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Abstract: In this work, we investigate numerically a one-dimensional wave equation in generalized
form. The system considers the presence of constant damping and functional anomalous diffusion of
the Riesz type. Reaction terms are also considered, in such way that the mathematical model can be
presented in variational form when damping is not present. As opposed to previous efforts available
in the literature, the reaction terms are not only functions of the solution. Instead, we consider the
presence of smooth functions that depend on fractional derivatives of the solution function. Using
a finite-difference approach, we propose a numerical scheme to approximate the solutions of the
fractional wave equation. Along with this integrator, we propose discrete forms of the local and the
total energy operators. In a first stage, we show rigorously that the energy properties of the continuous
system are mimicked by our discrete methodology. In particular, we prove that the discrete system is
dissipative (respectively, conservative) when damping is present (respectively, absent), in agreement
with the continuous model. The theoretical numerical analysis of this system is more complicated in
light of the presence of the functional form of the anomalous diffusion. To solve this problem, some
novel technical lemmas are proved and used to establish the stability and the quadratic convergence
of the scheme. Finally, we provide some computer simulations to show the capability of the scheme to
conserve/dissipate the energy. Various fractional problems with functional forms of the anomalous
diffusion of the solution are considered to that effect.

Keywords: variational fractional wave equation; Riesz space-fractional diffusion; variational
finite-difference scheme; analyses of stability and convergence

MSC: 65M06; 35K15; 35K55; 35K57

1. Introduction

The design of energy-preserving methods for physical systems has been a fruitful avenue of
research in the last decades. Historically, the problem of designing energy-conserving methods may
date back to the decade of the 1970s [1,2]. However, L. Vázquez and coauthors were probably the
first researchers who pointed out the physical and mathematical significance of designing this type
of schemes [3]. Various seminal papers by Vázquez and his coworkers were published in the 1990s,
including various energy-conserving numerical schemes to solve partial differential equations such as
the Schrödinger equation [4], the sine-Gordon equation [5,6], the Klein–Gordon equations [7], and even
systems consisting of ordinary differential equations [8]. In those papers, the authors established
thoroughly the capability of their schemes to preserve the energy properties of the continuous problem.
Moreover, they employed a discrete form of the energy method to establish rigorously the stability
and the convergence properties of the schemes. After the publication of those works, the investigation
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on energy-conserving schemes became a highly transited route of investigation, and many interesting
articles were proposed in the specialized literature. As examples, some energy-preserving methods
have been proposed to simulate the nonlinear dynamics of three-dimensional beams undergoing finite
rotations [9], to approximate the kinematics of geometrically exact rods [10] and to design algorithms
for frictionless dynamic contact problems [11].

After those seminal works by Vázquez and coauthors, the investigation on energy-preserving
schemes became a vast area of research. However, those papers by D. Furihata and collaborators
published at the beginning of the millennium became a landmark in the area [12,13]. In particular,
they contributed to the state of the art by reviewing various existing methods for hyperbolic partial
differential equations, which conserved or dissipated the energy of the systems [14,15]. Those works
would eventually pave the road to the birth of the discrete variational derivative method, which is a
helpful tool to construct finite-difference schemes resembling he variational properties of continuous
models [16]. Various works have been published in that area, including studies for the simulation
of nonlinear partial differential equations with variable coefficients [17], the solution of nonlinear
systems based on the use of discrete differential forms [18], the investigation of numerical schemes
using average-difference approaches [19], the two-dimensional vorticity equation [20], the solution
of Hamilton’s equation using variational principles [21], and the investigation of coupled partial
differential equations through an alternating form of the discrete variational derivative method [22],
among other interesting works. Needless to mention that this approach has been extended to consider
different methods, including finite elements [23], finite volumes, and Galerkin techniques [24–26].

On the other hand, fractional derivatives have been introduced to mathematical models
in order to provide more realistic descriptions of the physical phenomena. For instance,
many fractional systems have been obtained as the continuous limit of discrete systems of
particles with long-range interactions [27], and fractional derivatives have been successfully used
in the theory of viscoelasticity [28], the theory of thermoelasticity [29], financial problems under
a continuous time frame [30], self-similar protein dynamics [31] and quantum mechanics [32].
As expected, the complexity of fractional problems is considerably higher than that of integer-order
models, whence the need to design reliable numerical techniques to approximate the solutions
is pragmatically justified [33,34]. In this direction, the literature reports on various methods to
approximate the solutions of fractional systems. For example, some numerical methods have been
proposed to solve fractional partial differential equations using fractional centered differences [35–37],
the time-fractional diffusion equation [38], the fractional Schrödinger equation in multiple spatial
dimensions [39], the nonlinear fractional Korteweg–de Vries–Burgers equation [40], and the fractional
FitzHugh–Nagumo monodomain models [41], among other examples [42–45].

Despite the tremendous amount of works in both variational and fractional schemes, sufficiently
general models which include reaction functions in terms of fractional derivatives have not been
investigated thoroughly yet. The reason is obviously the high level of difficulty to analyze the
efficiency of the corresponding numerical methods. This is partly due to the lack of strong analytical
results which may help in the theoretical studies of the stability and the convergence of the
methodologies. To alleviate this situation, we investigate a general wave equation which extends
various particular variational models from physics, including the Klein–Gordon and continuous forms
of the Fermi–Pasta–Ulam–Tsingou arrays [46]. We exhibit the variational structure of the mathematical
model proposed, and propose a finite-difference method to solve it. Together with the discrete forms
of the equation of motion, we introduce a discretization of the local and total energies of the system,
and we show that the same variational structure of the continuous problem is preserved by the discrete
system. In that sense, our numerical scheme is a structure-preserving methodology [47]. In turn,
the theoretical investigation of the stability and the quadratic convergence of the scheme requires
novel analytical results to estimate the reaction functions that depend on the fractional derivatives,
along with a discrete Gronwall inequality. Some illustrative simulations are provided to show the
capability of the scheme to conserve or dissipate the energy. For the sake of computational efficiency
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and speed, we implemented the numerical method in a Fortran 95. However, we must point out that
the algorithm can be implemented in any scientific computer language, including C++ or Matlab.

This work is organized as follows. In Section 2, we present the fractional partial differential
equation of interest. The model is an extension of some continuous generalizations of the classical
wave equation with constant damping and fractional diffusion. We propose an energy density
function associated to our model. Moreover, we prove therein that the total energy of the system is
conserved or dissipated, depending on whether damping is absent or present. Section 3 introduces the
discrete nomenclature employed throughout this work, and presents the finite-difference scheme to
approximate the solutions of the mathematical model. Discrete forms of the local and total energy are
presented therein, and we establish a discrete analog of the theorem on the conservation/dissipation of
energy of the continuous model. As expected, the boundedness of the numerical solutions is established
under the same conditions of the continuous-case scenario. In turn, the purpose of Section 4 is to
establish the main numerical features of our discrete model. Some illustrative simulations are shown
in Section 5. We close this work with some concluding remarks.

2. Preliminaries

We let In = {1, . . . , n} and In = In ∪ {0}, for each n ∈ N. Throughout, we let γ ∈ R+ ∪ {0}
represent physically a constant damping coefficient. Let a and b be real numbers such that a < b,
and let B = (a, b) ⊆ R and Ω = B× (0, T) ⊆ R2. We employ the symbols ∂B, B and Ω to denote,
respectively, the boundary of B, and the closures of B and Ω with respect to the standard topology
of R2. In the following, we let u : Ω → R be a function, and extend the definition of u by letting
u(x, t) = 0, for each (x, t) ∈ (R \ B)× [0, T]. Throughout this manuscript, we let Γ denote the usual
Gamma function that generalizes factorials.

Definition 1. Let Lx,2(Ω) denote the set of all functions f : Ω → R such that f (·, t) ∈ L2(B) for each
t ∈ [0, T]. Moreover, for each pair f , g ∈ Lx,2(Ω), the inner product of f and g is the function of t defined by

〈 f , g〉x =
∫

B
f (x, t)g(x, t)dx, ∀t ∈ [0, T]. (1)

In turn, the Euclidean norm of f ∈ Lx,2(Ω) is the function of t defined by ‖ f ‖x,2 =
√
〈 f , f 〉x. In general,

if 1 ≤ q < ∞, then Lx,q(Ω) represents the set of all functions f : Ω→ R such that f (·, t) ∈ Lq(B), for each
t ∈ [0, T]. For each such function f , we define its norm as the function of t given by

‖ f ‖x,q =

(∫
B
| f (x, t)|qdx

)1/q
, ∀t ∈ [0, T]. (2)

Definition 2. Let f : R→ R be a function, and let n ∈ N∪ {0} and α ∈ R satisfy n− 1 < α < n. The Riesz
fractional derivative of f of order α at x ∈ R is defined (when it exists) as

dα f (x)
d|x|α =

−1
2 cos(πα

2 )Γ(n− α)

dn

dxn

∫ ∞

−∞

f (ξ)dξ

|x− ξ|α+1−n . (3)

Definition 3. Let α ∈ R and n ∈ N be such that n− 1 < α < n. When it exists, the Riesz space-fractional
partial derivative of the function u : Ω→ R of order α with respect to x at the point (x, t) is defined by

∂αu(x, t)
∂|x|α =

−1
2 cos(πα

2 )Γ(n− α)

∂n

∂xn

∫ ∞

−∞

u(ξ, t)dξ

|x− ξ|α+1−n , ∀(x, t) ∈ Ω. (4)

For the sake of convenience, if n ∈ {1, 2}, then we let the Riesz partial derivative of u of order n to be equal
to the usual partial derivative of u of order n with respect to x.
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Riesz fractional partial derivatives are self-adjoint and non-positive operators [48]. It follows
that their additive inverses are self-adjoint and nonnegative, which implies, in turn, that they possess
square-root operators [49]. This means in particular that, if α ∈ (1, 2] and u, v : Ω→ R, then〈

− ∂αu
∂|x|α , v

〉
=

〈
u,− ∂αv

∂|x|α

〉
=

〈
∂α/2u

∂|x|α/2 ,
∂α/2v

∂|x|α/2

〉
, ∀t ∈ [0, T]. (5)

For the remainder of this manuscript, we let φ, ψ : Ω → R be sufficiently smooth functions
vanishing at the boundary of Ω, and let p ∈ N. Suppose that α1, . . . , αp ∈ (1, 2] are constants,
and let G, G1, G2, . . . , Gp : R→ R be smooth functions. In particular, we assume that G = G(v) and
Gj = Gj(v), for each v ∈ R and j ∈ Ip. With these conventions, the problem under investigation in this
work is the initial-value problem with homogeneous Dirichlet boundary data

∂2u(x, t)
∂t2 + γ

∂u(x, t)
∂t

+
dG(u(x, t))

dv
−

p

∑
j=1

∂αj/2

∂|x|αj/2

dGj

dv

(
∂αj/2u(x, t)

∂|x|αj/2

)
= 0, ∀(x, t) ∈ Ω,

such that


u(x, 0) = φ(x), ∀x ∈ B,
∂u(x, 0)

∂t
= ψ(x), ∀x ∈ B,

u(x, t) = 0, ∀(x, t) ∈ ∂B× [0, T].

(6)

Definition 4. Let u be a function satisfying the initial-boundary-value problem in Equation (6). We define the
local energy density of the undamped system as the function

H(x, t) =
1
2

(
∂u(x, t)

∂t

)2

+ G(u(x, t)) +
p

∑
j=1

Gj

(
∂

αj/2
x u(x, t)

∂|x|αj/2

)
, ∀(x, t) ∈ Ω. (7)

In turn, the total energy at the time t ∈ (0, T) is given by

E(t) =
∫
R
H(x, t)dx =

1
2

∥∥∥∥∂u
∂t

∥∥∥∥2

x,2
+
∫
R

G(u(x, t))dx +
p

∑
j=1

∫
R

Gj

(
∂

αj/2
x u(x, t)

∂|x|αj/2

)
dx. (8)

Theorem 1 (Dissipation of energy). If u satisfies Equation (6), then E ′(t) = −γ‖ut‖2
x,2, where ut = ut(x, t)

is the partial derivative of u with respect to t at (x, t). The system in Equation (6) is conservative if γ = 0.
In general,

E(t) = E(0)− γ
∫ t

0
‖ut‖2

x,2dt, ∀t ∈ (0, T). (9)

Proof. We take the derivative of each of the three terms at the right-hand side of Equation (8). For the
third term, we use the square-root properties of fractional derivatives along with the chain rule.
The first two terms only require the use of the chain rule. In such way, we readily obtain

1
2

d
dt

∥∥∥∥∂u
∂t

∥∥∥∥2

x,2
=

〈
∂2u
∂t2 ,

∂u
∂t

〉
x

, (10)

d
dt

∫
R

G(u(x, t))dx =

〈
dG(u)

dv
,

∂u
∂t

〉
x

(11)

and
d
dt

∫
R

Gj

(
∂

αj/2
x u(x, t)

∂|x|αj/2

)
dx =

〈
dGj

dv

(
∂

αj/2
x u

∂|x|αj/2

)
,

∂αj/2

∂|x|αj/2
∂u
∂t

〉
x

= −
〈

∂αj/2

∂|x|αj/2

dGj

dv

(
∂

αj/2
x u

∂|x|αj/2

)
,

∂u
∂t

〉
x

,

(12)
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for each t ∈ (0, T) and j ∈ Ip. Taking the derivative with respect to t on both sides of Equation (8),
exchanging the derivative and integral operators, using then the identities above and regrouping,
we reach

E ′(t) =
〈

∂2u
∂t2 +

dG(u)
dv

−
p

∑
j=1

∂αj/2

∂|x|αj/2

dGj

dv

(
∂αj/2u

∂|x|αj/2

)
,

∂u
∂t

〉
= −γ

∥∥∥∥∂u
∂t

∥∥∥∥2

x,2
, ∀t ∈ (0, T), (13)

as desired. It is obvious now that the system is conservative if γ = 0. Moreover, the identity in
Equation (9) is also an immediate consequence of the fact that E ′(t) = −γ‖ut‖2

x,2, which is obtained by
integrating both sides of this equation over (0, t).

Corollary 1 (Energy positivity). Suppose that G, G1, G2, . . . , Gp are all nonnegative functions. Then, E is
likewise nonnegative in (0, T) and, moreover,

E(t) = 1
2

∥∥∥∥∂u
∂t

∥∥∥∥2

x,2
+ ‖G(u)‖x,1 +

p

∑
j=1

∥∥∥∥∥Gj

(
∂

αj/2
x u

∂|x|αj/2

)∥∥∥∥∥
x,1

, ∀t ∈ (0, T). (14)

Corollary 2 (Boundedness). If G, G1, G2, . . . , Gp are nonnegative functions, then there exists a constant
C ≥ 0 that depends only on φ and ψ, such that each of the terms at the right-hand side of Equation (14) is
uniformly bounded by C, for all t ≥ 0.

Proof. Using the hypotheses of this result and Theorem 1, we readily obtain the next inequalities,
valid for all t ≥ 0:

max

{∥∥∥∥∂u
∂t

∥∥∥∥2

x,2
, ‖G(u)‖x,1

}
∨max

{∥∥∥∥∥Gj

(
∂

αj/2
x u

∂|x|αj/2

)∥∥∥∥∥
x,1

: j ∈ Ip

}

≤ 2E(t) ≤ 2E(0)− 2γ
∫ t

0
‖ut‖2

x,2dt ≤ 2E(0).

(15)

Let C be the right-hand side of his chain of inequalities. Note that

C = ‖ψ‖2
x,2 + 2‖G(φ)‖x,1 + 2

p

∑
j=1

∥∥∥∥∥Gj

(
∂

αj/2
x φ

∂|x|αj/2

)∥∥∥∥∥
x,1

, (16)

whence the conclusion of this proposition readily follows.

In the following examples, we provide some fractional generalizations of well-known variational
systems from the physical sciences. The systems considered therein will be particular forms of the
hyperbolic partial differential equation in Equation (6).

Example 1. In the following examples, we assume that γ = 0 and p = 1.

(a) Suppose that G(v) = 1 − cos(v) and G1(v) = 1
2 v2, for each v ∈ R. Then, the resulting partial

differential equation in Equation (6) is the fractional sine-Gordon equation, which is a well-known physical
model that appears in relativistic quantum mechanics.

(b) The fractional form of the nonlinear Klein–Gordon equation is obtained from the partial differential equation
of Equation (6) when G(v) = 1

2! v
2− 1

4! v
4 for each v ∈ R, and G1 is as in (a). The Klein–Gordon equation

is also a useful model in relativistic quantum mechanics and particle physics.
(c) If G1 is as in (a) and G(v) = 1− 1

3 cos v − 1
6 cos(2v) for each v ∈ R, then the partial differential

equation resulting in Equation (6) is the fractional double sine-Gordon equation.
(d) Let ε > 0 and p ∈ N satisfy p ≥ 3. If G ≡ 0 and G1(v) = 1

2 v2 + εvp for each v ∈ R, then the resulting
equation is a fractional and continuous extension of the Fermi–Pasta–Ulam–Tsingou chains [50,51].
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Obviously, all the models in this example reduce to their well-known integer-order systems when α = 2.

3. Numerical Method

In this section, we provide the discrete nomenclature used for the remainder of the present work,
and introduce the finite-difference method to solve Equation (6) along with a discrete form of the
Hamiltonian in Equation (7). Moreover, we show that a discrete form of Theorem 1 is satisfied in
the discrete-case scenario. To that end, we consider a regular partition of the interval B, consisting
of M ∈ N subintervals. The norm of the partition is represented by h = (b− a)/M, and the nodes
are defined by xm = a + mh, for each m ∈ IM. Similarly, fix a uniform partition of [0, T] consisting of
N ∈ N subintervals, and let τ be the respective partition norm. For each n ∈ IN , agree that tn = nτ.

Throughout, we fix J = IM−1 × IN−2 and J = IM × IN . Let us use Rh to represent the spatial
grid {xm : m ∈ IM}, and Vh to represent the real vector space of all functions f : Rh → R, such that
f (x0) = f (xM) = 0. For simplicity, if f ∈ Vh and m ∈ IM, then we set fm = f (xm). In this work, unless
we mention something different, we use the symbol Un

m to represent an approximation to the exact
value of the solution u of Equation (6) at the point (xm, tn), for each (m, n) ∈ J. Moreover, let

Un = (Un
m)m∈IM

= (Un
0 , Un

1 , . . . , Un
M) ∈ Vh, ∀n ∈ IN . (17)

Definition 5. Define the inner product 〈·, ·〉 : Vh × Vh → R and the norm ‖ · ‖p : Vh → R by

〈U, V〉 = h ∑
m∈IM

UmVm, ‖U‖p =

h ∑
m∈IM

|Um|p
1/p

, ∀U, V ∈ Vh. (18)

The Euclidean norm induced by 〈·, ·〉 is denoted by ‖ · ‖2, and ‖ · ‖∞ : Vh → R is the usual infinity norm
in Vh, which is defined as ‖U‖∞ = max{|Um| : m ∈ IM}, for each U ∈ Vh.

Definition 6. Let (Un)n∈IN
⊆ Vh. We introduce the linear difference operators on Vh defined by

δtU
n+ 1

2
m =

Un+1
m −Un

m
τ

, ∀U ∈ Vh, ∀(m, n) ∈ J, (19)

µtU
n+ 1

2
m =

Un+1
m + Un

m
2

, ∀U ∈ Vh, ∀(m, n) ∈ J, (20)

δ
(2)
t Un

m =
Un+1

m − 2Un
m + Un−1

m
τ2 , ∀U ∈ Vh, ∀(m, n) ∈ J. (21)

For convenience, we let tn+ 1
2
= (n + 1

2 )τ, for each n ∈ IN−1. If U : Ω → R is a sufficiently
smooth function then the value Equation (19) is a second-order consistent approximation for the partial
derivative of U with respect to t at the point (xm, tn+ 1

2
). In addition, the quantity in Equation (20) is a

second-order approximation to the value of U at the same point. In turn, Equation (21) approximates
the second-order partial derivative of U with respect to t at (xm, tn) with second order of consistency.
It is easy to see that

δ̂
(2)
t Un+ 1

2
m = δ

(2)
t µtU

n+ 1
2

m =
Un+2

m −Un+1
m −Un

m + Un−1
m

2τ2 (22)

approximates consistently the second-order derivative of U with respect to t at the point (xm, tn+ 1
2
)

with a quadratic order of consistency.
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Definition 7. For any function f : R→ R, h > 0 and α > −1, we define the fractional centered difference
of order α of f at the point x as

∆α
h f (x) =

∞

∑
k=−∞

g(α)k f (x− kh), ∀x ∈ R, (23)

where

g(α)k =
(−1)kΓ(α + 1)

Γ( α
2 − k + 1)Γ( α

2 + k + 1)
, ∀k ∈ N∪ {0}. (24)

Lemma 1 (Wang et al. [52]). Let 0 < α ≤ 2 and α 6= 1.

(a) The coefficients (g(α)k )∞
k=−∞ satisfy

g(α)0 =
Γ(α + 1)

Γ(α/2 + 1)2 , g(α)k+1 =

(
1− α + 1

α/2 + k + 1

)
gk, ∀k ∈ N∪ {0}. (25)

(b) g(α)0 ≥ 0.

(c) g(α)k = g(α)−k < 0 for all k ≥ 1, and

(d)
∞

∑
k=−∞

g(α)k = 0. It follows that g(α)0 = −
∞

∑
k=−∞

k 6=0

g(α)k .

When α ∈ (0, 1) ∪ (1, 2], h > 0 and f ∈ C5(R) has its derivatives up to order five which belong to
L1(R), then the following consistency property holds true (see [52]):

− 1
hα

∆α
h f (x) =

dα f (x)
d|x|α +O(h2), ∀x ∈ R. (26)

Definition 8. Let U ∈ Vh and α ∈ (0, 2]. If m = 0, M, then we convey that δ
(α)
x Um = 0. Otherwise, we let

δ
(α)
x Um =


Um+1 − 2Um + Um−1

h2 , if α = 2,

− 1
hα

M

∑
k=0

g(α)m−kUk, if α ∈ (0, 1) ∪ (1, 2).
(27)

Lemma 2 (Macías-Díaz [53]). If α ∈ (1, 2] then 〈−δ
(α)
x U, V〉 = 〈δ(α/2)

x U, δ
(α/2)
x V〉, for any U, V ∈ Vh.

Moreover, if α ∈ (1, 2] and g(α)h = 2g(α)0 h1−α, then

(a) ‖δ(α/2)
x V‖2

2 ≤ g(α)h ‖V‖
2
2, for each V ∈ Vh, and

(b) ‖δ(α)x V‖2
2 ≤ (g(α)h ‖V‖2)

2, for each V ∈ Vh.

Definition 9. Let (Un)n∈IN
⊆ Vh, and suppose that G : Rp+2 → R is a continuously differentiable function.

We introduce the nonlinear difference operators δUG and δUGj defined on Vh by the formulas

δUG(Un+ 1
2

m ) =


G(Un+1

m )− G(Un
m)

Un+1
m −Un

m
, if Un+1

m 6= Un
m,

G′(Un+ 1
2

m ), if Un+1
m = Un

m,

(28)
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and

δ
δ
(αj/2)
x U

Gj(U
n+ 1

2
m ) =



Gj(δ
(αj/2)
x Un+1

m )− G(δ
(αj/2)
x Un

m)

δ
(αj/2)
x Un+1

m − δ
(αj/2)
x Un

m

, if δ
(αj/2)
x Un+1

m 6= δ
(αj/2)
x Un

m,

G′

∂αj/2Un+ 1
2

m

∂|x|αj/2

 , if δ
(αj/2)
x Un+1

m = δ
(αj/2)
x Un

m,

(29)

for each (m, n) ∈ J and j ∈ Ip. In addition, for any function F : R → R, we employ F(Un) to represent the
vector (F(Un

0 ), F(Un
1 ), . . . , F(Un

M)) ∈ Vh. Moreover, we use the symbol “1” to represent both the multiplicative
identity of R and the (M + 1)-dimensional vector all of whose components are equal to 1.

At this stage of our discussion, the nomenclature introduced thus far suffices to provide the full
finite-difference discretization of the model in Equation (6). The numerical method proposed in this
manuscript is given by the discrete system

δ̂
(2)
t Un+ 1

2
m + γδtU

n+ 1
2

m + δUG(Un+ 1
2

m )−
p

∑
j=1

δ
(αj/2)
x

[
δ

δ
(αj/2)
x U

Gj(U
n+ 1

2
m )

]
= 0, ∀(m, n) ∈ J,

such that


U0

m = φU(xm), ∀m ∈ IM−1,
U1

m = ψU(xm), ∀m ∈ IM−1,
U2

m = χU(xm), ∀m ∈ IM−1,
Un

0 = Un
M = 0, ∀n ∈ IN .

(30)

Here, the functions φU , ψU , χU : B→ R are used to prescribe exactly the approximations at the
times t0, t1 and t2, respectively. The forward-difference stencil of the numerical model in Equation (30)
is shown in Figure 1. Obviously, the finite-difference scheme is an explicit four-step technique, whence
the existence and the uniqueness of numerical solutions is guaranteed for any set of initial data.

6
t

-ee
ee
ee
ee
e

ee
ee
ee
ee
e

e e e e e e e e e e e e e
xm

xm−1

. . .. . .

xM−2

xM−1

xMx0

x1

x2 xm+1

tn−1

tn

tn+1

tn+2

u uu u u uu u u . . . . . . u u uu uu u uu u u . . . . . . u u u×

Figure 1. Forward-difference stencil for the approximation to the exact solution of the partial differential
equation of Equation (6) at the time tn, using the finite-difference scheme in Equation (30). The black
circles represent the known approximations at the times tn−1, tn and tn+1, while the cross denotes the
unknown approximation at the time tn+2.

It is important to mention that the approximations at the times t1 and t2 can be computed
in alternative forms. For example, one may try to approximate the first-order partial derivative
with respect to time at the time t = 0 using suitable finite-difference approximations. However,
such approach could result in a loss of the quadratic consistency of the numerical model. Of course,
this is a shortcoming of the present approach. Nevertheless, the scheme presents many other



Mathematics 2019, 7, 1095 9 of 27

advantages, which are established thoroughly in the following, including its ability to preserve
the energy in the undamped case, its quadratic consistency, its stability and its quadratic convergence.
Needless to mention that the numerical model in Equation (30) can be easily implemented in any
computer language.

Theorem 2 (Existence and uniqueness of solutions). If G, G1, G2, . . . , Gp ∈ C1(R), then the discrete
problem in Equation (30) has a unique solution for each set of initial conditions.

Definition 10. Let (Un)n∈IN
⊆ Vh be solution of the scheme in Equation (30). We define the discrete energy

density as

Hn
m =

1
2
(δtU

n+ 1
2

m )(δtU
n− 1

2
m ) + G(Un

m) +
p

∑
j=1

Gj(δ
(αj/2)
x Un

m), ∀(m, n) ∈ J. (31)

In turn, the total energy at the time tn is given by

En = h
M

∑
m=0

Hn
m =

1
2
〈δtUn+ 1

2 , δtUn− 1
2 〉+ 〈G(Un), 1〉+

p

∑
j=1
〈Gj(δ

(αj/2)
x Un), 1〉, ∀n ∈ IN−1. (32)

Lemma 3. If (Un)n∈IN
⊆ Vh, then the following identities are satisfied for each n ∈ IN−2:

(a) 〈δ̂(2)t Un+ 1
2 , δtUn+ 1

2 〉 = 1
2 δt〈δtUn+ 1

2 , δtUn− 1
2 〉;

(b) 〈δtUn+ 1
2 , δtUn− 1

2 〉 = µt‖δtUn− 1
2 ‖2

2 −
1
2 τ2‖δ(2)t Un‖2

2;

(c) 〈δUG(Un+ 1
2 ), δtUn+ 1

2 〉 = δt〈G(Un+ 1
2 ), 1〉; and

(d) 〈−δ
(αj/2)
x [δ

δ
(αj/2)
x U

Gj(U
n+ 1

2
m )], δtUn+ 1

2 〉 = δt〈Gj(δ
(αj/2)
x Un+ 1

2 ), 1〉.

Proof. To establish Identity (a), observe that

〈δ̂(2)t Un+ 1
2 , δtUn+ 1

2 〉 = 1
2τ3 〈U

n+2 −Un+1 −Un + Un−1, Un+1 −Un〉 = 1
2

δt〈δtUn+ 1
2 , δtUn− 1

2 〉. (33)

Identities (b) and (c) are also straightforward, thus we only prove Identity (d). Notice that〈
−δ

(αj/2)
x

[
δ

δ
(αj/2)
x U

Gj(U
n+ 1

2
m )

]
, δtUn+ 1

2

〉
=

1
τ

〈
δ

δ
(αj/2)
x U

Gj(U
n+ 1

2
m ), δ

(αj/2)
x Un+1 − δ

(αj/2)
x Un

〉

=
1
τ

〈
Gj(δ

(αj/2)
x Un+1)− Gj(δ

(αj/2)
x Un)

δ
(αj/2)
x Un+1 − δ

(αj/2)
x Un

, δ
(α/2)
x Un+1 − δ

(α/2)
x Un

〉

=
1
τ

[
〈Gj(δ

(αj/2)
x Un+1), 1〉 − 〈Gj(δ

(αj/2)
x Un), 1〉

]
.

(34)

Identity (d) readily follows now from these identities.

Theorem 3 (Dissipation of discrete energy). Let (Un)n∈IN
⊆ Vh be a solution of the finite-difference scheme

in Equation (30). Then, δtEn+ 1
2 = −γ‖δtUn+ 1

2 ‖2
2, for each n ∈ IN−1. As a consequence, the discrete system

in Equation (30) is conservative if γ = 0. In general, the following identities holds:

En =
1
2

µt‖δtUn− 1
2 ‖2

2 −
τ2

4
‖δ(2)t Un‖2

2 + 〈G(Un), 1〉+
p

∑
j=1
〈Gj(δ

(αj/2)
x Un), 1〉

= E0 − γτ
n−1

∑
k=0
‖δtUk+ 1

2 ‖2
2, ∀n ∈ IN−1.

(35)
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Proof. We use the fact that (Un)n∈IN
satisfies the scheme in Equation (30) along with the identities of

Lemma 3. Collecting terms and substituting the expression of the discrete total energy, we obtain

0 =

〈
δ̂
(2)
t Un+ 1

2 + γδtUn+ 1
2 + δUG(Un+ 1

2 )−
p

∑
j=1

δ
(αj/2)
x

[
δ

δ
(αj/2)
x U

Gj(Un+ 1
2 )

]
, δtUn+ 1

2

〉

=
1
2

δt〈δtUn+ 1
2 , δtUn− 1

2 〉+ γ‖δtUn+ 1
2 ‖2

2 + δt〈G(Un+ 1
2 ), 1〉+

p

∑
j=1

δt〈Gj(δ
(αj/2)
x Un+ 1

2 ), 1〉

= δtEn+ 1
2 + γ‖δtUn+ 1

2 ‖2
2, ∀n ∈ IN−1.

(36)

It readily follows that the discrete system is conservative if γ = 0. The first identity of Equation (35)
is reached now using Identity (b) of Lemma 3, while the second is obtained from Equation (36).

4. Numerical Properties

The main numerical properties of the finite-difference scheme in Equation (30) are proved in
the present section. More precisely, we establish rigorously the quadratic consistency of the scheme,
the stability and its quadratic rate of convergence in both space and time. Various useful results
are recalled or proved in the way, including a useful discrete Gronwall inequality and a technical
proposition taken from the literature. Moreover, a novel auxiliary lemma is mathematically established,
and we employ it to prove the stability and convergence of Equation (30).

In a first stage, we establish the consistency property of our scheme. To that end, we suppose that
u : Ω → R is a function, and convey that un

m = u(xm, tn), for each (m, n) ∈ J. Let us introduce the
differential and the difference operators D and D, which are defined by

Du(x, t) =
∂2u(x, t)

∂t2 + γ
∂u(x, t)

∂t
+

dG(u(x, t))
dv

−
p

∑
j=1

∂αj/2

∂|x|αj/2

dGj

dv

(
∂αj/2u(x, t)

∂|x|αj/2

)
, (37)

Dun
m = δ̂

(2)
t un+ 1

2
m + γδtu

n+ 1
2

m + δuG(un+ 1
2

m )−
p

∑
j=1

δ
(αj/2)
x

[
δ

δ
(αj/2)
x u

Gj(u
n+ 1

2
m )

]
, (38)

for each (x, t) ∈ Ω and (m, n) ∈ J. In our following results, we observe the discrete nomenclature
un = (un

0 , un
1 , . . . , un

M) ∈ Vh, for each n ∈ IM.

Definition 11. If U = (Un)n∈IN
is a sequence in Vh, then we define the real number

|‖U‖|∞ = max{‖Un‖∞ : n ∈ IM}. (39)

Theorem 4 (Consistency). Let u ∈ C5,4
x,t (Ω) and suppose that G ∈ C2(R) and G1, G2, . . . , Gp ∈ C5(R).

Then, there exist constants C, C′ ∈ R+, which are independent of h and τ, such that

|‖Lu− Lu‖|∞ ≤ C(τ2 + h2) and |‖Hu− Hu‖|∞ ≤ C′(τ + h2). (40)

Proof. Using Taylor’s theorem, it is easy to check that there exist constants C1, C2, C3, C(j)
4 ∈ R+, which

are independent of h and τ, such that the following hold for each j ∈ Ip:
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∣∣∣∣∣∂
2u(xm, tn+ 1

2
)

∂t2 − δ̂
(2)
t un+ 1

2
m

∣∣∣∣∣ ≤ C1τ2, ∀(m, n) ∈ J, (41)∣∣∣∣∣∂u(xm, tn+ 1
2
)

∂t
− δtu

n+ 1
2

m

∣∣∣∣∣ ≤ C2τ2, ∀(m, n) ∈ J, (42)∣∣∣∣∣dG(u(xm, tn+ 1
2
))

dv
− δuG(un+ 1

2
m )

∣∣∣∣∣ ≤ C3τ2, ∀(m, n) ∈ J, (43)∣∣∣∣∣∣ ∂αj/2

∂|x|αj/2

dGj

dv

∂αj/2u(xm, tn+ 1
2
)

∂|x|αj/2

− δ
(αj/2)
x

[
δ

δ
(αj/2)
x u

Gj(u
n+ 1

2
m )

]∣∣∣∣∣∣ ≤ C(j)
4 (τ2 + h2), ∀(m, n) ∈ J. (44)

Let C4 = max{C(j)
4 : j ∈ Ip}. The first inequality of the conclusion follows then from the triangle

inequality, letting C = max{C1, γC2, C3, C4}. The second inequality is proved analogously.

We turn our attention now to the properties of stability and convergence of the finite-difference
scheme in Equation (30). To that end, the following well-known inequalities are needed in the sequel.
We use them in the sequel without mentioning them explicitly:

(a) If U, V ∈ Vh, then 2|〈U, V〉| ≤ ‖U‖2
2 + ‖V‖2

2.
(b) If n ∈ N and U1, U2, . . . , Un ∈ Vh, then

‖U1 + U2 + . . . + Un‖2
2 ≤ n(‖U1‖2

2 + ‖U2‖2
2 + . . . + ‖Un‖2

2). (45)

(c) If (Un)N
n=0 ⊆ Vh and n ∈ IN , then

‖Un‖2
2 ≤ 2‖U0‖2

2 + 2Tτ
n−1

∑
k=0
‖δtUk‖2

2, ∀n ∈ IN . (46)

The following auxiliary lemma has been taken from the literature. In the following, we let
ΦU = (φU , ψU , χU), where φU , ψU , χU : B→ R are functions and U = V, W.

Lemma 4 (Macías-Díaz [36]). Let G ∈ C2(R), and assume that (Rn+ 1
2 )N−1

n=0 is a sequence in Vh. Moreover,
suppose that (Vn)N

n=0 and (Wn)N
n=0 are two solutions of Equation (30) corresponding to ΦV and ΦW ,

respectively. Let εn = Vn −Wn for each n ∈ IN , and define

ΛV,W Gn+ 1
2 = δV G(Vn+ 1

2 )− δW G(Wn+ 1
2 ), ∀n ∈ IN−1. (47)

Then, there exists a constant C′ ∈ R+ ∪ {0} which depends only on G, such that, for each k ∈ IN−1,

4τ
k

∑
n=1

∣∣∣〈Rn+ 1
2 −ΛV,W Gn+ 1

2 , δtε
n+ 1

2 〉
∣∣∣ ≤ 4τ

k

∑
n=0
‖Rn+ 1

2 ‖2
2 + C′‖ε0‖2

2 + C′τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2, (48)

4kτ2
k

∑
n=1
‖ΛV,W Gn+ 1

2 ‖2
2 ≤ C′T2‖ε0‖2

2 + C′T3τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2. (49)

Lemma 5. Suppose that Gj ∈ C2(R) for each j ∈ Ip, and suppose that (Vn)N
n=0 and (Wn)N

n=0 are solutions of
Equation (30) corresponding to ΦV and ΦW , respectively. Let εn = Vn −Wn for each n ∈ IN , and define

ΘV,W Gn+ 1
2

j = δ
(αj/2)
x

[
δ

δ
(αj/2)
x V

Gj(Vn+ 1
2 )

]
− δ

(αj/2)
x

[
δ

δ
(αj/2)
x W

Gj(Wn+ 1
2 )

]
, ∀n ∈ IN−1. (50)
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Then, there exists a constant C′′ ∈ R+ ∪ {0} that depends only on G, such that, for each k ∈ IN−1,

4τ
k

∑
n=1

p

∑
j=1

∣∣∣∣〈ΘV,W Gn+ 1
2

j , δtε
n+ 1

2 〉
∣∣∣∣ ≤ C′′‖ε0‖2

2 + C′′τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2, (51)

4pkτ2
k

∑
n=1

p

∑
j=1
‖ΘV,W Gn+ 1

2
j ‖2

2 ≤ C′′T2‖ε0‖2
2 + C′′T3τ

k

∑
n=0
‖δtε

n+ 1
2 ‖2

2. (52)

Proof. Let j ∈ Ip. In the following chain of inequalities, we use firstly the square-root properties
of fractional centered differences. Then, we employ Lemma 4 to show that there exists a constant
C′j ∈ R+ ∪ {0} that only depends on Gj, such that, for each k ∈ IN−1,

4τ
k

∑
n=1

∣∣∣∣〈ΘV,W Gn+ 1
2

j , δtε
n+ 1

2 〉
∣∣∣∣ = 4τ

k

∑
n=1

∣∣∣∣〈Λ
δ
(αj/2)
x V,δ

(αj/2)
x W

Gn+ 1
2

j , δtδ
(αj/2)
x εn+ 1

2

〉∣∣∣∣
≤ C′j‖δ

(αj/2)
x ε0‖2

2 + C′jτ
k

∑
n=0
‖δtδ

(αj/2)
x εn+ 1

2 ‖2
2 ≤ C′′j ‖ε0‖2

2 + C′′j τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2.

(53)

Here, C′′j = C′jg
(α)
h in view of Lemma 2. It is clear that C′′ = C′′1 + C′′2 + . . . + C′′p . The second

inequality of this result can be established in similar fashion from the second inequality of Lemma 4.

The following discrete version of Gronwall’s inequality is of utmost importance.

Lemma 6 (Pen-Yu [54]). Let (ωn)N
n=0 and (ρn)N

n=0 be finite sequences of nonnegative mesh functions,
and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k−1

∑
n=0

ωk, ∀k ∈ IN−1. (54)

Then, ωn ≤ ρneCnτ for each n ∈ IN .

Theorem 5 (Stability). Let G, G1, G2, . . . , Gp ∈ C2(R). Suppose that ΦV and ΦW are two sets of initial
conditions for Equation (30), and that (Vn)n∈IN

and (Wn)n∈IN
are the respective solutions. Let εn = Vn −Wn

for each n ∈ IN , and define the nonnegative constants

ωk = ‖δtε
k+ 1

2 ‖2
2, ∀k ∈ IN−1, (55)

ρ = C1(1 + T2)‖ε0‖2
2 + 2µt‖δtε

1
2 ‖2

2 + 4T2‖δ(2)t ε1‖2
2. (56)

Then, there is a constant C ∈ R+ ∪ {0} independent of τ, such that ωk ≤ ρeCT , for each k ∈ IN−1.

Proof. Notice that the sequences V = (Vn)n∈IN
and W = (Wn)n∈IN

satisfy the problem in
Equation (30) with U = V and U = W, respectively. Subtracting those problems, we obtain the
discrete system

δ̂
(2)
t εn+ 1

2 + γδtε
n+ 1

2 + ΛV,W Gn+ 1
2 −

p

∑
j=1

ΘV,W Gn+ 1
2

j = 0, ∀(m, n) ∈ J,

such that


ε0

m = φV(xm)− φW(xm), ∀m ∈ IM−1,
ε1

m = ψV(xm)− ψW(xm), ∀m ∈ IM−1,
ε2

m = χV(xm)− χW(xm), ∀m ∈ IM−1,
εn

0 = εn
M = 0, ∀n ∈ IN .

(57)
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Let k ∈ IN−2, and take the inner product of δtε
n+ 1

2 with the vector difference equation of
Equation (57) corresponding to the time tn+ 1

2
. To that end, we apply Identities (a) and (b) of Lemma 3

and rearrange terms. As a consequence, we obtain the expression

1
2

δtµt‖δtε
n− 1

2 ‖2
2 =

τ2

4
δt‖δ(2)t εn‖2

2 −
〈

ΛV,W Gn+ 1
2 −

p

∑
j=1

ΘV,W Gn+ 1
2

j , δtε
n+ 1

2

〉
− γ‖δtε

n+ 1
2 ‖2

2. (58)

Take now the sum on both sides of this equation over all indexes n ∈ Ik. Use the formula for
telescoping sums to simplify algebraically, multiply then by 4τ and add the term 2µt‖δtε

1
2 ‖2

2 on both
sides of the identity. Use then Lemmas 4 and 5 to obtain

‖δtε
k+ 3

2 ‖2
2 ≤ 2µt‖δtε

k+ 1
2 ‖2

2 ≤ 2µt‖δtε
1
2 ‖2

2 + τ2‖δ(2)t εk+1‖2
2 + 4τ

k

∑
n=1

∣∣∣〈ΛV,W Gn+ 1
2 , δtε

n+ 1
2 〉
∣∣∣

+ 4τ
k

∑
n=1

p

∑
j=1

∣∣∣∣〈ΘV,W Gn+ 1
2

j , δtε
n+ 1

2 〉
∣∣∣∣

≤ 2µt‖δtε
1
2 ‖2

2 + τ2‖δ(2)t εk+1‖2
2 + C1‖ε0‖2

2 + C1τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2, ∀k ∈ IN−2.

(59)

Here, we let C1 = C′ + C′′, where C′ and C′′ are the constants in Lemmas 4 and 5, respectively.
Now, multiply the nth difference equation of Equation (57) by (−1)n−1 and take the sum for all n ∈ Ik.
Using then telescoping sums, regrouping and inductions, it is easy to notice that

(−1)k−1δ
(2)
t εk+1 + δ

(2)
t ε1 =

k

∑
n=1

(−1)n

[
γδtε

n+ 1
2 + ΛV,W Gn+ 1

2 −
p

∑
j=1

ΘV,W Gn+ 1
2

j

]
, (60)

for each ∀k ∈ IN−2. Solve for δ
(2)
t εk+1 and calculate the Euclidean norm of this term. After rearranging

terms, simplifying algebraically and using the second inequalities of Lemmas 4 and 5, we obtain

τ2‖δ(2)t εk+1‖2
2 ≤ 4τ2‖δ(2)t ε1‖2

2 + 4γ2kτ2
k

∑
n=1
‖δtε

n+ 1
2 ‖2

2 + 4kτ2
k

∑
n=1
‖ΛV,W Gn+ 1

2 ‖2
2

+ 4kpτ2
k

∑
n=1

p

∑
j=1
‖ΘV,W Gn+ 1

2
j ‖2

2

≤ 4τ2‖δ(2)t ε1‖2
2 + 4γ2kτ2

k

∑
n=1
‖δtε

n+ 1
2 ‖2

2 + C1T2‖ε0‖2
2 + C1T3τ

k

∑
n=0
‖δtε

n+ 1
2 ‖2

2,

(61)

for each k ∈ IN−2. Combining Equations (59) and (61), and using the notation of this theorem,
it follows that

ωk+1 ≤ ρ + (C1 + C1T3 + 4γ2T)
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2, ∀k ∈ IN−2. (62)

The conclusion follows now from Lemma 6, letting C = C1 + C1T3 + 4γ2T.

Theorem 6 (Convergence). Let u ∈ C5,4
x,t (Ω) be the exact solution of problem in Equation (6), and suppose

that G ∈ C(R) and G1, G2, . . . , Gp ∈ C5(R). If Equation (30) has exact initial conditions, then the solution of
Equations (30) in the L2-norm has order of convergence O(τ2 + h2).
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Proof. The proof of this result is similar to that of Theorem 5. For that reason, we only provide an
abridged argument. Throughout, let εn = un −Un for each n ∈ IN . Notice that the sequence (εn)n∈IN
satisfies the discrete problem

δ̂
(2)
t εn+ 1

2 + γδtε
n+ 1

2 + Λu,UGn+ 1
2 −

p

∑
j=1

Θu,UGn+ 1
2

j = Rn+ 1
2

m , ∀(m, n) ∈ J,

such that

{
ε0

m = ε1
m = ε2

m = 0, ∀m ∈ IM−1,
εn

0 = εn
M = 0, ∀n ∈ IN ,

(63)

where Rn+ 1
2

m is the local truncation error at the point (xm, tn+ 1
2
). In light of Theorem 4, it follows that

there exists a constant C0 which is independent of τ, such that |‖R‖|∞ ≤ C0(τ
2 + h2). Take the inner

product of δtε
n+ 1

2 with the nth vector equation of Equation (63), and then sum overall n ∈ Ik, for some
k ∈ IN−2. Rearrange terms and use the first inequalities of Lemmas 4 and 5 to obtain that

‖δtε
k+ 3

2 ‖2
2 ≤ 2µt‖δtε

1
2 ‖2

2 + τ2‖δ(2)t εk+1‖2
2 + 4τ

k

∑
n=1

∣∣∣〈Rn+ 1
2 −ΛV,W Gn+ 1

2 , δtε
n+ 1

2 〉
∣∣∣

+ 4τ
k

∑
n=1

p

∑
j=1

∣∣∣∣〈ΘV,W Gn+ 1
2

j , δtε
n+ 1

2 〉
∣∣∣∣

≤ 2µt‖δtε
1
2 ‖2

2 + τ2‖δ(2)t εk+1‖2
2 + 4τ

k

∑
n=0
‖Rn+ 1

2 ‖2
2 + C1‖ε0‖2

2 + C1τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2,

(64)

for each k ∈ IN−2. As in the proof of Theorem 5, we agree that C1 = C′ + C′′, where C′ and C′′ are the
constants in Lemmas 4 and 5, respectively. On the other hand, departing from the difference equation
of Equation (63), using mathematical induction and performing some algebraic simplifications lead to
the following identity, valid for each ∀k ∈ IN−2:

δ
(2)
t εk+1 = (−1)kδ

(2)
t ε1 −

k

∑
n=1

(−1)n+k

[
γδtε

n+ 1
2 + ΛV,W Gn+ 1

2 −
p

∑
j=1

ΘV,W Gn+ 1
2

j + Rn+ 1
2

]
. (65)

As a consequence, we notice that

τ2‖δ(2)t εk+1‖2
2 ≤ 5τ2‖δ(2)t ε1‖2

2 + 5γ2kτ2
k

∑
n=1
‖δtε

n+ 1
2 ‖2

2 + 5kτ2
k

∑
n=1
‖ΛV,W Gn+ 1

2 ‖2
2

+ 5kpτ2
k

∑
n=1

p

∑
j=1
‖ΘV,W Gn+ 1

2
j ‖2

2 + 5kτ2
k

∑
n=1
‖Rn+ 1

2 ‖2
2

≤ 5T2‖δ(2)t ε1‖2
2 + 5γ2Tτ

k

∑
n=1
‖δtε

n+ 1
2 ‖2

2 + C′1T2‖ε0‖2
2

+ C′1T3τ
k

∑
n=0
‖δtε

n+ 1
2 ‖2

2 + 5Tτ
k

∑
n=1
‖Rn+ 1

2 ‖2
2, ∀k ∈ IN−2.

(66)

Here, C′1 = 5
4 C1. Substitute now Equation (66) into Equation (64) and simplify. It is easy to check

then that

ωk+1 ≤ ρk+1 + C2τ
k

∑
n=0

ωk, ∀k ∈ IN−2, (67)
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where C2 = C1 + C′1T3 + 5γ2T, and

ωk = ‖δtε
k+ 1

2 ‖2
2, ∀k ∈ IN−1, (68)

ρk = (C1 + C′1T2)‖ε0‖2
2 + 2µt‖δtε

1
2 ‖2

2 + 5T2‖δ(2)t ε1‖2
2 + (4 + 5T)τ

k

∑
n=0
‖Rn+ 1

2 ‖2
2. (69)

Lemma 6 shows now that ωk ≤ C3ρk for all k ∈ IN−1, where C3 = eC2T . However, recall that the
initial conditions of Equation (63) are zero. In particular, this means that the first three terms on the
right-hand side of Equation (69) are equal to zero, for all k ∈ IN−2. This and the consistency property
of the finite-difference scheme in Equation (30) imply that, for each k ∈ IN−1,

‖δtε
k+ 1

2 ‖2
2 = ωk ≤ C3ρk = 2C3(1 + 8T)τ

k−1

∑
n=0
‖Rn+ 1

2 ‖2
2 ≤ C2

4(τ
2 + h2)2. (70)

Here, C2
4 = 2C2

0C3T(4 + 5T). As a consequence, note that

1
τ
(‖εk+1‖2 − ‖εk‖2) ≤ ‖δtε

k+ 1
2 ‖2 ≤ C4(τ

2 + h2), ∀k ∈ IN−1. (71)

Telescoping sums and the fact that ε0 = 0, yield the inequality

‖εn‖2 ≤ ‖ε0‖2 + C4τn(τ2 + h2) ≤ C(τ2 + h2), ∀n ∈ IN , (72)

which is what we want to prove. Here, we just need to clarify that C = C4T.

5. Computer Simulations

The purpose of this section is to provide examples that illustrate the validity of Theorem 3. Various
different scenarios are considered to that end.

Example 2. Let us consider the system in Equation (6) with p = 1 and Ω = (0, 125)× (0, 200). We let
G ≡ 0 and

G1(v) =
√

1 + v2, ∀v ∈ R. (73)

The resulting model describes a fractional version of a nonlinear vibration problem associated to an elastic
string [55]. It is worth pointing out that this problem has interesting applications to the propagation of sounds
and mechanical vibrations [56–58]. Fix the initial conditions as

φ(x) = ψ(x) = χ(x) = sin(2πx/125), ∀x ∈ (0, 125). (74)

Computationally, we use the model in Equation (30) with h = 1 and τ = 0.025, and agree that α = α1.
Under these circumstances, the left column of Figure 2 shows the approximate solutions of the problem for α = 2
(top row), α = 1.6 (middle row) and α = 1.2 (bottom row), using γ = 0. Meanwhile, the right column shows
the corresponding discrete energy densities. In turn, Figure 3 shows the dynamics of the total energy of the
system for various values of α. These graphs confirm that the energy is conserved in the absence of damping.
Figure 4 shows graphs of the total energy of the system for various values of α and γ. The results show that the
total energy dissipates when damping is present. These remarks are in agreement with Theorem 3.

It is worth pointing out that our choice of the parameter τ in our previous example was obeying
the need to provide a good approximation to the solution. Indeed, the value of τ is much smaller
than that of h, but this choice was actually arbitrary. After all, the conditions to guarantee the stability
and the convergence of the finite-difference scheme in Equation (30) are independent of the ratio of
those parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Graphs of the approximate solution (a,c,e) and respective energy densities (b,d,f) of the
system in Equation (6) versus t and x. The fractional partial differential equation considers γ = 0
and Ω = (0, 125)× (0, 500). The initial data were defined by the functions φ(x) = ψ(x) = χ(x) =

sin(2πx/125), for each x ∈ (0, 125). Computationally, we fixed h = 1 and τ = 0.025. We employed
α = α1, with α = 2 (a,b), α = 1.6 (c,d) and α = 1.2 (e,f). The remaining parameters are p = 1, G ≡ 0,
and G1 is given by Equation (73).
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(a) α = 2 (b) α = 1.8

(c) α = 1.6 (d) α = 1.4

(e) α = 1.2 (f) α = 1

Figure 3. Graphs of the dynamics of the total energy of the system in Equation (6) for various values
of α = α1. The fractional partial differential equation considers γ = 0 and Ω = (0, 125)× (0, 500).
The initial data were defined by the functions φ(x) = ψ(x) = χ(x) = sin(2πx/125), for each x ∈
(0, 125). Computationally, we fixed h = 1 and τ = 0.025. The remaining parameters are p = 1, G ≡ 0,
and G1 is given by Equation (73).
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(a) α = 2 (b) α = 1.8

(c) α = 1.6 (d) α = 1.4

(e) α = 1.2 (f) α = 1

Figure 4. Graphs of the dynamics of the total energy of the system in Equation (6) for various values
of α = α1. The fractional partial differential equation considers Ω = (0, 125)× (0, 500), and different
values of γ. The initial data were defined by the functions φ(x) = ψ(x) = χ(x) = sin(2πx/125),
for each x ∈ (0, 125). Computationally, we fixed h = 1 and τ = 0.025. The remaining parameters are
p = 1, G ≡ 0, and G1 is given by Equation (73).

Example 3. Let Ω = (0, 128)× (0, 500) and ε = 0.75, and consider the system in Equation (6) with p = 1,
G ≡ 0 and

G1(v) =
1
2

v2 +
ε

4
v4, ∀v ∈ R. (75)

We approximate the exact solutions using Equation (30) with h = 1 and τ = 0.025. As initial conditions,
we set φ(x) = v(x, 0), ψ(x) = v(x, τ) and χ(x) = v(x, 2τ), for each x ∈ (0, 128). The function v is
the algebraic sum of the well-known kink and anti-kink solutions of the Toda lattice [59], and it is given by
the formula

v(x, t) = A ln
{(

1 + exp[2(κ(x− 97) + t sinh κ)]

1 + exp[2(κ(x− 96) + t sinh κ)]

)(
1 + exp[2(κ(x− 32) + t sinh κ)]

1 + exp[2(κ(x− 33) + t sinh κ)]

)}
, (76)
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for each (x, t) ∈ R2. In our simulations, we let A = 5, κ = 0.1 and α = α1. Figure 5 shows the approximate
solutions of the corresponding problem in Equation (6) for α = 2 (top row), α = 1.6 (middle row) and α = 1.2
(bottom row), using γ = 0. Note that the dynamics of the solutions and the energy density is similar to that
reported in [50]. In turn, Figure 6 shows the dynamics of the total energy of the system, for various values of α

and γ. The graphs confirm again that the energy is conserved in the absence of damping, and it is dissipated
when damping is present.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Graphs of the approximate solution (a,c,e) and respective energy densities (b,d,f) of the
system in Equation (6) versus t and x. The parameters employed are p = 1, G ≡ 0, and G1 is given
by Equation (75). We used ε = 0.75, γ = 0 and Ω = (0, 128)× (0, 500). The initial data were defined
by the functions φ(x) = v(x, 0), ψ(x) = v(x, τ) and χ(x) = v(x, 2τ), for each x ∈ (0, 32). Here, v is
the function defined by Equation (76). Computationally, we fixed h = 1 and τ = 0.025. We employed
α = α1 with α = 2 (a,b), α = 1.6 (c,d) and α = 1.2 (e,f).
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(a) α = 1.8 (b) α = 1.6
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(c) α = 1.4 (d) α = 1.2
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Figure 6. Graphs of the dynamics of the total energy of the system in Equation (6) for α = α1 with (a)
α = 1.8, (b) α = 1.6, (c) α = 1.4 and (d) α = 1.2. The parameters employed are p = 1, G ≡ 0, and G1 is
given by Equation (75). We used ε = 0.75 and Ω = (0, 128)× (0, 500). The initial data were defined
by the functions φ(x) = v(x, 0), ψ(x) = v(x, τ) and χ(x) = v(x, 2τ), for each x ∈ (0, 32). Here, v is
the function defined by Equation (76). Computationally, we fixed h = 1 and τ = 0.025. In each case,
we used the values of γ shown within the legend at the bottom of each graph.

The next example confirms the convergence rates derived in Theorem 6. For this purpose,
we introduce the maximum-norm error between the exact solution of the continuous problem
in Equation (6) at the time T, and the corresponding numerical approximation obtained through
Equation (30), which is given by

ετ,h = max{|uK
n − wK

n | : n ∈ IN}. (77)

We also define the following standard rates:

ρτ = log2

(
ε2τ,h

ετ,h

)
, ρh = log2

(
ετ,2h

ετ,h

)
. (78)

Example 4. Let us consider the same problem investigated in Example 3, with α = α1 = 1.5. In particular,
we employ the same space-time domain with the same model parameters, the same functions G and G1, as well as
the same initial data on (0, 128). The exact solution for this problem at the time T = 500 is not known in exact
form, but we estimate it using relatively small values of the computational parameters. To that effect, we set
h = 4/28 and τ = 0.1/26. Under these circumstances, Table 1 shows the maximum-norm errors for various
values of τ, keeping the parameter h constant. Additionally, the standard rates in time are provided in each case.
The results show that the method has second order of convergence in time, in agreement with the conclusion
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of Theorem 6. In turn, Table 2 shows the analysis of spatial convergence of the numerical model. The results
confirm the quadratic rate of convergence of Equation (30), in agreement with Theorem 6 again.

Table 1. Table of absolute errors in the maximum norm and temporal rates of convergence for various
values of the parameters τ and h. The experiment corresponds to that described in Example 4.

h = 1 h = 0.5 h = 0.25

τ εt,h ρτ εt,h ρτ εt,h ρτ

0.1/20 2.6805× 10−2 − 6.7596× 10−3 − 1.6854× 10−3 −
0.1/21 6.4470× 10−3 2.0558 1.6881× 10−3 2.0015 4.2704× 10−4 1.9807
0.1/22 1.5595× 10−3 2.0475 4.1406× 10−4 2.0275 1.0711× 10−4 1.9952
0.1/23 3.8014× 10−4 2.0365 9.8730× 10−5 2.0683 2.6528× 10−5 2.0136
0.1/24 9.1697× 10−5 2.0516 2.3789× 10−5 2.0532 6.4825× 10−6 2.0329

Table 2. Table of absolute errors in the maximum norm and spatial rates of convergence for various
values of the parameters τ and h. The experiment corresponds to that described in Example 4.

τ = 5 × 10−5 τ = 2.5 × 10−5 τ = 1.25 × 10−5

h εt,h ρh εt,h ρh εt,h ρh

4/20 7.1887× 10−3 − 1.8178× 10−3 − 4.5327× 10−4 −
4/21 1.8250× 10−3 1.9778 5.0045× 10−4 1.8609 1.2482× 10−4 1.8605
4/22 4.5941× 10−4 1.9900 1.2724× 10−4 1.9756 3.1762× 10−5 1.9745
4/23 1.0807× 10−4 2.0877 3.2302× 10−5 1.9779 8.0961× 10−6 1.9720
4/24 2.0730× 10−5 2.3822 7.8347× 10−6 2.0437 1.9029× 10−6 2.0890

The following examples provide hard numerical evidence on the quadratic order of convergence
of the numerical model in Equation (30), as well as on its stability property.

Example 5. The purpose of the present example is to provide more solid evidence on the temporal quadratic
order of convergence of the scheme in Equation (30). To that end, let p = 1 and Ω = (0, 1)× (0, 1000). Convey
that G ≡ 0, and let G1 be given as in Example 2. As initial data, we set

φ(x) = ψ(x) = χ(x) = sin(2πx), ∀x ∈ (0, 1). (79)

For illustrative purposes, let us set α1 = 1.6 and γ = 0. Under these conditions, Table 3 provides a
temporal analysis of convergence of the finite-difference scheme in Equation (30), considering various values of τ

and h. The results of our simulations show that the numerical model exhibits a quadratic order of convergence,
even in the case when the parameters h and τ are approximately equal. This result is in full agreement with
Theorem 6.

Table 3. Table of absolute errors in the maximum norm and temporal rates of convergence for various
values of the parameters τ and h. The experiment corresponds to that described in Example 5.

h = 1/24 h = 1/25 h = 1/26

τ εt,h ρτ εt,h ρτ εt,h ρτ

1/23 2.7368× 10−4 − 6.6597× 10−5 − 1.6593× 10−5 −
1/24 6.9872× 10−5 1.9697 1.6889× 10−5 1.9793 4.2431× 10−6 1.9674
1/25 1.7664× 10−5 1.9839 4.1418× 10−6 2.0278 1.0723× 10−6 1.9844
1/26 4.4770× 10−6 1.9802 1.0341× 10−6 2.0018 2.6944× 10−7 1.9927
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Example 6. Recall that one way to establish the stability of variational schemes is to show that the energy of
the undamped system remains constant for long periods of time, using different values of the computational
parameters. In the present example, we confirm this feature of our numerical model. To that end, we consider the
same problem investigated in Example 3. That is, let α = 1.5, γ = 0, B = (0, 128) and ε = 0.75, and consider
the model in Equation (6) with p = 1, G ≡ 0 and G1 given by Equation (75). Define φ(x) = v(x, 0),
ψ(x) = v(x, τ) and χ(x) = v(x, 2τ), for each x ∈ (0, 128), where v is provided by Equation (76). Throughout,
we set T = 1× 106, and fix h = 1. Under these circumstances, Figure 7 provides graphs of the dynamics of the
total energy of the system versus t, for various values of τ. The range of the scale of the y-axis is the interval
[0.17103, 0.17108]. The result confirm that the total energy is approximately constant, as predicted by Theorem 3.
These simulations provide support on the fact that the finite-difference scheme in Equation (30) is stable, even for
values of τ which are larger than 1, and for all α ∈ (1, 2]. Obviously, this is in agreement with Theorem 5.

Before closing this section, it is worth pointing out that we carried out more numerical experiments.
We do not include them in this paper to avoid redundancy, but they confirm the validity of the
theoretical results obtained in this work.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Graphs of the total energy of the system in Equation (6) versus t. The parameters employed
are p = 1, G ≡ 0, and G1 is given by Equation (75). We used ε = 0.75, α = 1.5, γ = 0, B = (0, 128)
and T = 1× 106. The initial data were defined by the functions φ(x) = v(x, 0), ψ(x) = v(x, τ) and
χ(x) = v(x, 2τ), for each x ∈ (0, 32). Here, v is the function defined by Equation (76). Computationally,
we fixed h = 1, and we employed: (a) τ = 4; (b) τ = 2; (c) τ = 1; (d) τ = 0.5; (e) τ = 0.25; and (f)
τ = 0.125. The range of the scale of the y-axis is the interval [0.17103, 0.17108].

6. Conclusions

In this work, we consider a general wave equation that encompasses various mathematical models
from the physical sciences, including the sine-Gordon, the Klein–Gordon and the double sine-Gordon
equations as well as continuous forms of the classical Fermi–Pasta–Ulam–Tsingou chains. The model
under investigation includes the presence of constant damping, a nonlinear reaction term and general
functions that depend on anomalous diffusion forms of the solution. In a first step, we show that
the undamped form of the system has a variational structure. We propose functions for the local
and total energy densities, and we show that the total energy is conserved or dissipated, depending
on whether damping is absent or present, respectively. Motivated by these facts, we propose a
finite-difference discretization of the continuous model, along with discrete forms of the local and
total energy functionals. We show rigorously that the proposed discrete model is capable of reflecting
the same energy properties of the continuous model. Moreover, we prove mathematically that the
numerical model yields consistent approximations to the exact solutions of the continuous system,
with quadratic order of consistency in both space and time.

To establish the properties of stability and convergence, we use various propositions. To start
with, a discrete form of Gronwall’s inequality available in the literature is employed as the cornerstone
of the proofs. Some other technical results are also recalled. However, the proofs of stability and
convergence employ a novel technical proposition in order to bound appropriately the functions which
depend on anomalous diffusion. As a result, we show that the proposed finite-difference scheme
is stable, and that it converges to the exact solution of the continuous model with quadratic order
of convergence in both space and time. To prove those results, suitable regularity conditions on the
functions involved in the model are needed. For illustration purposes, we provide some computer
simulations, which exhibited the capability of the scheme to conserve the energy when damping is
absent and dissipate it when damping is present. The computer simulations were obtained using a
computer implementation of our finite-difference scheme in Fortran 95. It is worth pointing out that
the results of this work could be used in various potential applications, such as the investigation of
nonlinear phenomena in generalized fractional systems [53,60], or even the transmission of signals in
fractional forms of nonlinear media [61–63].

We would like to point out that the present work improves greatly various individual efforts
by this author. As mentioned in the Introduction, some methodologies have been proposed
already to solve fractional wave equations using fractional-order centered differences [35–37].
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From the mathematical point of view, those previous efforts considered much simpler forms of
the mathematical model in Equation (6). More precisely, in those articles, this author considered the
initial-boundary-value problem

∂2u
∂t2 (x, t)− ∂αu

∂|x|α (x, t) + γ
∂u
∂t

(x, t) + G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that


u(x, 0) = φ(x), ∀x ∈ (a, b),
∂u
∂t

(x, 0) = ψ(x), ∀x ∈ (a, b),

u(a, t) = u(b, t) = 0, ∀t ∈ (0, T),

(80)

Notice that the model in the present manuscript is both a dimensional and variational
generalization of the problem in Equation (80). Indeed, it is easy to check that the mathematical
problem in Equation (80) does not extend the Fermi–Pasta–Ulam–Tsingou problem to the fractional
scenario. In that sense, the mathematical model in Equation (6) is a nontrivial extension of those
investigated in [35–37].

On the other hand, from the numerical point of view, the present methodology presents the
advantage of being relatively simple to implement. When compared to the approaches described in
our previous papers, the present method is an explicit technique, which has the advantage of being
numerically efficient under relatively light conditions. The obvious disadvantage here is the fact
that the methodology is a four-step technique, and this fact implies the knowledge of the numerical
solution at the first three time-steps. However, on the other hand, this disadvantage is compensated by
the fact that the scheme is an energy-preserving method, and that the numerical efficiency analysis
results in a relatively straightforward process. Moreover, the conditions under which the scheme is
stable and convergent are little demanding in terms of the computational parameters. Additionally,
the computer implementation of the scheme is also relatively straightforward, and it can be employed
to investigate a wide range of problems in the physical sciences.
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