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Abstract: The paper proves a unified analysis for finite-time anti-synchronization of a class of
integer-order and fractional-order chaotic systems. We establish an effective controller to ensure
that the chaotic system with unknown parameters achieves anti-synchronization in finite time under
our controller. Then, we apply our results to the integer-order and fractional-order Lorenz system,
respectively. Finally, numerical simulations are presented to show the feasibility of the proposed
control scheme. At the same time, through the numerical simulation results, it is show that for the
Lorenz chaotic system, when the order is greater, the more quickly is anti-synchronization achieved.
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1. Introduction

In recent years, the synchronization and anti-synchronization of chaotic systems have become
a challenging and interesting problem due to the potential applications of chaotic systems in
secure communication and control processing, chemical reactions, biological systems, etc. Therefore,
the synchronization and anti-synchronization of integer-order and fractional-order chaotic systems
has attracted wide attention.

Recently, many control schemes have been proposed to synchronize integer-order chaotic systems;
for example, alternate output feedback control, nonlinear control, adaptive control, unknown input
control, coupling scheme control, fuzzy control, sampled-data control, and so on [1–12]. Al-Sawalha
discussed the anti-synchronization problem of two different hyper-chaotic systems in [13]. Chen et al.
proposed a new sliding mode control strategy for a class of chaotic systems with different structures
and dimensions in [14]. Chen and Li considered the master-slave anti-synchronization scheme of
modified Chua’s circuits with linear feedback control in [15].

On the other hand, fractional calculus is a powerful tool in physics and industries. It is shown
that some fractional-order dynamical systems can cause chaos [16,17]. Synchronization of the
fractional-order chaotic Lü system was investigated in [18]. After that, many control schemes were
proposed for the synchronization and anti-synchronization of fractional-order chaotic systems such
as active sliding mode control [19], linear state error feedback control [20], nonlinear control [21],
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and so on. Huang and Cao [22] studied anti-synchronization of a fractional-order chaotic financial
system. Moreover, the relationship between the order and synchronization (anti-synchronization)
was demonstrated numerically. Since most of results were based on the assumption that the system
parameters were known, in a realistic world, most of the system’s parameters cannot be exactly known
in advance. Al-Sawalha [23] proved that the third-order chaotic system can be anti-synchronized
with the projection of a fourth-order chaotic system under the assumption that their parameters are
unknown. Othmana [24] utilized an adaptive control scheme to study the dual anti-synchronization
behavior between two chaotic systems with fully-uncertain parameters. Cai et al. [25] proved
the problem of projective synchronization of the adaptive full-state mixed function for financial
hyper-chaotic systems with uncertain parameters.

Most of the above-mentioned research focused on the long-time behavior (i.e., time tends
to infinity); however, in real-world applications, time is often limited due to its life span.
Therefore, the finite-time control has been indispensably proposed for the synchronization and
anti-synchronization of chaotic systems (see, e.g., [26–36]). Ma and Dong [37] presented a finite-time
adaptive synchronization strategy for a class of new hyper-chaotic systems with unknown slave
system parameters. Finite-time anti-synchronization of two identical and two different variable-order
fractional chaotic systems with unknown parameters was studied in [38]. Note that most of the
research was on the integer-order and fractional-order chaotic systems being synchronized by
different controllers. However, it is rare to study the finite-time anti-synchronization of integer- and
fractional-order chaotic systems with uniform control, and the parameters of the chaotic system are
unknown. Therefore, in this paper, we mainly study the finite-time anti-synchronization of the integer-
and fractional-order chaotic systems with unknown parameters by a unified controller. The main
contributions of this paper are summarized as follows.

(1) We study the finite-time anti-synchronization of a class of integer- and fractional-order chaotic
systems with unknown parameters under the control of a unified controller. By using Lyapunov
stability theory and fractional derivative theory, it is proven that integer and fractional chaotic
systems with unknown parameters can achieve finite-time anti-synchronization under the
control of a unified controller.

(2) The unified controller theory is applied to integer- and fractional-order Lorentz systems
respectively to achieve finite-time anti-synchronization. The correctness of the unified controller
theory is verified theoretically.

(3) The correctness of the theoretical results is verified by simulation examples. The time when the
Lorenz system of different orders reaches anti-synchronization is calculated. At the same time,
it can be observed that the finite-time T of anti-synchronization decreases with the increase of
system order.

The remainder of the paper is organized as follows. The next section designs an effective controller
to ensure that the integer-order and fractional-order chaotic systems achieve anti-synchronization in
finite time. In Section 3, we apply our results to the integer-order Lorenz system. In Section 4, we apply
our results to the fractional-order Lorenz system. In Section 5, numerical simulations are proposed to
verify the validity of the method. At last, we conclude this paper and give prospects for future work
in Section 6.

2. Finite-Time Anti-Synchronization of the Integer-Order and Fractional-Order Chaotic Systems

2.1. Model Formulation

Lemma 1 ([39]). Suppose that a continuous and positive definite function V(t)satisfies the inequality:

V̇(t) ≤ −pVε(t), ∀t ≥ t0, V(t0) ≥ 0,
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where p > 0 and 0 < ε < 1 are two constants. For any given time t0, V(t) satisfies the following inequality:
V1−ε(t) ≤ V1−ε(t0) − p(1 − ε)(t − t0), t0 ≤ t ≤ t1 and V(t) ≡ 0 for all t ≥ t1 with t1 given by

t1 = t0 +
V1−ε(t0)
p(1−ε)

.

Definition 1 ([40]). The αth-order Riemann–Liouville fractional integration of function f (t) with respect to t
is given by:

D−α
t f (t) =

1
Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ. (1)

where Γ(α) is the Gammafunction and t0 is the initial time.

Definition 2 ([40]). Let m− 1 < α < m, m ∈ N; the Caputo fractional derivative of order α of function f (t)
with respect to t is defined as follows:

t0 Dα
t f (t) =

dαy
dxα

=
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)α−m+1 dτ. (2)

Throughout this paper, we employ the Caputo fractional derivative.

Lemma 2 ([40]). For any constants C1, C2, if f (t), g(t) ∈ C[t0, b] and α > 0, then:

dα

dtα
(C1 f (t)± C2g(t)) = C1

dα

dtα
( f (t))± C2

dα

dtα
(g(t)). (3)

Lemma 3 ([40]). Suppose f (t) ∈ Cα
a ([a, b]), Dα

a ( f (t)) ∈ Cβ
a ([a, b]), α > 0, β > 0, n − 1 < α <

n, m− 1 < β < m, then:

C
a Dβ

t (
C
a Dα

t f (t)) = C
a Dα

t (
C
a Dβ

t f (t)) = C
a Dα+β

t f (t). (4)

Lemma 4 ([41]). Consider:
C
a Dα

t xn <
Γ(n + 1)

Γ(n + 1− α)
xn−αC

a Dα
t x. (5)

Considering the following chaotic system with uncertain parameters (the drive system):

Dα
t x1(t) = f1(x1(t)) + F1(x1(t))A, (6)

where α ∈ (0, 1], x1(t) = (x11(t), · · · , x1n(t))T ∈ Rn are the state vectors, f1 : Rn → Rn are
continuous vector functions, F1 : Rn → Rn×n are matrices functions, and A = (a1, a2, ..., an)T is the
unknown parameter vector of the drive system. When α = 1, System (6) reduces to the integer-order
system in [23].

The response system is described by:

Dα
t x2(t) = f2(x2(t)) + F2(x2(t))B + u(x1(t), x2(t)), (7)

where α ∈ (0, 1], x2(t) = (x21(t), · · · , x2n(t))T ∈ Rn are the state vectors, f2 : Rn → Rn are continuous
vector functions, F2 : Rn → Rn×n are matrix functions, B = (b1, b2..., bn)T is the unknown parameter
vector of the response system, and u = u(x1(t), x2(t)) ∈ Rn is a controller.

The errors between systems (6) and (7) are:

e(t) = x2(t) + x1(t). (8)
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Our goal is to design an appropriate controller u with a parameter vector such that the trajectory
of the response system (7) could be anti-synchronous with the drive system (6) in finite time, and the
unknown parameters are identified simultaneously. We say the response system (7) is anti-synchronous
with the drive system (6) in finite time if:

lim
t→T
‖e(t)‖ = 0, (9)

where ‖·‖ is the Euclidean norm.

2.2. Finite Time Anti-Synchronization: A Unified Analysis for Integer Order and Fractional Order

In this section, we will design a unified controller to achieve finite-time anti-synchronization for
systems (6) and (7) with unknown parameters of integer- and fractional-order, and we prove that the
controller is valid.

Theorem 1. For any initial conditions, the two systems (6) and (7) are finite-time anti-synchronized if the
control law equation is designed as follows:

u = − f1(x1(t))− f2(x2(t))− F1(x1(t))A− F2(x2(t))B− kep − e, (10)

where 0 < p < 1, e = e(t) and k is a gain matrix.

Proof. The error dynamical system between the drive system (6) and the response system (7) is:

Dα
t e = −kep − e. (11)

(i) If α = 1, the Lyapunov function can be chosen as:

V(t, e) =
1
2

e2. (12)

The time derivative of V is:

V̇(t, e) = ė · e = (−kep − e) · e = −ke1+p − e2 ≤ −ke1+p.

so V̇(t, e) ≤ −2kV
1+p

2 and 0 < p < 1, then, according to Lemma 1, we have a constant T = V(0)
1−p

2

k(1−p) ,
when t > T, e ≡ 0. Therefore, the finite-time anti-synchronization of the chaotic systems (6) and (7) is
achieved under the controller u.

(ii) If 0 < α < 1, the drive system (6) and the response system (7) are fractional-order systems.

[e1, e2, e3]


dαe1
dtα

dαe2
dtα

dαe3
dtα

 = [e1, e2, e3]

 −e1 − kep
1

−e2 − kep
2

−e3 − kep
3


= −e2

1 − ke1+p
1 − e2

2 − ke1+p
2 − e2

3 − ke1+p
3 ≤ −k(e2

1 + e2
2 + e2

3)
1+p

2 .

(13)

By using Lemma 4, we have:

[e1, e2, e3]


dαe1
dtα

dαe2
dtα

dαe3
dtα

 = e1
dαe1
dtα + e2

dαe2
dtα + e3

dαe3
dtα > Γ(2)

Γ(2+α)
dα(e2

1+e2
2+e2

3)
1+α

2

dtα . (14)
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It can be obtained form (13) and (14) that:

Γ(2)
Γ(2 + α)

dα(e2
1 + e2

2 + e2
3)

1+α
2

dtα
< −k(e2

1 + e2
2 + e2

3)
1+p

2 . (15)

Consequently, we obtain:

dα(e2
1 + e2

2 + e2
3)

1+α
2

dtα
(e2

1 + e2
2 + e2

3)
− 1+p

2 < −k
Γ(2 + α)

Γ(2)
, (16)

which implies:

dα(e2
1 + e2

2 + e2
3)

α− 1+p
2

dtα
< −k

Γ(2 + α)

Γ(2)
Γ(α + 1−p

2 )

Γ( 1−p
2 )

. (17)

Integrating both sides of (31) over [0, T] and setting H = e2
1 + e2

2 + e2
3, it follows that:

Hα− 1+p
2 (T)− Hα− 1+p

2 (0) < −k
Γ(2 + α)

Γ(2)
Γ(α + 1−p

2 )

Γ( 1−p
2 )

1
Γ(1 + α)

Tα.

Thus, when:

T <

(
Hα− 1+p

2 (0)
Γ(2)

kΓ(2 + α)

Γ( 1−p
2 )Γ(1 + α)

Γ(α + 1−p
2 )

) 1
α

,

H(T) = 0, i.e., the system (6) and the system (7) are anti-synchronized in a finite time.

3. Application to the Lorenz System of Integer Order

In this section, we apply our results to integer-order Lorentz systems to show that the designed
controller achieves finite-time anti-synchronization control. The drive Lorenz system [42] is given by:

ẋ1 = σ(y1 − x1),
ẏ1 = ρx1 − x1z1 − y1,
ż1 = x1y1 − γz1.

(18)

The response of Lorenz system [42] is given by:
ẋ2 = σ1(y2 − x2) + u1,
ẏ2 = ρ1x2 − x2z2 − y2 + u2,
ż2 = x2y2 − γ1z2 + u3,

(19)

where σ, ρ, γ, σ1, ρ1, and γ1 are unknown systems parameters and u = (u1, u2, u3)
T is the controller

function to be determined. In the following, an effective controller is designed to achieve the finite-time
anti-synchronization Lorenz system with fully-unknown parameters.

Adding (18) to (19), we get:
ė1 = σ1(y2 − x2) + σ(y1 − x1) + u1,
ė2 = ρ1x2 + ρx1 − x2z2 − x1z1 − e2 + u2,
ė3 = x2y2 + x1y1 − γ1z2 − γz1 + u3,

(20)

where e1 = x2 + x1, e2 = y2 + y1, e3 = z2 + z1.
Our goal is to find an effective controller u = (u1, u2, u3)

T , such that the drive system (18)
anti-synchronizes with the response system (19) asymptotically in finite time, i.e., lim

t→T
‖e‖ = 0, where
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e = [e1, e2, e3]
T . The following theorem shows that the drive system (18) and the response system (19)

can achieve anti-synchronization in finite time.

Theorem 2. The controller is designed as:
u1 = −σ1(y2 − x2)− σ(y1 − x1)− e1 − kep

1 ,
u2 = −ρ1x2 − ρx1 + x2z2 + x1z1 − kep

2 ,
u3 = γ1z2 + γz1 − x2y2 − x1y1 − e3 − kep

3 ,
(21)

where k is a positive constant and 0 < p < 1.

Proof. The error dynamical system between the drive system (18) and the response system (19) is:
ė1 = −kep

1 − e1,
ė2 = −kep

2 − e2,
ė3 = −kep

3 − e3.
(22)

If a Lyapunov function candidate is chosen as:

V(t, e) =
1
2

e2. (23)

where:
V(t, e) = [V1(t, e1), V2(t, e2), V3(t, e3)]

T .

The time derivative of V is:

V̇i(t, ei) = ėiei = (−kep
i − ei)e1 = −ke1+p

i − e2
i ≤ −ke1+p

i ≤ −2kV
1+p

2
i , i = 1, 2, 3,

so 0 < 1+p
2 < 1, then according to Lemma 1, we have a constant T = V(0)

1−p
2

k(1−p) , when t > T, e ≡ 0.
Therefore, it can be seen that the error system (20) is stable for a limited time, and we realize finite-time
anti-synchronization between Lorenz systems.

4. Application to the Lorenz System of Fractional Order

In this section, our goal is to apply our control scheme to finite-time anti-synchronization of the
fractional-order Lorenz system. The fractional-order Lorenz system is given as follows [43]:

dαx1
dtα = σ(y1 − x1),

dαy1
dtα = ρx1 − x1z1 − y1,

dαz1
dtα = x1y1 − γz1.

(24)

If the controller is u(t) = [u1(t), u2(t), u3(t)]T , we can get the controlled fractional-order Lorenz
system as follows: 

dαx2
dtα = σ1(y2 − x2) + u1,

dαy2
dtα = ρ1x2 − x2z2 − y2 + u2,

dαz2
dtα = x2y2 − γ1z2 + u3.

(25)

Consequently, the system (24) and (25) yields the fractional-order error system as follows:
dαe1
dtα = σ1(y2 − x2) + σ(y1 − x1) + u1,

dαe2
dtα = ρ1x2 + ρx1 − x2z2 − x1z1 − e2 + u2,

dαe3
dtα = x2y2 + x1y1 − γ1z2 − γz1 + u3,

(26)



Mathematics 2019, 7, 559 7 of 16

where e1 = x2 + x1, e2 = y2 + y1, e3 = z2 + z1. Now, our goal is to design a suitable controller
u(t) = [u1(t), u2(t), u3(t)]T to guarantee that the controlled system (25) and the drive system (24) are
anti-synchronized in finite-time under the situation of uncertain parameters.

Theorem 3. If the controller satisfies:
u1 = −σ1y2 + σx2 − σy1 + σ1x2 − e1 − kep

1 ,
u2 = x2z2 + x1z1 − ρ1x2 − ρx1 − kep

2 ,
u3 = −x2y2 − x1y1 + γ1z2 + γz2 − e3 − kep

3 ,
(27)

where 0 < p < 1, k > 0, the controlled system (24) and the drive system (25) will be anti-synchronized in finite
time T.

Proof.

[e1, e2, e3]


dαe1
dtα

dαe2
dtα

dαe3
dtα

 = [e1, e2, e3]

 −e1 − kep
1

−e2 − kep
2

−e3 − kep
3


= −e2

1 − ke1+p
1 − e2

2 − ke1+p
2 − e2

3 − ke1+p
3 ≤ −k(e2

1 + e2
2 + e2

3)
1+p

2 .

(28)

By using Lemma 4, we can obtain:

[e1, e2, e3]


dαe1
dtα

dαe2
dtα

dαe3
dtα

 = e1
dαe1
dtα + e2

dαe2
dtα + e3

dαe3
dtα > Γ(2)

Γ(2+α)
dα(e2

1+e2
2+e2

3)
1+α

2

dtα . (29)

It can be obtained from (28) and (29) that:

Γ(2)
Γ(2 + α)

dα(e2
1 + e2

2 + e2
3)

1+α
2

dtα
< −k(e2

1 + e2
2 + e2

3)
1+p

2 . (30)

which implies:

dα(e2
1 + e2

2 + e2
3)

α− 1+p
2

dtα
< −k

Γ(2 + α)

Γ(2)
Γ(α + 1−p

2 )

Γ( 1−p
2 )

. (31)

Integrating both sides of (31) over [0, T] and setting H = e2
1 + e2

2 + e2
3, it follows that:

Hα− 1+p
2 (T)− Hα− 1+p

2 (0) < −k
Γ(2 + α)

Γ(2)
Γ(α + 1−p

2 )

Γ( 1−p
2 )

1
Γ(1 + α)

Tα.

Thus, when:

T <

(
Hα− 1+p

2 (0)
Γ(2)

kΓ(2 + α)

Γ( 1−p
2 )Γ(1 + α)

Γ(α + 1−p
2 )

) 1
α

, (32)

H(T) = 0, i.e., the system (24) and the system (25) are anti-synchronized in a finite time.

Remark 1. In this paper, a unified controller was used to control the integer- and fractional-order Lorentz
systems to achieve finite-time anti-synchronization. At the same time, our method can also be extended to
general control problems of integer- and fractional-order chaotic systems with unknown parameters in finite-time
anti-synchronization.
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5. Numerical Simulations

In this section, we will verify the correctness of the main results by several simulation examples
of Lorenz systems of integer- and fractional-order with the same conditions. The simulation method
adopted was the Adams–Bashforth–Morton predictive-correction scheme [44] with a step size of 0.01.
The systems’ parameters were set to σ = 26, ρ = 22, γ = 8

3 ; In addition, for which condition p = 0.9
and k = 0.6. The initial conditions of the systems were taken as x1(0) = 0.1, y1(0) = 0.6, z1(0) =
0.9, x2(0) = 0.5, y2(0) = 1.6, z2(0) = 1.9. According to Lemma 1, the estimated time for integer-order
Lorenz systems (18) and (19) to achieve finite-time anti-synchronization is 18.9501. Figure 1 shows the
state trajectory curves. When the order of fractional Lorentz system is a = 0.96 and a = 0.9 respectively,
the finite time anti-synchronization time of system (24) and system (25) is estimated by using inequality
(32), which is 19.2284 and 19.6110. The simulation results are depicted in Figures 2 and 3. Figure 4
shows that the time T of finite-time anti-synchronization in the Lorentz system varied with the increase
of system order from 0.89 to one. Figures 5–7 further show the effect of order on finite time T.

(a)

(b)

Figure 1. Cont.
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(c)

(d)

Figure 1. State trajectories of Lorenz Systems (18) and (19): (a) signals x1 and x2; (b) signals y1 and y2;
(c) signals z1 and z2; (d) state trajectories of the error signals e1, e2, e3.

(a)

Figure 2. Cont.
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(b)

(c)

(d)

Figure 2. State trajectories of fractional-order Lorenz Systems (24) and (25) when order α = 0.96:
(a) signals x1 and x2; (b) signals y1 and y2; (c) signals z1 and z2; (d) state trajectories of the error signals
e1, e2, e3.
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(a)

(b)

(c)

Figure 3. Cont.
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(d)

Figure 3. State trajectories of fractional-order Lorenz Systems (24) and (25) when order α = 0.9:
(a) signals x1 and x2; (b) signals y1 and y2; (c) signals z1 and z2; (d) state trajectories of the error signals
e1, e2, e3.

Figure 4. Diagram of the relationship between the different orders of the Lorenz systems and the
anti-synchronization of the system in finite-time T.

Figure 5. The error state curves between the drive system and response system with different orders
q = 0.92, 0.96, 1.
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Figure 6. The error state curves between the drive system and response system with different orders
q = 0.92, 0.96, 1.

Figure 7. The error state curves between the drive system and response system with different orders
q = 0.92, 0.96, 1.

Remark 2. The simulation results showed that when the order of the Lorentz chaotic system was larger,
the anti-synchronization time was shorter. In other words, the larger the system order α, the smaller the
finite-time T to achieve finite-time anti-synchronization.

Remark 3. All the simulation methods in this paper were based on the Adams–Bashforth–Morton
prediction-correction scheme [44]. However, the simulation method can also be some other methods, and the
anti-synchronization would be unaffected. For example, the integer-order system can use the standard ode45
solver [45], and the fractional-order system can be simulated by some integration methods, such as the Pade
methods [46].

6. Conclusions

In this paper, the Lyapunov function and fractional derivative theory were used to prove that
the integer- and fractional-order chaotic system with unknown parameters can be controlled by the
unified controller to achieve finite-time anti-synchronization. The validity of the above conclusions
was verified by controlling the integer- and fractional-order unknown parameter Lorentz system with
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a unified controller to achieve finite-time anti-synchronization. At the same time, the reliability of
the above theory and the influence of the order of the Lorentz system with unknown parameters on
the anti-synchronization time T were verified by numerical simulation. In addition, future work
is outlined as follows: how to design a unified controller to realize finite-time synchronization
(anti-synchronization) of time-delay integer- and fractional-order chaotic systems with unknown
parameters and the relationship between finite-time, time-delay, and system order to achieve
synchronization (anti-synchronization).
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