} of compact sets converges to S∗, where S∗ = S∗i .
Now, we claim that S∗ is an attractor of F . Arguing the contrary, we suppose that S∗ is not the

attractor of F . Then, Hρ(S∗,F (S∗)) 6= 0, i.e., Hdi
(S∗i ,F (S∗i )) 6= 0, where S∗ = S∗1 , S∗2 , ..., S∗N .
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Then,
τ + G(Hdi

(Vk+1
i ,F (S∗i ))) = τ + G(Hdi

(F (Vk
i ),F (V∗i )))

≤ G(WF (Vk
i , S∗i )).

Thus,
τ + G(Hdi

(Vk+1
i ,F (S∗i ))) ≤ G(WF (Vk

i , S∗i )), (41)

where

WF (Vk
i , X∗i ) = max

{
Hdi

(Vk
i , S∗i ), Hdi

(Vk
i ,F (Vk

i )), Hdi
(S∗i ,F (S∗i )),

Hdi
(Vk

i ,F (S∗i )) + Hdi
(S∗i ,F (Vk

i ))

2s
, Hdi

(F 2(Vk
i ),F (Vk

i )),

Hdi
(F 2(Vk

i ), S∗i ), Hdi
(F 2(Vk

i ),F (S∗i ))
}

= max
{

Hdi
(Vk

i , S∗i ), Hdi
(Vk

i , Vk+1
i ), Hdi

(S∗i ,F (S∗i )),

Hdi
(Vk

i ,F (S∗i )) + Hdi
(S∗i , Vk+1

i )

2s
, Hdi

(Vk+2
i , Vk+1

i ),

Hdi
(Vk+2

i , S∗i ), Hdi
(Vk+2

i ,F (S∗i ))
}

.

We have following possibilities:
Case I : If WF (Vk

i , S∗i ) = Hdi
(Vk

i , S∗i ), then taking limit infimum as m → ∞ in Equation (41),
we have

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G(Hdi

(S∗i , S∗i )),

i.e.,
τ + G(Hdi

(S∗i , S∗i )) ≤ G(Hdi
(S∗i , S∗i )),

which is a contradiction, since τ > 0.
Case II : If WF (Vk

i , S∗i ) = Hdi
(Vk

i , Vk+1
i ), then by taking limit infimum as m→ ∞ in Equation (41),

we have
τ + G(Hdi

(S∗i ,F (S∗i ))) ≤ G(Hdi
(S∗i , S∗i )),

i.e.,
τ + G(Hdi

(S∗i , S∗i )) ≤ G(Hdi
(S∗i , S∗i )),

a contradiction.
Case III : If WF (Vk

i , S∗i ) = Hdi
(S∗i ,F (S∗i )), then Equation (41) reduces to

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G(Hdi

(F (S∗i ), S∗i )),

again a contradiction, since τ > 0.
Case IV : If

WF (Vk
i , S∗i ) =

Hdi
(Vk

i ,F (S∗i )) + Hdi
(S∗i , Vk+1

i )

2s
,

then Equation (41) becomes

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G

(
Hdi

(S∗i ,F (S∗i )) + Hdi
(S∗i , S∗i ))

2s

)
= G

(
Hdi

(S∗i ,F (S∗i ))
2s

)
,

which is not possible, since G is strictly increasing map.
Case V : If WF (Vk

i , S∗i ) = Hdi
(Vk+2

i , Vk+1
i ), then from Equation (41), we have

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G(Hdi

(S∗i , S∗i )),
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again a contradiction.
Case VI : If WF (Vk

i , S∗i ) = Hdi
(Vk+2

i , S∗i ), then

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G(Hdi

(S∗i , S∗i )),

again a contradiction.
Case VII : If WF (Vk

i , S∗i ) = Hdi
(Vk+2

i ,F (S∗i )), using this in Equation (41), we have

τ + G(Hdi
(S∗i ,F (S∗i ))) ≤ G(Hdi

(S∗i ,F (S∗i )),

which is not possible.
Thus, our supposition is wrong. This gives, Hdi

(U∗i ,F (S∗i )) = 0, i.e., F (S∗i ) = S∗i for i = 1, 2, ..., N.
Hence, S∗i i.e., S∗ is an attractor of F .

Now, we prove the uniqueness of attractor S∗ of F . Indeed, let S∗ andR∗ be two attractors of F
with Hρ(S∗,R∗) 6= 0. Then, using the definition of Ciric type generalized multivalued G-contraction
F , we have

τ + G(Hρ(S∗,R∗)) = τ + G(Hρ(F (S∗),F (R∗)))

≤ G(WF (S∗,R∗))

⇒ τ + G(Hρ(S∗,R∗)) ≤ G(WF (S∗,R∗)), (42)

where

WF (S∗,R∗) = max
{

Hρ(S∗,R∗), Hρ(S∗,F (S∗)), Hρ(R∗,F (R∗)),
Hρ(S∗,F (R∗)) + Hρ(R∗,F (S∗))

2s
, Hρ(F 2(S∗),F (S∗)),

Hρ(F 2(S∗),R∗), Hρ(F 2(S∗),F (R∗))
}

= max
{

Hρ(S∗,R∗), Hρ(S∗,S∗), Hρ(R∗,R∗),
Hρ(S∗,R∗) + Hρ(R∗,S∗)

2s
, Hρ(S∗,S∗),

Hρ(S∗,R∗), Hρ(S∗,R∗)
}

= Hρ(S∗,R∗)

⇒ τ + G(Hρ(S∗,R∗)) ≤ G(Hρ(S∗,R∗)),

which is not possible, since τ > 0. This gives that Hρ(S∗,R∗) = 0. i.e.,S∗ = R∗.
Hence, F has a unique attractor S∗.

Remark 4. If we take j = 1, 2, ..., N, i = 1 in Theorem 6, then the result of Chifu et al. ( Theorem 3.4, [41]) can
be obtained.

Remark 5. If we use generalized multivalued G-contraction tk
ij instead of ciric type generalized multivalued

G-contraction in Theorem 6 and take j=1,2,...,N, i=1, then the result of Secelean (Theorem 3.1, [42]) can be
obtained. In addition, one can generalize his result using Ciric type generalized multivalued G-contraction.

Remark 6. Our Theorems 3, 4 and 6 extend the results of Dung et al. [43], which are the revision of the results
obtained by Nazir et al. (respectively, Theorems 9, 10 and 15, [37]) by taking N = 1.

4. Applications

The image of objects found in the nature can be reconstructed by using a set of functions. This set
of functions is known as iterated function system (IFS). Collage theorem (see [19,53]) enables us to
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approximate an image by using IFS having a specific attractor that will construct the required image,
no matter what initial set is to be taken. With the help of collage theorem, one can solve inverse
problems of reconstructing the fractal objects. Barnsley proved the collage theorem for Hausdorff
metric space, but here we generalize this concept to a Hausdorff b-metric space, which is more general
than Hausdorff metric space and obtain the collage theorem as follows:

Theorem 7. (Collage Theorem). Suppose that (C(Ui), Hdi
) are complete Hausdorff b-metric spaces for

i = 1, 2, ..., N. Let (C(U ), Hρ) be a Hausdorff b-metric space with Hausdorff metric ρ and {Uj, j =

1, 2, ..., N; tl
ij : Uj → Ui, l = 1, 2, ..., kij, i, j = 1, 2, ..., N} be multi-iterated function systems (MIFS) having

contractive factor r, where r = max{rk
ij, k = 1, 2, ..., lij, i, j = 1, 2, ..., N} and 0 ≤ r < 1. If F : C(U )→ C(U )

is contractive operator with contractive factor r and V ∈ C(U ), then

Hρ(V ,S∗) ≤ 1
1− sr

Hρ(V ,F (V)), (43)

where S∗ ∈ C(U ) is an attractor of F .

Proof. Using triangular condition of a b-metric space, we have

Hdi
(Vi,Fn(Vi)) ≤ s{Hdi

(Vi,F (Vi)) + Hdi
(F (Vi),Fn(Vi))}

≤ sHdi
(Vi,F (Vi)) + s2{Hdi

(F (Vi),F 2(Vi)) + Hdi
(F 2(Vi),Fn(Vi))}

≤ · · · ≤ sHdi
(Vi,F (Vi)) + s2Hdi

(F (Vi),F 2(Vi))

+s3Hdi
(F 2(Vi),F 3(Vi)) + · · ·+ sn Hdi

(Fn−1(Vi),Fn(Vi)).

This gives

Hdi
(Vi,Fn(Vi)) ≤ sHdi

(Vi,F (Vi)) + s2Hdi
(F (Vi),F 2(Vi)) + · · ·+ snHdi

(Fn−1(Vi),Fn(Vi)). (44)

Since F is a contraction operator with contractive factor r, Equation (44) reduces to

Hdi
(Vi,Fn(Vi)) ≤ (s + s2r + s3r2 + ... + snrn−1)Hdi

(Vi,F (Vi))

=
s(1− srn−1)

1− sr
Hdi

(Vi,F (Vi)), f or sr < 1

⇒ Hdi
(Vi,Fn(Vi)) ≤

s(1− srn−1)

1− sr
Hdi

(Vi,F (Vi)), f or sr < 1.

Taking the limit as n→ ∞, we have

Hdi
(Vi,S∗) ≤

1
1− sr

Hdi
(Vi,F (Vi)), f or i = 1, 2, ..., N.

Now,

max
i=1,2,...,N

Hdi
(Vi,S∗) ≤ max

i=1,2,...,N
(

1
1− sr

)Hdi
(Vi,F (Vi))

⇒ Hρ(V ,S∗) ≤ 1
1− sr

Hρ(V ,F (V)). (45)

This theorem describes that, if the Hausdorff distance between idealized fractal and collage of the
image is small, then the distance of the attractor of our IFS from the fractal will be small. It guarantees
that an IFS has a unique attractor.
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5. Conclusions

In this article, a methodology for constructing multi-attractors in multifractal spaces is presented.
This methodology not only states complex results, but also one can adopt this methodology to construct
attractors or multi-attractors on Hausdorff b-metric spaces. In Section 4, we derive collage theorem for
multi-Hutchinson Barnsley operator in Hausdorff b-metric space. Collage theorem can be applied to
find a suitable IFS for obtaining desired attractor and solving inverse problem for constructing fractal
objects (see Section 5, [53]). With the help of Theorem 7, by choosing suitable contractions, one can
generate fractals or multifractals. In addition, for further research, our results give rise to interesting
questions and generalizations to construct multifractals (attractors) either by generalizing spaces or
contraction mappings. Moreover, we attempt to obtain multifractals analytically with the help of
ciric type generalized multivalued G-contractions; however, construction of multifractals is still an
open question.
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