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Abstract: In this work, we numerically investigate a three-dimensional nonlinear reaction-diffusion
susceptible-infected-recovered hepatitis B epidemic model. To that end, the stability and bifurcation
analyses of the mathematical model are rigorously discussed using the Routh–Hurwitz condition.
Numerically, an efficient structure-preserving nonstandard finite-difference time-splitting method is
proposed to approximate the solutions of the hepatitis B model. The dynamical consistency of the
splitting method is verified mathematically and graphically. Moreover, we perform a mathematical
study of the stability of the proposed scheme. The properties of consistency, stability and convergence of
our technique are thoroughly analyzed in this work. Some comparisons are provided against existing
standard techniques in order to validate the efficacy of our scheme. Our computational results show a
superior performance of the present approach when compared against existing methods available in
the literature.

Keywords: splitting methods; hepatitis B epidemic dynamics; stability and bifurcation analyses;
nonstandard finite-difference method

MSC: 65M06; 65M12; 35K15; 35K55; 35K57

1. Introduction

Hepatitis B is an infectious disease that is a global concern and a major cause of death worldwide [1].
This disease is disseminated by means of the hepatitis B virus (HBV) through various forms of transmission.
Indeed, a susceptible person may be infected through blood transfusion, exchange of saliva, use of
contaminated razors and needles, sexual contact with an infected person, and even through acupuncture
and piercing instruments, among other forms of transmission [2]. Moreover, it is well known that infected
pregnant women may also transmit the HBV to the fetus [3]. To this day, many studies have been conducted
in order to understand the mechanisms of transmission of hepatitis B. As a consequence of those studies,
nowadays we count with prevention measures, diagnosis tests, protocols to treat the chronic hepatitis B [4],
and even some regional studies have proposed more efficient management measures to treat hepatitis
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B based on geographical and social factors [5,6]. At the same time, there are rigorous reports which
investigate the epidemiological problem from a world-wide perspective [7].

It is important to recall that hepatitis B has two phases. The first phase of the disease is called
acute hepatitis B infection [8], and it spans for approximately the first six months after a person is infected.
In general, infected individuals reflect no symptoms during this phase, and the symptoms can not be
easily diagnosed. Most of the infected individuals (about 90 percent) have a strong immune system which
fights off the infection during the first six months of the acute phase [9]. Except in some cases in which
individuals have some immunological deficiency, the HBV is completely controlled and the liver heals
until it becomes healthy [10]. It is well know that those subjects become immune to HBV for the rest of
their life. Unfortunately, those individuals who do not have a sufficiently strong immune system cannot
heal completely during the rest of their lives. In fact, this persistent state of HBV is the second phase of
hepatitis B, and it is called the chronic phase [11]. At the chronic stage the liver is swollen and presents
cirrhosis. Ultimately, HBV is a serious potential cause of hepatocellular carcinoma and other types of
cancer [12].

Mathematically, there are various reports on the modeling of the propagation of diseases [13–16].
In addition to reports on the modeling of the transmission of hepatitis B [10,17], there are also studies on
the co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis [18],
the mathematical modeling of hepatitis C treatment for injecting drug users [19] and the epidemiological
modeling of the propagation of cholera with optimal control treatment [20]. Other mathematical models
have been proposed also to model and control the dynamics of propagation of vector-borne diseases
such as malaria [21], zika [22] and dengue [23], and there are even some recent reports which investigate
thoroughly the influence of climate, environmental and socio-economic change on the dynamics of
transmission of vector-borne diseases [24]. In those reports, the models employed to describe the dynamics
of propagation of illnesses consist of systems of ordinary or partial differential equations [25] and, in all of
them, the incidence of the disease plays a decisive role in its dynamics. In fact, the transmission of these
illnesses can be studied comprehensively by introducing suitable incidence rate in the quantitative models.

In this manuscript, we will employ saturated incidence rates on both the susceptible and the
infected populations. It is worth noting that this approach has been successfully used by some authors
in the recent literature [26–28]. More concretely, the present work is motivated by the following
susceptible-infected-recovered model for hepatitis B with saturated incidence rates:

dX1(t)
dt

= λ− αX1(t)X2(t)
1 + γX2(t)

− (µ0 + ν)X1(t), ∀t > 0,

dX2(t)
dt

=
αX1(t)X2(t)
1 + γX2(t)

− (µ0 + µ1 + β)X2(t), ∀t > 0,

dX3(t)
dt

= βX2(t) + νX1(t)− µ0X3(t), ∀t > 0.

(1)

In this model, X1, X2, X3 : R+ ∪ {0} → R are sufficiently smooth functions that represent the total of
susceptible, infected and recovered individuals, respectively. This model was proposed recently in [29] as
a mathematical model of transmission of hepatitis B, and its inhibition effects are the most notable physical
features. Here, α and λ represent, respectively, the transmission and birth rates. Meanwhile, µ0 and µ1

are the natural and disease-induced death rates, respectively. The recovery rate is given by β, while the
vaccination and saturation rates are ν and γ, respectively.

The present model has the novelty that it considers saturated incidence rates, and it has various
biological and mathematical properties. In particular, it is worth pointing out that this model has a positive
invariance, positive solutions exist and considers different epidemiological states. More precisely, disease
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free and endemic states exist for this model. The system (1) has a basic reproductive number, which is
calculated using a matrix approach. Linear stability theory can be easily applied to discuss the local
dynamics and obtain the stability conditions in terms of the basic reproductive number. Central manifold
theory shows that the proposed model exhibits the backward bifurcation phenomenon. In turn, the global
stability of the model can be discussed using Lypanov function theory. Moreover, the local sensitivity
analysis was discussed in [29] along with the development of an optimal control mechanism. Furthermore,
this model has been validated for large-scale scenarios, and the feasibility of its optimization has been
thoroughly established.

Observe that we may assume that the system (1) takes on the reduced form
dX1(t)

dt
= λ− αX1(t)X2(t)

1 + γX2(t)
− (µ0 + ν)X1(t), ∀t > 0,

dX2(t)
dt

=
αX1(t)X2(t)
1 + γX2(t)

− (µ0 + µ1 + β)X2(t), ∀t > 0.
(2)

Notice that this step is justified by the fact that the dynamics of X1 and X2 does not depend on X3,
indeed. Obviously, the system (2) represents the dynamics of a homogeneous population. A more realistic
approach would be to consider non-homogeneous populations in view that the disease may spread at
different rates in different directions. To that end, for the remainder of this work, we let p ∈ {1, 2, 3}
and suppose that B ⊆ Rp is a spatial domain. Throughout, let T ∈ R+ be a temporal period, and define
Ω = B× (0, T). Let X1, X2, X3 : Ω→ R and ρ1, ρ2 : B→ R be functions.

For the sake of concreteness, X1(x, t) denotes the density of individuals that are susceptible to HBV
at the point (x, t) ∈ Ω. Meanwhile, X2(x, t) and X3(x, t) denote the respective densities of infected and
recovered individuals, respectively. In this work, we will study the system

∂X1(x, t)
∂t

= d1∆X1(x, t) + λ− αX1(x, t)X2(x, t)
1 + γX2(x, t)

− (µ0 + ν)X1(x, t), ∀(x, t) ∈ Ω,

∂X2(x, t)
∂t

= d2∆X2(x, t) +
αX1(x, t)X2(x, t)

1 + γX2(x, t)
− (µ0 + µ1 + β)X2(x, t), ∀(x, t) ∈ Ω.

(3)

Here, ∆ represents the usual Laplacian in the spatial coordinates and, in the particular case of the spatially
three-dimensional scenario, x = (x, y, z) ∈ Ω. Moreover, we will consider homogeneous Neumann
boundary data along with the initial conditions

X1(x, 0) = ρ1(x) ≥ 0, ∀x ∈ B, (4)

X2(x, 0) = ρ2(x) ≥ 0, ∀x ∈ B. (5)

We must point out that the variables of interest of (3) are actually population densities. In general,
the positivity of solutions is an important feature in the investigation of systems where the unknown
quantities are measured in absolute scales [30,31]. In the recent years, various numerical schemes
which preserve the positivity have been proposed for the numerical study of various physical problems.
As examples, some positivity-preserving finite-difference methods have been proposed to study some
weakly coupled systems of partial differential equations describing the dynamics of interaction between a
colony of bacteria and a substrate of nutrients [32], reaction-diffusion equations [33], the three-dimensional
Brusselator reaction diffusion system [34], Fisher’s equation [35], physical model with transport memory
and nonlinear damping [36], damped nonlinear wave equations [37] and generalized Burgers–Huxley-type
systems [30]. The present manuscript is devoted to designing and analyzing a positivity-preserving
finite-difference scheme to solve numerically the system (3).
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This work is sectioned as follows. The steady states and reproductive value of the model under
investigation are discussed in Section 2. In the same section, we also perform a linear stability analysis
of the model (3), and investigate the bifurcation value of the parameter α. Section 3 is devoted to
introducing the numerical schemes to solve the diffusive hepatitis B model. We will provide the
necessary discrete nomenclature, and we will introduce therein a backward Euler splitting technique
and a nonstandard finite-difference operator splitting method [38,39]. It is worth pointing out that the
design of the nonstandard technique will observe literally the set of rules proposed by R. E. Mickens [40].
The theoretical analysis of the schemes will be performed in Section 4. We will show that the nonstandard
scheme is capable of preserving the positivity of the approximations, and that it is an accurate, stable and
convergent technique. Some computational results are shown in Section 5. The simulations will shed light
on the validity of the theoretical results obtained in this work.

2. Qualitative Analysis

This section is devoted to establishing qualitative properties of the system (3). Firstly, notice that there
are two equilibrium points of the system. Those points will be referred to as the disease-free equilibrium
point (DFEP) and the endemic equilibrium point (EEP), and they are given respectively by

ε0 =

(
λ

(µ0 + ν)
, 0
)

and ε∗ = (X1∗, X2∗), (6)

where

X1∗ =
1
α
(µ0 + µ1 + β)(1 + γX2∗), (7)

X2∗ =
(µ0 + ν)

(α + γ(µ0 + ν))
(B0 − 1). (8)

Note that the reproductive number of the system (3) when d1 = d2 = 0 is given by

B0 =
αλ

(µ0 + ν)(µ0 + µ1 + β)
. (9)

2.1. Stability

In order to carry out the stability analysis of the system (3), we linearize it around the point (X1∗, X2∗)

considering small perturbations on X1(x, t) and X2(x, t). More precisely, we consider
∂X1(x, t)

∂t
= v11X1(x, t) + v12X2(x, t) + d1∆X1(x, t), ∀(x, t) ∈ Ω,

∂X2(x, t)
∂t

= v21X1(x, t) + v22X2(x, t) + d2∆X2(x, t), ∀(x, t) ∈ Ω.
(10)

Departing now from the system of Equation (10), we calculate the Fourier series solution. As a consequence,
the variational matrix V for that system is given by

V =

(
v11 − d1κ2

1 − d1κ2
2 − d1κ2

3 −Λ v12

v21 v22 − d2κ2
1 − d2κ2

2 − d2κ2
3 −Λ

)
. (11)

Here, κi represents the wave number for the node ni, for each i = 1, 2, 3. Concretely, for n1, n2, n3 ∈ Z,

κ1 = n1π/2, κ2 = n2π/2, κ3 = n3π/2. (12)
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Additionally, we define the set of constants

v11 = − αX2∗
1 + γX2∗

− (µ0 + ν),

v12 = − αX1∗
(1 + γX2∗)2 ,

v21 =
αX2∗

1 + γX2∗
,

v22 =
αX1∗

(1 + γX2∗)2 − (µ0 + µ1 + β).

(13)

Note that the characteristic equation of V is Λ2 + ϑ1Λ + ϑ2 = 0, where

ϑ1 = d1κ2
1 + d1κ2

2 + d2κ2
1 + d1κ2

3 + d2κ2
2 + d2κ2

3 − v22 − v11 (14)

and
ϑ2 = v11v22 − v12v21 − v11d2κ2

1 − v11d2κ2
2 − v11d2κ2

3 − v22d1κ2
1 − v22d1κ2

2

− v22d1κ2
3 + d1d2κ4

1 + d1d2κ4
2 + d1d2κ4

3 + 2d1d2κ2
1κ2

2 + 2d1d2κ2
1κ2

3 + 2d1d2κ2
2κ2

3.
(15)

In turn, the stability criterion discussed by the Routh–Hurwitz requires that ϑ1 > 0 and ϑ2 > 0.

2.2. Bifurcation Value

We discuss now the bifurcation value of α. To this end, we used the values of model parameters
presented in Table 1. Substituting all the values of parameters other than α into (13), we obtain

v11 = − (b1(b2α2 + b3α + b4))

(b5(b6α + b7))
, v12 = − (b8α + b9)

(b10(b11α + b12))
, (16)

v21 =
(b13α(b14α− b15))

(b16α + b17)
, v22 = − (b18(b19α− b20))

(b21(b22α + b23))
, (17)

where, 

b1 = 3.60705904× 1015, b2 = 2.35275951× 1034,

b3 = 4.23987968× 1033, b4 = b15 = b17 = b20 = 9.28882337× 1017,

b5 = 5.40431955× 1016, b6 = b11 = b22 = 2.93020542× 1034,

b7 = b12 = 3.09627445× 1017, b8 = 2.58753620× 1050,

b9 = 4.66296794× 1049, b10 = b21 = 2.25179981× 1015,

b13 = 1.80352952× 1016, b14 = b19 = 2.61208778× 1017,

b16 = 8.79061626× 1034,

b18 = 5.01997697× 1031, b23 = 3.09627445× 1017.

(18)

Table 1. Values of the model parameters used in [29].

λ γ ν β α µ0 µ1

0.232 0.9 0.2 4.12 7.9 0.000232 0.0000547
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On the other hand,

ϑ1 =
(a1α2 + a2α− a3)

(a4(a5α + a6))
= F1(α), (19)

where 
a1 = 1.08627743× 1052, a2 = 5.87440522× 1052,

a3 = 1.43246375× 1053, a4 = 6.91752902× 1018,

a5 = 2.93020542× 1034, a6 = 3.09627445× 1017.

(20)

Finally,

ϑ2 = − (−c1α2 + c2α + c3)

(c4(c5α + c6))
= F2(α), (21)

where 
c1 = 4.00766089× 1067, c2 = 1.32418810× 1068,

c3 = 2.61620849× 1067, c4 = 6.08472288× 1033,

c5 = 2.93020542× 1034, c6 = 3.09627445× 1017.

(22)

Notice that F2(α) = 0 gives the bifurcation value of α, which changes from stable to unstable the
nature of the EEP. This value is given by α = 3.4911307434. Thus, EEP is stable for any value of α greater
than or equal to 3.4911307434, and unstable for any value which is less than 3.4911307434.

3. Numerical Models

For the remainder of this work, we assume that B = (0, L)3 ⊆ R3, with L ∈ R+. LetM1,M2 ∈ N,
and divide Ω intoM3

1 ×M2 hypercubes, using a spatial step-size of length ∆x = (b− a)/M1 on each of
the three spatial edges, and a temporal step-size equal to ∆t = T/M2. More precisely, the grid points are
of the form (xm1 , ym2 , zm3) ∈ R3, with

xm1 = m1∆x, ym2 = m2∆x, zm3 = m3∆x, (23)

for each m1, m2, m3 = 0, 1, . . . ,M1. Meanwhile, we let tk = k∆t, for each k = 0, 1, . . . ,M2. Finally,
we use the symbol X1

k
m1,m2,m3

to represent any finite-difference approximations to the exact value of
X1(m1∆x, m2∆x, m3∆x, k∆t), and X2

k
m1,m2,m3

is the respective estimate of X2(m1∆x, m2∆x, m3∆x, k∆t).

3.1. Backward Euler Scheme

The Backward Euler splitting method will hinge on approximating the solution of a time-split form
of (3). More precisely, we will consider the following two four-step sets:

1
4

∂X1(x, t)
∂t

= λ− αX1(x, t)X2(x, t)
1 + γX2(x, t)

− (µ0 + ν)X1(x, t), ∀(x, t) ∈ Ω,

1
4

∂X1(x, t)
∂t

= d1
∂2X1(x, t)

∂x2 , ∀(x, t) ∈ Ω,

1
4

∂X1(x, t)
∂t

= d1
∂2X1(x, t)

∂y2 , ∀(x, t) ∈ Ω,

1
4

∂X1(x, t)
∂t

= d1
∂2X1(x, t)

∂z2 , ∀(x, t) ∈ Ω.

(24)
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and 

1
4

∂X2(x, t)
∂t

=
αX1(x, t)X2(x, t)

1 + γX2(x, t)
− (µ0 + µ1 + β)X2(x, t), ∀(x, t) ∈ Ω,

1
4

∂X2(x, t)
∂t

= d2
∂2X2(x, t)

∂x2 , ∀(x, t) ∈ Ω,

1
4

∂X2(x, t)
∂t

= d2
∂2X2(x, t)

∂y2 , ∀(x, t) ∈ Ω,

1
4

∂X2(x, t)
∂t

= d2
∂2X2(x, t)

∂z2 , ∀(x, t) ∈ Ω.

(25)

Let k = 0, 1, . . . ,M2 − 1. At the kth temporal step, the Backward Euler splitting approximation of the
susceptible component X1 at the first splitting step is given as

X1
k+ 1

4
m1,m2,m3 − X1

k
m1,m2,m3

∆t
= λ−

αX1
k
m1,m2,m3

X2
k
m1,m2,m3

1 + γX2
k
m1,m2,m3

− (µ0 + ν)X1
k
m1,m2,m3

(26)

After simplification, we readily reach that

X1
k+ 1

4
m1,m2,m3 = X1

k
m1,m2,m3

+ ∆tλ− ∆t
αX1

k
m1,m2,m3

X2
k
m1,m2,m3

1 + γX2
k
m1,m2,m3

− ∆t(µ0 + ν)X1
k
m1,m2,m3

. (27)

In similar fashion, the formulas for the second, third and fourth steps are, respectively,

−ζ1X1
k+ 1

2
m1−1,m2,m3

+ (1 + 2ζ1)X1
k+ 1

2
m1,m2,m3 − ζ1X1

k+ 1
2

m1+1,m2,m3
= X1

k+ 1
4

m1,m2,m3 , (28)

−ζ1X1
k+ 3

4
m1,m2−1,m3

+ (1 + 2ζ1)X1
k+ 3

4
m1,m2,m3 − ζ1X1

k+ 3
4

m1,m2+1,m3
= X1

k+ 1
2

m1,m2,m3 , (29)

−ζ1X1
k+1
m1,m2,m3−1 + (1 + 2ζ1)X1

k+1
m1,m2,m3

− ζ1X1
k+1
m1,m2,m3+1 = X1

k+ 3
4

m1,m2,m3 . (30)

In the formulas above, we adopt the conventions tk+1/4 = tk + (1/4)∆t, tk+1/2 = tk + (1/2)∆t and
tk+3/4 = tk + (3/4)∆t. Let now ζ1 = d1

∆t
∆x2 and ζ2 = d2

∆t
∆x2 . In similar fashion, we can check that the

backward Euler splitting method of the component X2 is given by

X2
k
m1,m2,m3

+ ∆t
αX1

k
m1,m2,m3

X2
k
m1,m2,m3

1 + γX2
k
m1,m2,m3

− ∆t(µ0 + µ1 + β)X2
k
m1,m2,m3

= X2
k+ 1

4
m1,m2,m3 , (31)

−ζ2X2
k+ 1

2
m1−1,m2,m3

+ (1 + 2ζ2)X2
k+ 1

2
m1,m2,m3 − ζ2X2

k+ 1
2

m1+1,m2,m3
= X2

k+ 1
4

m1,m2,m3 , (32)

−ζ2X2
k+ 3

4
m1,m2−1,m3

+ (1 + 2ζ2)X2
k+ 3

4
m1,m2,m3 − ζ2X2

k+ 3
4

m1,m2+1,m3
= X2

k+ 1
2

m1,m2,m3 , (33)

−ζ2X2
k+1
m1,m2,m3−1 + (1 + 2ζ2)X2

k+1
m1,m2,m3

− ζ2X2
k+1
m1,m2,m3+1 = X2

k+ 3
4

m1,m2,m3 . (34)

3.2. Nonstandard Scheme

The design of the nonstandard finite-difference splitting implicit method is similar to that of the
backward Euler splitting method. However, the reaction term in the present case is approximated as

X1
k+ 1

4
m1,m2,m3 − X1

k
m1,m2,m3

∆t
= λ−

αX1
k+ 1

4
m1,m2,m3 X2

k
m1,m2,m3

1 + γX2
k
m1,m2,m3

− (µ0 + ν)X1
k+ 1

4
m1,m2,m3 . (35)
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After simplification, we readily obtain

X1
k+ 1

4
m1,m2,m3 =

X1
k
m1,m2,m3

+ ∆tλ

1 + ∆t
αX2

k
m1,m2,m3

1+γX2
k
m1,m2,m3

+ ∆t(µ0 + ν)

. (36)

The formulas for the next steps are,

−ζ1X1
k+ 1

2
m1−1,m2,m3

+ (1 + 2ζ1)X1
k+ 1

2
m1,m2,m3 − ζ1X1

k+ 1
2

m1+1,m2,m3
= X1

k+ 1
4

m1,m2,m3 , (37)

−ζ1X1
k+ 3

4
m1,m2−1,m3

+ (1 + 2ζ1)X1
k+ 3

4
m1,m2,m3 − ζ1X1

k+ 3
4

m1,m2+1,m3
= X1

k+ 1
2

m1,m2,m3 , (38)

−ζ1X1
k+1
m1,m2,m3−1 + (1 + 2ζ1)X1

k+1
m1,m2,m3

− ζ1X1
k+1
m1,m2,m3+1 = X1

k+ 3
4

m1,m2,m3 . (39)

In turn, the final approximation to X2 at each step is given

X2
k
m1,m2,m3

+ ∆t
αX1

k
m1,m2,m3

X2
k
m1,m2,m3

1+γX2
k
m1,m2,m3

1 + ∆t(µ0 + µ1 + β)
= X2

k+ 1
4

m1,m2,m3 , (40)

−ζ2X2
k+ 1

2
m1−1,m2,m3

+ (1 + 2ζ2)X2
k+ 1

2
m1,m2,m3 − ζ2X2

k+ 1
2

m1+1,m2,m3
= X2

k+ 1
4

m1,m2,m3 , (41)

−ζ2X2
k+ 3

4
m1,m2−1,m3

+ (1 + 2ζ2)X2
k+ 3

4
m1,m2,m3 − ζ2X2

k+ 3
4

m1,m2+1,m3
= X2

k+ 1
2

m1,m2,m3 , (42)

−ζ2X2
k+1
m1,m2,m3−1 + (1 + 2ζ2)X2

k+1
m1,m2,m3

− ζ2X2
k+1
m1,m2,m3+1 = X2

k+ 3
4

m1,m2,m3 . (43)

4. Numerical Properties

Let T represent the vector operation of transposition, and define

X
k+ 1

4
i = (Xi

k+ 1
4

0,m2,m3
, Xi

k+ 1
4

1,m2,m3
, . . . , Xi

k+ 1
4

M1,m2,m3
)T , ∀i = 1, 2, (44)

Xk+ 1
2

i = (Xi
k+ 1

2
0,m2,m3

, Xi
k+ 1

2
1,m2,m3

, . . . , Xi
k+ 1

2
M1,m2,m3

)T , ∀i = 1, 2, (45)

X
k+ 3

4
i = (Xi

k+ 3
4

m1,0,m3
, Xi

k+ 3
4

m1,1,m3
, . . . , Xi

k+ 3
4

m1,M1,m3
)T , ∀i = 1, 2, (46)

Xk+1
i = (Xi

k+1
m1,m2,0, Xi

k+1
m1,m2,1, . . . , Xi

k+1
m1,m2,M1

)T , ∀i = 1, 2. (47)

Along with the homogeneous Neumann boundary data, the systems (37)–(41) may be presented as

P1Xk+ 1
2

1 = X
k+ 1

4
1 and P2Xk+ 1

2
2 = X

k+ 1
4

2 , (48)

where P1 and P2 are the real matrices of sizes (M1 + 1)× (M1 + 1), given by

P1 =



1 + 2ζ1 −2ζ1 0 · · · 0 0 0
−ζ1 1 + 2ζ1 −ζ1 · · · 0 0 0

0 −ζ1 1 + 2ζ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ζ1 1 + 2ζ1 −ζ1

0 0 0 · · · 0 −2ζ1 1 + 2ζ1


, (49)
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and

P2 =



1 + 2ζ2 −2ζ2 0 · · · 0 0 0
−ζ2 1 + 2ζ2 −ζ2 · · · 0 0 0

0 −ζ2 1 + 2ζ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ζ2 1 + 2ζ2 −ζ2

0 0 0 · · · 0 −2ζ2 1 + 2ζ2


. (50)

In similar fashion, we can equivalently express the systems (38)–(42) and (39)–(43) with their
respective homogeneous Neumann boundary conditions as

P1X
k+ 3

4
1 = Xk+ 1

2
1 , P2X

k+ 3
4

2 = Xk+ 1
2

2 , (51)

and
P1Xk+1

1 = X
k+ 3

4
1 , P2Xk+1

2 = X
k+ 3

4
2 . (52)

We turn our attention to the structural properties of the methods proposed in this work.

Definition 1. A square real matrix which is strictly diagonally dominant is called an M-matrix if it has non-positive
off diagonal elements and positive diagonal entries.

Every M-matrix is nonsingular, and all the entries of its inverse are positive numbers [41].
This property of M-matrices will be extensively exploited next to prove that the nonstandard
finite-difference scheme is capable of preserving the positivity of the approximations.

Lemma 1. Equations (36) and (40) are capable of preserving the nonnegative character of initial data.

Proof. The proof readily follows in view that no negative term appears on the right-hand side of (36),
nor on the left-hand side of (40). This and the non-negativity assumption on the initial data complete the
proof of this theorem.

Lemma 2. The matrices P1 and P2 are M-matrices.

Proof. Beforehand, notice that ζ1 = d1
∆t

∆x2 > 0 and ζ2 = d2
∆t

∆x2 > 0 in view that d1, d2, ∆x and ∆t are
positive constants. It is easy to check then that the matrices P1 and P2 are strictly diagonally dominant.
Also, their diagonal entries are positive and their off diagonal entries are non-positive. We readily conclude
that P1 and P2 are M-matrices, as desired.

Theorem 1 (Positivity preservation).

1. If the vectors X
k+ 1

4
1 and X

k+ 1
4

2 are positive then Xk+ 1
2

1 and Xk+ 1
2

2 are likewise positive.

2. If Xk+ 1
2

1 and Xk+ 1
2

2 are positive then so are X
k+ 3

4
1 and X

k+ 3
4

2 .

3. If X
k+ 3

4
1 and X

k+ 3
4

2 are positive then Xk+1
1 and Xk+1

2 are also positive.

Proof. Assume that the vectors X
k+ 1

4
1 and X

k+ 1
4

2 are positive. Lemma 2 assures that the matrices P1

and P2 are M-matrices, so the entries of their inverse matrices are all positive. It follows that Xk+ 1
2

1
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and and Xk+ 1
2

2 are positive. Finally, the positivity of the vectors X
k+ 3

4
1 , X

k+ 3
4

2 , Xk+1
1 and Xk+1

2 can be
established analogously.

To close this section, we must point out that the stability and the consistency of the splitting schemes is
based on the use of the split solutions [33,42]. Recall that the first time-step in operator splitting techniques
consists in handling the discretization of the reaction terms. This step is approximated exactly and its
accuracy is O(∆t). The remaining steps solve numerically the diffusion terms. Each of these steps is
unconditionally stable and they have accuracy equal to O(∆x2). We will clarify this fact next, using the
following technical result from the literature. For the remainder, if A is a square real matrix then ρ(A) will
represent its spectral radius.

Lemma 3 (Tian and Huang [43]). Let M = (mij) be a square M-matrix, and let N = (nij) be a nonnegative
matrix of the same size as M. If M is strictly diagonally dominant by rows then ρ(M−1N) satisfies

ρ(M−1N) ≤ max
i

{
∑n

j=1 nij

mii + ∑j 6=i mij

}
. (53)

Theorem 2. The nonstandard is unconditionally stable and convergent of order O(∆t + (∆x)2).

Proof. At the kth iteration of the nonstandard scheme, X
k+ 1

4
1 and X

k+ 1
4

2 are provided exactly as functions

of Xk
1 and Xk

2, respectively. Moreover, P3
1 Xk+1

1 = X
k+ 1

4
1 and P3

2 Xk+1
2 = X

k+ 1
4

2 , where the matrices P1 and P2

are the M-matrices defined by (49) and (50), respectively. Equivalently, notice that

Xk+1
1 = P−3

1 X
k+ 1

4
1 and Xk+1

2 = P−3
2 X

k+ 1
4

2 . (54)

Let I be the identity matrix of the same size as P1, and use Lemma 3 to see that

ρ(P−1
1 ) = ρ(P−1

1 I) ≤ max
i

{
1

1 + 2ζ1 − 2ζ1

}
= 1. (55)

It follows that the augmented matrix of the first identity of (54) satisfies ρ(P−3
1 ) ≤ [ρ(P−1

1 )]3 ≤ 1. Similarly,
we obtain that ρ(P−3

2 ) ≤ 1. This establishes the unconditional stability, the convergence being now a
consequence of the consistency and the stability properties of the scheme.

5. Computer Simulations

The purpose of this section is to provide some numerical examples to illustrate the performance of the
schemes. Throughout, let λ = 0.232, γ = 0.9, ν = 0.2, β = 4.12, µ0 = 0.000232, µ1 = 0.0000547, d1 = 0.001
and d2 = 0.01. We will consider the system (3) with initial conditions

ρ1(x, y, z) = 0.7x + 0.3y + 0.1z, 0 ≤ x, y, z ≤ 1 (56)

ρ2(x, y, z) = 1/2, 0 ≤ x, y, z ≤ 1. (57)

Example 1 (Simulation for DFEP). Let α = 0.97 so that the reproductive value is B0 = 0.222154 < 1. As B0 < 1,
the system converges to the DFEP ε0 = ( λ

(µ0+ν)
, 0). Figure 1 shows the numerical solution of the epidemic system

(3) using the backward Euler splitting method. The graphs exhibit the fact that this method is incapable of preserving
the nonnegative character of the solutions. In turn, Figure 2 shows the numerical solution of the model using the
nonstandard finite-difference splitting method. The same values of parameters are used to obtain Figures 1 and 2.
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Again, the results show that the second numerical scheme is capable of preserving the positivity of the solutions,
as desired.

Example 2 (Simulation for FEP). Let now α = 7.9. Notice that B0 = 2.22154 > 1. In this case, the system
(1) and (2) converges towards the EEP ε∗ = (0.5358, 0.03027). As we know, the backward Euler is stable and
consistent, so convergent. However, Figure 3 shows that this method diverges. On the other hand, the nonstandard
technique retains the structure of solutions of our continuous model. This is confirmed by Figure 4, which shows that
that scheme preserves the stability of the EEP, along with the positivity of the solutions.

(a) Mesh graph of X1 (b) Mesh graph of X2
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Figure 1. Graphs of backward Euler splitting method at DFEP with ∆x = 0.1, ζ1 = 0.1 and ζ2 = 0.3.
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Figure 2. Graphs of the nonstandard finite-difference implicit splitting method at DFEP with ∆x = 0.1,
ζ1 = 0.1 and ζ2 = 0.3.
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Figure 3. Graphs of backward Euler splitting method at EEP with ∆x = 0.1, ζ1 = 0.1 and ζ2 = 0.3.
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Figure 4. Graphs of nonstandard splitting method at EEP with ∆x = 0.1, ζ1 = 0.1 and ζ2 = 0.3.

Before closing this section, we must recapitulate on the relevance of the numerical results presented
in this work. To start with, various graphical results have been provided in the present stage. Among
those results, possibly the most important ones are those in Figures 3 and 4. Notice that the graphs
of Figure 3 show that the backward Euler splitting method at EEP diverges in the long term. Indeed,
notice that both X1 and X2 blow up after t = 8× 104. It is well known that the backward Euler splitting
scheme is unconditionally stable and consistent, so convergent. However, for the present nonlinear
model, this scheme is incapable of preserving the actual behavior of the continuous model. These graphs
demonstrate that the backward Euler operator splitting method fails to preserve the stability of the EEP
for the give parameter values. On the contrary, Figure 4 shows that the nonstandard approach is actually
capable of preserving the stability of the EEP. This confirms that the latter scheme is a dynamically
consistent discretization of the model under investigation.

6. Conclusions

In this work, we investigated numerically a susceptible-infected-recovered hepatitis B epidemic
reaction-diffusion model in three spatial dimensions. The stability and bifurcation analysis of the
continuous model was rigorously discussed in this work. To study the dynamics of this system,
we proposed a structure-preserving nonstandard finite-difference splitting numerical method. The scheme
is capable of preserving all the important features of the continuous system like the positivity and the
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stability of steady states. To verify our results, comparisons were made against a classical backward Euler
splitting method. Some numerical tests were conducted using both splitting methods, and we confirmed
that the nonstandard scheme is dynamically consistent with the nonlinear model [44–46]. On the contrary,
the backward Euler splitting method is incapable of preserving the positivity and the stability of the
steady states.

The present manuscript provides a comparative numerical study between the backward Euler splitting
method and a nonstandard finite-difference splitting numerical method. As far as numerical modeling
for three-dimensional reaction-diffusion epidemic systems is concerned, very little research work can
be found in the literature. Moreover, to the best of our knowledge and information, the literature
lacks sufficient reports on structure-preserving numerical methods to solve three-dimensional epidemic
models. Nevertheless, the present work proposes a structure-preserving scheme to solve a general
three-dimensional diffusive model with time evolution. The proposed model provides a realistic approach
in the sense that it considers non-homogeneous populations. Furthermore, to the best of our knowledge,
the stability of the equilibrium point for the system under investigation is tackled herein for the first time
in the literature.
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