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Abstract: Robust stabilization and H∞ controller design for uncertain systems with impulsive
and stochastic effects have been deeply discussed. Some sufficient conditions for the considered
system to be robustly stable are derived in terms of linear matrix inequalities (LMIs). In addition, an
example with simulations is given to better demonstrate the usefulness of the proposed H∞ controller
design method.
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1. Introduction

Analysis and synthesis of dynamical systems with impulsive effects have attracted recurring
interest for the past few decades [1–3]. The sudden change of system states at a certain point is the
characteristic of a pulse dynamic system. Take an example from economics. When higher prices cause
inflation, the government may raise the interest rate in real time to quickly reduce the circulation of
money in the market, which is a typical pulse phenomenon. For a deterministic case, a large number
of conclusions about stability and control for systems with impulsive perturbations can be found;
see [4–8] and the reference therein.

However, because science and engineering applications offer stochastic models a great role in
many areas, stochastic system theory has received widespread attention. Many basic results of systems
without stochastic disturbance have been expanded to stochastic systems [9–16]. At the same time,
the theory and application of stochastic differential equations have made great progress because it has
played a key role in many fields; for example, option investment, population growth forecast, system
control and filtering [17–21]. Among them, Ref. [21] gave a survey of impulsive differential equation
theory that has been developed in recent years. Parameter uncertainties appear in stochastic impulsive
systems, and exponential stability was analyzed in [22], guaranteed cost control was discussed in [23]
and H∞ filtering has been dealt with in [24,25]. It should be noted that for uncertain systems with
impulsive and stochastic effects, little research has been carried out on robust H∞ control, which
aroused our interest.

In this note, the studies of robust stabilization and H∞ controller design are conducted for an
uncertain stochastic system with impulsive effects. Its time-varying uncertain parameters, which
appear both in state, control and disturbance part, are supposed to be norm-bounded. An LMI-based
sufficient condition is derived for an existing memoryless state feedback controller guaranteeing
asymptotic stability and meeting H∞ performance.
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The note has the following arrangement: Section 2 begins with the problem formulation and
reviews some useful definitions and lemmas; Section 3 discusses the robust stability and robust
stabilization; Section 4 develops LMI-based H∞ controller design method; Section 5 gives an example,
which illustrates the applicability of the theoretical results; Section 6 summarizes the full text.

Notations. X > 0 (X ≥ 0) indicates that a symmetric positive (semi-positive) definite
matrix; XT and X−1 represents the transpose and the inverse of X; Rn is the n-dimensional
Euclidean space; L2[0, ∞) (respectively, l2[0, ∞)) is the space of the square-integrable vector functions
(respectively, the squares and vector sequences) on [0, ∞); | · | denotes the Euclidean vector norm;
‖ · ‖L2 (respectively, ‖ · ‖l2 ) represents the L2[0, ∞) (respectively, l2[0, ∞)) norm on [0, ∞); while ‖ · ‖E2

indicates the norm in L2((Ω,F,P), [0, ∞)); (Ω,F,P)) is the complete probability space with Ω the
sample space and F the σ-algebra of subsets of the sample space; E(·) corresponds to the mathematical
expectation; the maximum (minimum) eigenvalues of a matrix are represented by λmax(·) (λmin(·)).

2. Problem Description and Preliminaries

We consider the uncertain stochastic system with impulsive effects:

dx(t) = [(A + ∆A(t))x(t) + (B + ∆B(t))u(t) + (Bv + ∆Bv(t))v(t)]dt

+[(H + ∆H(t))x(t) + (G + ∆G(t))u(t) + (Gv + ∆Gv(t))v(t)]dw(t), t 6= ικ ,

x(ικ) = Cκx(ι−κ ) + Dκδ(ικ), t = ικ , κ = 0, 1, · · · ,

z(t) = Czx(t) + Bzu(t) + Dzv(t),

x(t0) = x0, t0 = 0,

(1)

where x(t) ∈ Rn1 is the system state, z(t) ∈ Rn3 is the controlled output, and u(t) ∈ Rn2 is the control
input, v(t) ∈ Rm1 is the continuous disturbance of L2[0, ∞). δ(ικ) ∈ Rm2 is the discrete disturbance of
l2[0, ∞). w(t) is a one-dimensional Brownian motion defined on a complete probability space (Ω,F,P).
{ικ , κ = 0, 1, · · · } are the impulsive time instants and satisfy 0 = ι0 < ι1 < · · · < ικ < ικ+1 < · · · .
Assume that A, B, Bv, H, G, Gv, Cκ , Dκ , Cz, Bz and Dz are known matrices with appropriate dimensions,
and ∆A(t), ∆B(t), ∆Bv(t), ∆H(t), ∆G(t) and ∆Gv(t) are unknown matrices denoting norm-bounded
time-varying parameter uncertainties with the forms:

[∆A(t) ∆B(t) ∆H(t) ∆G(t) ∆Bv(t) ∆Gv(t)]

= MF(t)[NA NB NH NG NBv NGv ], (2)

where M, NA, NB, NH , NG, NBv and NGv are known constant matrices, and F(t) ∈ Rκ×l is an unknown
time-varying matrix function satisfying

F(t)TF(t) ≤ I, ∀t. (3)

For convenience, abbreviating ∆A(t), ∆B(t), ∆Bv(t), ∆H(t), ∆G(t), ∆Gv(t), x(t), v(t), u(t) and
w(t) to ∆A, ∆B, ∆Bv, ∆H, ∆G, ∆Gv, x, v, u and w, where ∆A, ∆B, ∆Bv, ∆H, ∆G and ∆Gv are considered
admissible if both (2) and (3) hold.

Now, we recall some basic concepts about robust stability and stabilization.

Definition 1 ([13]). The impulsive stochastic system (1) is said to be mean-square stable with u = 0, δ(ικ) = 0
and v = 0, if there is a α(ε) > 0 for ∀ ε > 0, when E|x0| < α(ε), t > 0, such that E|x|2 < ε. If lim

t→∞
E|x|2 = 0

satisfies any initial conditions, then (1) with u = 0, δ(ικ) = 0 and v = 0 is called mean-square asymptotically
stable. And, the system (1) is said to be robustly stochastic stability (RSS for short) if (1) with v = 0, δ(ικ) = 0
and u = 0 is mean-square asymptotically stable for all admissible uncertainties ∆A and ∆H.
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Definition 2 ([13]). Given a real number γ > 0, the system (1) is said to be RSS and the H∞ performance γ

exists, if it is RSS in the sense of Definition 1 and under zero initial conditions, for all v ∈ L2[0, ∞), δ ∈ l2[0, ∞)

and all admissible uncertainties ∆A, ∆H, the inequality ‖z‖E2 ≤ γ(‖v‖2
L2

+ ‖δ‖2
l2
)1/2 holds.

Next, We list two lemmas, which are very important for the discussion in later chapters.

Lemma 1 ([26]). Let matrices R,Q,H,N and F with appropriate dimensions satisfying N > 0 and
FTF ≤ I, then:

(1) For scalar ε > 0 and vectors a, b ∈ Rn,

2aTQFHb ≤ ε−1aTQQTa + εbTHTHb;

(2) For ∀ ε > 0 to make N− εQQT > 0,

(R+QFH)TN−1(R+QFH) ≤ RT(N− εQQT)−1R+ ε−1HTH.

Lemma 2 ([27]). Let ∆1, ∆2, ∆3 be given matrices, where ∆1 = ∆T
1 , ∆2 > 0 and ∆3 = ∆T

3 , then the following
inequalities are equivalent:

(1) ∆1 + ∆2∆−1
3 ∆T

2 < 0;

(2)

[
∆1 ∆2

∆T
2 −∆3

]
< 0.

3. Robust Stabilization

In this chapter, we restrict our study to the uncontrolled system (i.e., v(t) = 0 and δ(ικ) = 0 in (1)):

dx(t) = [(A + ∆A)x(t) + (B + ∆B)u(t)]dt

+[(H + ∆H)x(t) + (G + ∆G)u(t)]dw(t), t 6= ικ ,

x(ικ) = Cκx(ι−κ ), t = ικ , κ = 0, 1, · · · ,

z(t) = Czx(t) + Bzu(t),

x(t0) = x0, t0 = 0.

(4)

First of all, we present some sufficient conditions for RSS of (4) with u(t) = 0.

Theorem 1. Assume there exist two positive scalars ε1 > 0, ε2 > 0 and matrix X > 0, such that:
XAT + AX + ε1MMT XNT

A XNT
H XHT

NAX −ε1 0 0
NHX 0 −ε2 0
HX 0 0 −(X− ε2MMT)

 < 0, (5)

[
−X XCT

κ

CκX −X

]
≤ 0, κ = 0, 1, · · · , (6)

then (4) with u(t) = 0 is mean-square asymptotically stable.

Proof. Consider (4) with u(t) = 0, that is,
dx(t) = [(A + ∆A)x(t)]dt + [(H + ∆H)x(t)]dw(t), t 6= ικ ,

x(ικ) = Cκx(ι−κ ), t = ικ , κ = 0, 1, · · · ,

x(t0) = x0, t0 = 0.

(7)
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Let ∀ ε1 > 0, ε2 > 0, and matrix X > 0 be a solution of (5) and (6). Let

P = X−1. (8)

For t > 0 and t ∈ [ικ , ικ+1), Define

V(x) = xTPx. (9)

Then, along the trajectory of (7) and apply the Itô’s formula [12], we can get

dV(x) = LV(x)dt + 2xTP[H + ∆H]xdw, (10)

where

LV(x) = 2xTP(A + ∆A)x + xT[H + ∆H]TP[H + ∆H]x. (11)

Applying (2), (3) and Lemma 1, for ∀ ε > 0,

2xTP(A + ∆A)x = 2xTP(A + MF(t)NA)x

≤ xT(ATP + PA + ε1PMMTP + ε−1
1 NT

ANA)x, (12)

and

xT[(H + ∆H)TP(H + ∆H)]x

= xT [(H + MFNH)
T P(H + MFNH)]x

≤ xT[HT(P−1 − ε2MMT)−1H + ε−1
2 NT

H NH ]x. (13)

Hence, from (11)–(13), we have

LV(x) ≤ xT[ATP + PA + ε1PMMTP + ε−1
1 NT

ANA
+HT(P−1 − ε2MMT)−1H + ε−1

2 NT
H NH ]x

= xTΞx, (14)

where Ξ = ATP + PA + ε1PMMTP + ε−1
1 NT

ANA + HT(P−1 − ε2MMT)−1H + ε−1
2 NT

H NH .
Pre- and post-multiplying (5) by diag {P, I, I, I}, and by means of Lemma 2, we can get that

ATP + PA + ε1PMMTP NT
A NT

H HT

NA −ε1 0 0
NH 0 −ε2 0
H 0 0 −(P−1 − ε2MMT)

 < 0. (15)

By Lemma 2 again, Ξ is equivalent to (15), which shows Ξ is negative-definite. Considering (14),
for t ∈ [ικ , ικ+1) and ∀ x 6= 0, we can obtain

LV(x) ≤ −λ|x|2, (16)

where λ = λmin(−Ξ) > 0. Therefore

dV(x) ≤ −λ|x|2dt + 2xTP[H + ∆H]xdw. (17)

Setting ξ = λ/λmax(P) > 0, by using the integration-by-parts Formula [28] for (17), one get

d[eξtV(x)] ≤ 2eξtxTP[H + ∆H]xdw.
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The inequality integral from ικ to t, we yields

E [V(x(t))] ≤ eξ(ικ−t)E [V(x(ικ))]. (18)

In view of (6), pre- and post-multiplying by P, it gives

CT
κ PCκ − P ≤ 0, κ = 0, 1, · · · . (19)

Then we have

EV(x(ικ))− EV(x(ι−κ )) = E [xT(ι−κ )(C
T
κ PCκ − P)x(ι−κ )] ≤ 0.

That is,

E [V(x(ικ))] ≤ E [V(x(ι−κ ))], κ = 0, 1, · · · . (20)

So, for t ∈ [ικ , ικ+1), by (18) and (20), we prove that

E [V(x(t))] ≤ eξ(ικ−t)E [V(x(ικ))] ≤ eξ(ι−κ −t)E [V(x(ι−κ ))]. (21)

Similarly, we have

eξ(ι−κ −t)E [V(x(ι−κ ))] ≤ eξ(ι−κ−1−t)E [V(x(ι−κ−1))],

eξ(ι−κ−1−t)E [V(x(ι−κ−1))] ≤ eξ(ι−κ−2−t)E [V(x(ι−κ−2))],
...

eξ(ι−1 −t)E [V(x(ι−1 ))] ≤ e−ξtE [V(x(ι0))].

These implies for ∀ t ≥ 0,

E [V(x)] ≤ e−ξtE [V(x0)], (22)

Thus, let η = E [V(x0)]/λmin(P), we can deduce

E|x|2 ≤ e−ξtη

which means that (7) is mean-square asymptotically stable.

We will design a memoryless state feedback controller with the form:

u(t) = Kx(t) (23)

Making the resulting closed-loop system is RSS, K ∈ Rm×n is a constant gain.
Applying (23) to (4), generate the following closed-loop systems:

dx(t) = [(Ã + ∆Ã)x(t)]dt + (H̃ + ∆H̃)x(t)]dw(t), t 6= ικ ,

x(ικ) = Cκx(ι−κ ), t = ικ , κ = 0, 1, · · · ,

x(t0) = x0, t0 = 0,

(24)

where Ã = A+ BK, ∆Ã = ∆A+∆BK, H̃ = H +GK and ∆H̃ = ∆H +∆GK, in which NÃ = NA + NBK
and NH̃ = NH + NGK.

Invoking by Theorem 1, it gives
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Theorem 2. For the uncertain impulsive stochastic system (24), assume there are ε1 > 0, ε2 > 0, and a
matrices X > 0, such that:

XÃT + ÃX + ε1MMT XNT
Ã XNT

H̃ XH̃T

NÃX −ε1 0 0
NH̃X 0 −ε2 0
H̃X 0 0 −(X− ε2MMT)

 < 0, (25)

[
−X XCT

κ

CκX −X

]
≤ 0, κ = 0, 1, · · · , (26)

then (4) is robustly stable with controller (23) and K = YX−1.

In order to synthesize the gain of the controller, we transform (25) into an easy to calculate
form. Note

ÃX = (A + BK)X, NÃX = (NA + NBK)X,

H̃X = (H + GK)X, NH̃X = (NH + NGK)X.

Letting K = YX−1, (25) is equivalent to the following LMI:
Ψ1 XNT

A + YTNT
B XNT

H + YTNT
G XHT + YTGT

NAX + NBY −ε1 0 0
NHX + NGY 0 −ε2 0

HX + GY 0 0 −(X− ε2MMT)

 < 0, (27)

where Ψ1 = XAT + AX + BY + YTBT + ε1MMT.

Remark 1. Theorem 2 gives a sufficient condition for robust stability of (4), which can be validated effectively
by LMIs method. We can also stabilize the feedback gain (4) by solving LMIs.

4. Robust H∞ Control

This part is mainly used to study the robust H∞-control problem for (1).

Theorem 3. For the uncertain impulsive stochastic system (1). Given γ > 0, if there are ε̂1 > 0, ε̂2 > 0,
matrices X > 0 and Y, such that:

Ψ2 Bv XNT
A + YTNT

B XNT
H + YTNT

G XCT
z + YTBT

z XHT + YTGT

BT
v −γ2 I NT

Bv
NT

Gv
DT

z GT
v

NAX + NBY NBv −ε̂1 I 0 0 0
NHX + NGY NGv 0 −ε̂2 I 0 0
CzX + BzY Dz 0 0 −I 0
HX + GY Gv 0 0 0 ε̂2MMT − X


< 0, (28)

 −X 0 XCT
κ

0 −γ2 I DT
κ

CκX Dκ −X

 ≤ 0, κ = 0, 1, · · · , (29)
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where Ψ2 = XAT + AX + BY + YTBT + ε1MMT, then (1) is called have H∞ performance level γ under zero
initial condition. Under this circumstance, an H∞ state feedback controller can be selected by

u(t) = Kx(t), (30)

in which K = YX−1.

Proof. By substituting (30), (1) becomes

dx(t) = [(Ã + ∆Ã)x(t) + (Bv + ∆Bv)v(t)]dt

+[(H̃ + ∆H̃)x(t) + (Gv + ∆Gv)v(t)]dw(t), t 6= ικ ,

x(ικ) = Cκx(ι−κ ) + Dκδ(ικ), t = ικ , κ = 0, 1, · · · ,

z(t) = (Cz + BzK)x(t) + Dzv(t)

x(t0) = x0, t0 = 0.

(31)

By (28), it is easy to infer that the LMI in (25) holds. Therefore, from the theorem 2, it can be concluded
that the closed-loop system (31) is robustly stable. The next, we will prove (31) satisfies

‖z‖E2 ≤ γ(‖v‖2
L2

+ ‖δ‖2
l2
)1/2 (32)

for all nonzero v(t) ∈ Rm1 , δ(ικ) ∈ Rm2 under zero initial condition.
Let X = P−1. Pre-and post-multiplying (28) by diag [P, I, I, I, I, I], it gives

PÃ + ÃTP + ε̂1PMMTP PBv NT
Ã NT

H̃ CT
z + KTBT

z H̃T

BT
v P −γ2 I NT

Bv
NT

Gv
DT

z GT
v

NÃ NBv −ε̂1 I 0 0 0
NH̃ NGv 0 −ε̂2 I 0 0

Cz + BzK Dz 0 0 −I 0
H̃ Gv 0 0 0 ε̂2MMT − P−1


< 0. (33)

For (31), applying the Itô’s formula to V(x) = xTPx, for t ∈ [ικ , ικ+1), we have that

dV(x) = LV(x)dt + [xT(H̃ + ∆H̃)TPx + vT(Gv + ∆Gv)
TPx]dw

+[xTP(H̃ + ∆H̃)x + xTP(Gv + ∆Gv)v]dw, (34)

where

LV(x) = 2xTP[(Ã + ∆Ã)x + (Bv + ∆Bv)v]
+[(H̃ + ∆H̃)x + (Gv + ∆Gv)v]TP
×[(H̃ + ∆H̃)x + (Gv + ∆Gv)v]. (35)

Noting P−1 − ε̂2MMT > 0 and in view of Lemma 1, it can be shown that for ε̂1 > 0, ε̂2 > 0

2xTP[(Ã + ∆Ã)x + (Bv + ∆Bv)v]
≤ 2xTPÃx + 2xTPBvv + ε̂1xTPMMTPx
+ε̂−1

1 (NÃx + NBv v)T(NÃx + NBv v), (36)

and

[(H̃ + ∆H̃)x + (Gv + ∆Gv)v]TP[(H̃ + ∆H̃)x + (Gv + ∆Gv)v]
≤ (H̃x + Gvv)T(P−1 − ε̂2MMT)−1(H̃x + Gvv)
+ε̂−1

2 (NH̃x + NGv v)T(NH̃x + NGv v). (37)
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From (35)–(37), we get

LV(x) ≤
[

xT vT
]

Υ1

[
x
v

]
. (38)

where

Υ1 =

[
PÃ + ÃTP + ε̂1PMMTP PBv

BT
v P 0

]
+ ε̂−1

1

[
NT

Ã
NT

Bv

] [
NÃ NBv

]
+

[
H̃T

GT
v

]
(P−1 − ε̂2MMT)−1

[
H̃ Gv

]
+ ε̂−1

2

[
NT

H̃
NT

Gv

] [
NH̃ NGv

]
.

It can be inferred that Υ1 < 0 from (33). Thus, combined with (34) and (38), we obtain

dV(x) ≤
[

xT vT
]

Υ1

[
x
v

]
dt

+2xTP[(H̃ + ∆H̃)x + (Gv + ∆Gv)v]dw. (39)

Then, the sides of (34) are integrated from ικ to t, we have

E [V(x(t))]− E [V(x(ικ))] = E [
∫ t

ικ
dV(x(µ))] = E [

∫ t

ικ
LV(x(µ))dµ], (40)

By means of (39) and (40), we get

E [V(x(t))] = E [V(x(ικ))] + E [
∫ t

ικ
LV(x(µ))dµ]

≤ E [V(x(ικ))] + E{
∫ t

ικ

[
xT(µ) vT(µ)

]
Υ1

[
x(µ)
v(µ)

]
dµ}. (41)

Therefore, for ∀ t ∈ [ικ , ικ+1),

E{
∫ t

ικ
[zT(µ)z(µ)− γ2vT(µ)v(µ) +LV(x(µ))]dµ}

= E{
∫ t

ικ
[(Cz + BzK)x(µ) + Dzv(µ)]T[(Cz + BzK)x(µ) + Dzv(µ)]− γ2vT(µ)v(µ) +LV(x(µ))dµ}

≤ E{
∫ t

ικ

[
xT(µ) vT(µ)

]
Υ

 x(µ)

v(µ)

 dµ}, (42)

where

Υ =

[
PÃ + ÃTP + ε̂1PMMTP PBv

BT
v P −γ2

]
+ ε̂−1

1

[
NT

Ã
NT

Bv

] [
NÃ NBv

]
+

[
H̃T

GT
v

]
(P−1 − ε̂2MMT)−1

[
H̃ Gv

]
+ ε̂−1

2

[
NT

H̃
NT

Gv

] [
NH̃ NGv

]
+

[
(Cz + BzK)T

DT
z

] [
Cz + BzK Dz

]
.

Because of Υ < 0, it can be deduced from (38)–(42) that

E{
∫ t

ικ
[zT(µ)z(µ)− γ2vT(µ)v(µ)]dµ} < E [V(x(ικ))]. (43)
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Let X = P−1. Pre- and post-multiplying (29) by diag {P, I, I}, we have

CT
κ PCκ − P + CT

κ PDκ(γ
2 I − DT

κ PDκ)
−1DT

κ PCκ ≤ 0, (44)

where γ2 I − DT
κ PDκ > 0. By (31), we can confirm

−γ2δT(ικ)δ(ικ) + E [V(x(ικ))]− E [V(x(ι−κ ))]

= E{
[

xT(ι−κ ) δT(ικ)
] [ CT

κ PCκ − P CT
κ PDκ

DT
κ PCκ DT

κ PDκ − γ2 I

] [
x(ι−κ )
δ(ικ)

]
}

≤ E{xT(ι−κ )[C
T
κ PCκ − P + CT

κ PDκ(γ
2 I − DT

κ PDκ)
−1DT

κ PCκ ]x(ι−κ )} ≤ 0. (45)

That is, relying on (19), we can know

E [V(x(ικ))]− E [V(x(ι−κ ))] = E [xT(ι−κ )(C
T
κ PCκ − P)x(ι−κ )] ≤ 0.

Namely, E [V(x(ικ))] ≤ E [V(x(ι−κ ))]. So, combined with (45), we infer that

−γ2δT(ικ)δ(ικ) ≤ E [V(x(ι−κ ))]− E [V(x(ικ))], (46)

Also, we have

−γ2δT(ι−κ )δ(ι
−
κ ) ≤ E [V(x(ι−κ−1))]− E [V(x(ι−κ ))],

−γ2δT(ι−κ−1)δ(ι
−
κ−1) ≤ E [V(x(ι−κ−2))]− E [V(x(ι−κ−1))],
...

−γ2δT(ι−1 )δ(ι
−
1 ) ≤ E [V(x(ι0))]− E [V(x(ι−1 ))]. (47)

From the above inequalities, we deduce

− ∑
ικ∈(0,t)

γ2δT(ικ)δ(ικ) ≤ E [V(x(ι0))]− E [V(x(ικ))]. (48)

Note the zero initial conditions and (43) over all possible ικ in [0, t], it results in

E{
∫ t

ικ
[zT(µ)z(µ)− γ2vT(µ)v(µ)]dµ} − ∑

ικ∈(0,t)
γ2δT(ικ)δ(ικ) < 0, (49)

which means that (32) is satisfied. This proof is complete.

5. An Example

In this chapter, we will provide an example to better illustrate the usefulness of the
proposed method.
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Example 1. Consider a two-dimensional uncertain impulsive stochastic system (1) with the following
parameters:

A =

[
−2 1.2
0.8 −2

]
, B =

[
−1 2
0.4 3

]
, Bv =

[
2 0

0.2 −1

]
, H =

[
1.2 0
−2 0.5

]
,

G =

[
0.5 0
−1 2

]
, Gv =

[
2 0.4
−1 −4

]
, Cκ =

[
0.9 0
0 0.9

]
, Dκ =

[
−0.2 1
0.3 −0.2

]
,

Cz =

[
1 0

1.2 0.1

]
, Bz =

[
0.1 1
0.2 −0.1

]
, Dz =

[
0.5 0
0.2 −0.1

]
, M =

[
1 0
0 −1

]
,

NA =
[

0.1 −0.2
]

, NB =
[

0.2 0.4
]

, NH =
[

0.1 0.3
]

, NG =
[

0.2 −0.1
]

,

NBv =
[

0.1 −0.1
]

, NGv =
[

0.2 0.3
]

.

Set γ = 1.7, using the Matlab LMI Control toolbox, we can get the solutions to LMIs (28) and (29) are
as follows:

X =

[
4.2597 −5.4180
−5.4180 23.3299

]
, Y =

[
−7.5133 9.2519
−3.8391 −0.3219

]
, ε̂1 = 2.9631, ε̂2 = 1.5302.

Therefore, from Theorem 3, the H∞ control law can be chosen as:

u(t) =

[
−1.7874 −0.0185
−1.3040 −0.3166

]
x(t).

We select initial value x0 = [1,−0.8]T and the impulsive interval ικ+1 = ικ + 0.5. Figure 1 depicts the state of
the uncertain impulsive stochastic system. It is obvious from Figure 2 that the closed-loop system is mean-square

asymptotically stable, where E|x(t)|2 = 1
1000

1000

∑
j=1

[(xj
1(t))

2 + (xj
2(t))

2] which xj
s, s = 1, 2 is the jth sample path.

Time t

0 1 2 3 4 5 6

x(
t)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Figure 1. State path of Example 1.

Time t

0 1 2 3 4 5 6

E|
x(

t)|
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 2. Trajectory of the average value of 1000 sample paths.
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6. Conclusions

Robust stabilization and H∞ control are considered in this paper for stochastic systems with
uncertainties and impulsive effects. As for robust stability and robust stabilization, LMIs-based
sufficient conditions have been established. Moreover, we proposed a reasonable H∞ controller design
method and its effectiveness has been demonstrated by a numerical example.
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