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Abstract: This sequel is concerned with the analysis of projective lag synchronization of
Riemann–Liouville sense fractional order memristive BAM neural networks (FOMBNNs) with
mixed time delays via hybrid controller. Firstly, a new type of hybrid control scheme, which is
the combination of open loop control and adaptive state feedback control is designed to guarantee
the global projective lag synchronization of the addressed FOMBNNs model. Secondly, by using
a Lyapunov–Krasovskii functional and Barbalet’s lemma, a new brand of sufficient criterion is
proposed to ensure the projective lag synchronization of the FOMBNNs model considered. Moreover,
as special cases by using a hybrid control scheme, some sufficient conditions are derived to ensure the
global projective synchronization, global complete synchronization and global anti-synchronization
for the FOMBNNs model considered. Finally, numerical simulations are provided to check the
accuracy and validity of our obtained synchronization results.

Keywords: memristive BAM neural networks; hybrid control; mixed delays; synchronization

1. Introduction

Differential equation and dynamic system modeling have become important research topics
in natural science and engineering technology [1–12]. In 1695, the foundation of non-integer order
calculus, which is a generalization integer order differential and integrals, was first of all discussed
through Guillaume de Leibnitz and Gottfried Wilhelm Leibnitz, and its development were very
gradual for long period [13–16]. However, during the last two decades, the study of fractional
differential equations has been widely applicable to many real world problems. In fact, they have
already been successfully applied in many fields of engineering including but not restricted to market
dynamics [17], neural networks [18] and polarization [19]. In reality, many real-world objects need to
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be described with the aid of fractional order models due to the fact that dynamics of fractional-order
models are more correct than integer-order models. From the application point of view, for the
electronic implementation of bidirectional associative memory (BAM) neural network model, many
of the researchers attempted to update the normal capacitor by fractional capacitor; then, it creates the
fractional order BAM neural network (FOBNNs) models [20–24]. In addition to that, time delays can
impose complexity and restrictions in neural networks and the existence may lead to instability, chaos,
and oscillation [25–34]. At present, a huge amount of research works on the dynamic FOBNNs with
time delays have been discussed. For example, in [20], the authors pointed out the global asymptotical
stability criteria of fuzzy FOBNNs with delays and impulsive effects by Riemann–Liouville derivative,
employing contraction mapping principle and fuzzy theory. In [21], the authors illustrate the global
asymptotic stability issues of FOBNNs with delays and impulses via fractional order Barbalat’s
lemma and Lyapunov-like function. Otherwise, during a particular period, the signal propagation is
distributed because the variety of axon sizes and lengths are too large. In this manner, the attention of
distributed delays is significant in fractional order neural networks (FONNs) dynamical systems, and
there is a huge amount of research works on FONNs with distributed delay—see, for instance, [35,36].
In [20], the existence and Lyapunov-stability of impulsive hybrid FOBNNs with mixed delays were
discussed by Zhang et al. and the sufficient conditions are derived to assure the stability condition of
Hybrid FOBNNs with mixed time-delays via contraction mapping principle, integer order Lyapunov
functional and periodically intermittent control.

In pattern recognition, optimization, and associative memory, memristors have the most crucial
probable applications, which are introduced by Leon Chua in 1971 [37]. Chua’s paper in IEEE
Transactions on Circuit theory in 1971 is considered to be the pioneering work in the corresponding
subject of studies, after almost 40 years, for memristors to change from a definitely theoretic idea into
workable usage. The Hewlett-Packard laboratory established the practically working memristor in
2008 [38]. In [39], Kim et al. successfully proposed memristor bridge synapse architecture and resolved
the difficulty of the problem of nonvolatile synaptic weight garage and put in force recently proposed
hardware learning techniques. After this, the memristor has discovered numerous applications in
various interdisciplinary areas. The resistor is used to simulate the biological synapses of neural
networks circuit implementation, and these biological synapses have the same characteristics as
those of a memristor. Then, by replacing the resistor with a memristor in fractional order neural
networks circuit implementation, the fractional order memristive neural networks (FOMNNs) can
be formulated. Still now, via different approaches, many novel results on the dynamical analysis of
FOMNNs time delays have been reported in [40–43].

The basic idea of chaos synchronization with different initial conditions was initially introduced
by Pecora and Carroll in [44], and it has attracted great attention due to their successful applications
such as artificial intelligence, image processing automatic control, associative memories, and secure
communication. A few coupled structures can synchronize by themselves. However, others
can’t attain synchronization by themselves. On this circumstance, we have applied some suitable
controllers to practical fractional order neural networks system to make certain the corresponding
asymptotic behavior and enhance system performance. During the recent years, various kinds of
control techniques have been developed by many researchers, for instance, [34,45–50]. In [34], by
using the adaptive control and linear delayed feedback control technique, the author discussed the
synchronization of delayed FOMNNs with different orders. In [48], Wu et al. presented some new
conditions on the projective synchronization in finite time of nonidentical neural networks with
fractional order derivative by using sliding mode control theory. In [49], the sufficient conditions are
derived to ensure the finite-time Mittag–Leffler synchronization of delayed FOMNNs with different
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orders by applying the Lyapunov-stability theory and a state feedback control. In Ref. [50], the authors
addressed the lag synchronization for FOMNNs on the basis of period intermittent control, properties
of Mittag–Leffler function and fractional inequality technique. Nevertheless, the synchronization of
FOMBNNs via a hybrid control approach has not yet been investigated. Motivated by the above
arguments, the main novelty of this research work is outlined in detail as follows:

1. Based on the theory of differential inclusions and set valued map analysis, the drive-response
synchronization error system is formulated.

2. A novel hybrid controller, which is the combination of open loop control and adaptive state
feedback control are designed to ensure the projective lag synchronization criteria for FOMBNNs
with mixed time delays.

3. Based on the designed hybrid controller and Barbalats lemma, the projective lag synchronization
criteria for the drive-response models of the considered FOMBNNs are studied demonstrably.

4. As a special case of complete synchronization, anti-synchronization and projective
synchronization of FMNNs is also investigated. Hence, Corollary 3 is new and these results has
not been seen in any of the literature.

5. In contrast to the existing results in the literature, the hybrid control BAM type neural networks
and mixed time delays have not taken into consideration; however, our proposed results make
it up.

2. Preliminaries and Problem Statement

Notations. In this work, N signifies the space of natural numbers from 1 to n, Rn stands for
the space of n-D Euclidean space, respectively. Rm×n stands for the set of all m× n real matrices.
For z(t) = (z1(t), . . . , zn(t))T ∈ Rn, we denote

‖z(t)‖ =
n

∑
i=1
|zi(t)|.

The sign function sign(z) is described by

sign(z) =


1, z > 0,

0, z = 0,

−1, z < 0.

Let C
(
[−ω, 0], Rn

)
describe the family of Banach space, which consists of 1-order continuous

function maps from [−ω, 0] into Rn. Dq denotes the Riemann–Liouville derivative operator with
0 < q < 1. K[L] signifies the closure of the convex hull of set L.

In this section, we will first recall some basic definitions and important properties in fractional
order calculus.

Definition 1. The Riemann–Liouville fractional integral of z(t) is described as [15]:

D−qz(t) =
1

Γ(q)

∫ t

0
(t− γ)q−1z(γ)dγ,

where q ∈ R+.
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Definition 2. The Caputo-type fractional derivative of z(t) is described as [15]:

Dqz(t) =

{
D−(n−q)( dn

dtn z(t)
)
, if q ∈ (n− 1, n),( dn

dtn z(t)
)
, if q = n,

where q ∈ R+, n ∈ Z+.

Definition 3. The Riemann–Liouville fractional derivative of z(t) is described as [15]:

Dqz(t) =
dn

dtn [D
(n−q)z(t)]

=
1

Γ(n− α)

dn

dtn

∫ t

0
(t− γ)n−1−αz(γ)dγ,

where 0 ≤ n− 1 ≤ q < n, n ∈ Z+.

Lemma 1. Let p > 0, q > 0, and x(t), z(t) ∈ C1[0, b]. The following properties hold [15]:

(1) DpD−qx(t) = Dp−qx(t);
(2) DpD−px(t) = x(t);
(3) Dp(x(t)± z(t)) = Dpx(t)± Dpz(t).

Lemma 2. Function ξ(t) is defined on the interval [0,+∞), if function ξ(t) is uniformly continuous and∫ +∞
0 ξ(τ)dτ exists and is bounded, then limt→+∞ ξ(t) = 0 [51].

Motivated by the descriptions in the section above, in this work, we will firstly establish the
model of FOMBNNs that can be represented as below:

Dqyi(t) = −aiyi(t) +
m

∑
j=1

[bji(yi(t))] f j(zj(t)) +
m

∑
j=1

[cji(yi(t))] f j(zj(t− ρ(t)))

+
m

∑
j=1

[dji(yi(t))]
∫ t

t−r(t)
f j(zj(s))ds + Ji, t ≥ 0,

Dqzj(t) = −ujzj(t) +
n

∑
i=1

[vij(zj(t))]gi(yi(t)) +
n

∑
i=1

[wij(zj(t))]gi(yi(t− ρ(t)))

+
n

∑
i=1

[xij(zj(t))]
∫ t

t−r(t)
gi(yi(s))ds + Hj, t ≥ 0, (1)

where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Let y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn and z(t) =

(z1(t), z2(t), . . . , zm(t))T ∈ Rm stands for the neural state vector at time t. ai > 0 and uj > 0
signifies the weight of self feedback connection. f (z(t)) = (( f1(z1(t)), . . . , ( fm(zm(t)))T ∈ Rm and
g(y(t)) = ((g1(y1(t)), . . . , (gn(yn(t)))T ∈ Rn represents the activation function of the neurons. Ji and
Hj denotes external inputs outside the system and ρ(t) > 0 corresponds to the transmission discrete
delays and satisfies 0 < ρ(t) ≤ ρ, ρ̇(t) ≤ σ < 1, ρ is constant, while r(t) signifies the distributed
time-varying delays, which is continuous function and satisfies 0 < r(t) ≤ r, r is positive constant.
The memristor connection weights are defined by
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bji(yi(t)) =

 b?ji, |yi(t)| ≤ Ti

b??ji , |yi(t)| > Ti,
cji(yi(t)) =

 c?ji, |yi(t)| ≤ Ti

c??ji , |yi(t)| > Ti,

dji(yi(t)) =

 d?ji, |yi(t)| ≤ Ti

d??ji , |yi(t)| > Ti,
vij(zj(t)) =

 v?ij, |zj(t)| ≤ T̃j

v??ij , |zj(t)| > T̃j,

wij(zj(t)) =

 w?
ij, |zj(t)| ≤ T̃j

w??
ij , |zj(t)| > T̃j,

xij(zj(t)) =

 x?ij, |zj(t)| ≤ T̃j

x??ij , |zj(t)| > T̃j,

in which switching jumps Ti, T̃j > 0, b?ji, c?ji, d?ji, v?ij, w?
ij, x?ij, b??ji , c??ji , d??ji , v??ij , w??

ij and x??ij are
known positive constants.

According to set-valued map theory and differential inclusion analysis [52,53], FOMBNNs (1)
can be written as follows:

Dqyi(t) ∈ −aiyi(t) +
m

∑
j=1

[K(bji(yi(t)))] f j(zj(t)) +
m

∑
j=1

[K(cji(yi(t)))] f j(zj(t− ρ(t)))

+
m

∑
j=1

[K(dji(yi(t)))]
∫ t

t−r(t)
f j(zj(s))ds + Ji, t ≥ 0

Dqzj(t) ∈ −ujzj(t) +
n

∑
i=1

[K(vij(zj(t)))]gi(yi(t)) +
n

∑
i=1

[K(wij(zj(t)))]gi(yi(t− ρ(t)))

+
n

∑
i=1

[K(xij(zj(t)))]
∫ t

t−r(t)
gi(yi(s))ds + Hj, t ≥ 0. (2)

We define

K[bji(yi(t))] =


b?ji, |yi(t)| ≤ Ti

[bji, b̄ji], |yi(t)| = Ti

b??ji , |yi(t)| > Ti,

K[cji(yi(t))] =


c?ji, |yi(t)| ≤ Ti

[cji, c̄ji], |yi(t)| = Ti

c??ji , |yi(t)| > Ti,

K[dji(yi(t))] =


d?ji, |yi(t)| ≤ Ti

[dji, d̄ji], |yi(t)| = Ti

d??ji , |yi(t)| > Ti,

K[vij(zj(t))] =


v?ij, |zj(t)| ≤ T̃j

[vij, v̄ij], |zj(t)| = T̃j

v??ij , |zj(t)| > T̃j,

K[wij(zj(t))] =


w?

ij, |zj(t)| ≤ T̃j

[wij, w̄ij], |zj(t)| = T̃j

w??
ij , |zj(t)| > T̃j,

K[xij(zj(t))] =


x?ij, |zj(t)| ≤ T̃j

[xij, x̄ij], |zj(t)| = T̃j

x??ij , |zj(t)| > T̃j.



Mathematics 2019, 7, 759 6 of 23

In this work, we define bji = min{b?ji, b??ji }, b̄ji = max{b?ji, b??ji }, cji = min{c?ji, c??ji }, c̄ji =

max{c?ji, c??ji }, dji = min{d?ji, d??ji }, d̄ji = max{d?ji, d??ji }, vij = min{v?ij, v??ij }, v̄ij = max{v?ij, v??ij },
wij = min{w?

ij, w??
ij }, w̄ij = max{w?

ij, w??
ij }, x̄ij = max{x?ij, x??ij }, xij = min{x?ij, x??ij }.

Then, there exist b̂ji(t) ∈ [K(bji(yi(t)))], ĉji(t) ∈ [K(cji(yi(t)))], d̂ji(t) ∈ [K(dji(yi(t)))], v̂ij(t) ∈
[K(vij(zj(t)))], ŵij(t) ∈ [K(wij(zj(t)))] and x̂ij(t) ∈ [K(xij(zj(t)))], the measurable function such that

Dqyi(t) = −aiyi(t) +
m

∑
j=1

b̂ji(t) f j(zj(t)) +
m

∑
j=1

ĉji(t) f j(zj(t− ρ(t))) +
m

∑
j=1

d̂ji(t)
∫ t

t−r(t)
f j(zj(s))ds

+Ji, t ≥ 0

Dqzj(t) = −ujzj(t) +
n

∑
i=1

v̂ij(t)gi(yi(t)) +
n

∑
i=1

ŵij(t)gi(yi(t− ρ(t))) +
n

∑
i=1

x̂ij(t)
∫ t

t−r(t)
gi(yi(s))ds

+Hj, t ≥ 0. (3)

Consider FOMBNNs (1) as a drive system, the response system is given by

Dqỹi(t) = −ai ỹi(t) +
m

∑
j=1

[bji(ỹi(t))] f j(z̃j(t)) +
m

∑
j=1

[cji(ỹi(t))] f j(z̃j(t− ρ(t)))

+
m

∑
j=1

[dji(ỹi(t))]
∫ t

t−r(t)
f j(z̃j(s))ds + Ji + ζi(t), t ≥ 0

Dq z̃j(t) = −uj z̃j(t) +
n

∑
i=1

[vij(z̃j(t))]gi(ỹi(t)) +
n

∑
i=1

[wij(z̃j(t))]gi(ỹi(t− ρ(t)))

+
n

∑
i=1

[xij(z̃j(t))]
∫ t

t−r(t)
gi(ỹi(s))ds + Hj + ς j(t) t ≥ 0. (4)

for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, where ζi(t) and ς j(t) denotes the hybrid control. Let ỹ(t) =
(ỹ1(t), ỹ2(t), . . . , ỹn(t))T ∈ Rn and z̃(t) = (z̃1(t), z̃2(t), . . . , z̃m(t))T ∈ Rm is the neuron state vector of
the response system (4), the parameters can be defined as

bji(ỹi(t)) =

 b?ji, |ỹi(t)| ≤ Ti

b??ji , |ỹi(t)| > Ti,
cji(ỹi(t)) =

 c?ji, |ỹi(t)| ≤ Ti

c??ji , |ỹi(t)| > Ti,

dji(ỹi(t)) =

 d?ji, |ỹi(t)| ≤ Ti

d??ji , |ỹi(t)| > Ti,
vij(z̃j(t)) =

 v?ij, |z̃j(t)| ≤ T̃j

v??ij , |z̃j(t)| > T̃j,

wij(z̃j(t)) =

 w?
ij, |z̃j(t)| ≤ T̃j

w??
ij , |z̃j(t)| > T̃j,

xij(z̃j(t)) =

 x?ij, |z̃j(t)| ≤ T̃j

x??ij , |z̃j(t)| > T̃j.
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By using differential inclusion of response system FOMBNNs (5), in the sense of Filippov,
it follows that

Dqỹi(t) ∈ −ai ỹi(t) +
m

∑
j=1

[K(bji(ỹi(t)))] f j(z̃j(t)) +
m

∑
j=1

[K(cji(ỹi(t)))] f j(z̃j(t− ρ(t)))

+
m

∑
j=1

[K(dji(ỹi(t)))]
∫ t

t−r(t)
f j(z̃j(s))ds + Ji + ζi(t), t ≥ 0

Dq z̃j(t) ∈ −uj z̃j(t) +
n

∑
i=1

[K(vij(z̃j(t)))]gi(ỹi(t)) +
n

∑
i=1

[K(wij(z̃j(t)))]gi(ỹi(t− ρ(t)))

+
n

∑
i=1

[K(xij(z̃j(t)))]
∫ t

t−r(t)
gi(ỹi(s))ds + Hj + ς j(t), t ≥ 0. (5)

We define

K[bji(ỹi(t))] =


b?ji, |ỹi(t)| ≤ T̃j

[bji, b̄ji], |ỹi(t)| = T̃j

b??ji , |ỹi(t)| > T̃j,

K[cji(ỹi(t))] =


c?ji, |ỹi(t)| ≤ T̃j

[cji, c̄ji], |ỹi(t)| = T̃j

c??ji , |ỹi(t)| > T̃j,

K[dji(ỹi(t))] =


d?ji, |ỹi(t)| ≤ T̃j

[dji, d̄ji], |ỹi(t)| = T̃j

d??ji , |ỹi(t)| > T̃j,

K[vij(z̃j(t))] =


v?ij, |z̃j(t)| ≤ T̃j

[vij, v̄ij], |z̃j(t)| = T̃j

v??ij , |z̃j(t)| > T̃j,

K[wij(z̃j(t))] =


w?

ij, |z̃j(t)| ≤ T̃j

[wij, w̄ij], |z̃j(t)| = T̃j

w??
ij , |z̃j(t)| > T̃j,

K[xij(z̃j(t))] =


x?ij, |z̃j(t)| ≤ T̃j

[xij, x̄ij], |z̃j(t)| = T̃j

x??ij , |z̃j(t)| > T̃j.

Then, there exist b̌ji(t) ∈ [K(bji(ỹi(t)))], čji(t) ∈ [K(cji(ỹi(t)))] ďji(t) ∈ [K(dji(ỹi(t)))], v̌ij(t) ∈
[K(vij(z̃j(t)))], w̌ij(t) ∈ [K(wij(z̃j(t)))], and x̌ij(t) ∈ [K(xij(z̃j(t)))] the measurable function such that

Dq ỹi(t) = −ai ỹi(t) +
m

∑
j=1

b̌ji(t) f j(z̃j(t)) +
m

∑
j=1

čji(t) f j(z̃j(t− ρ(t))) +
m

∑
j=1

ďji(t)
∫ t

t−r(t)
f j(z̃j(s))ds

+Ji + ζi(t), t ≥ 0,

Dq z̃j(t) = −uj z̃j(t) +
n

∑
i=1

v̌ij(t)gi(ỹi(t)) +
n

∑
i=1

w̌ij(t)gi(ỹi(t− ρ(t))) +
n

∑
i=1

x̌ij(t)
∫ t

t−r(t)
gi(ỹi(s))ds

+Hj + ς j(t), t ≥ 0. (6)

The initial values of drive-response systems are defined as follows yi(s) = σ̂i(s), zj(s) =

$̂j(s), ỹi(s) = σ̃i(s), z̃j(s) = $̃j(s), respectively, s ∈ [−ω, 0], σ̂i(s), $̂j(s), σ̃i(s), $̃j(s) ∈ C
(
[−ω, 0], R

)
,

where ω = max{ρ, r} f or i = 1, 2, . . . , n, j = 1, 2, . . . , m.
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Before ending this section, we introduce projective lag synchronization definition, which will
play important roles in the proof of our main theorem below.

Definition 4. If there exists a positive constants λ, τ ∈ R, such that for any solutions of FOMBNNs
(1) and (4) with different initial values, one can obtain

lim
t→∞

n

∑
i=1

∣∣∣ỹi(t)− λyi(t− τ)
∣∣∣+ lim

t→∞

m

∑
j=1

∣∣∣|z̃j(t)− λzj(t− τ)
∣∣∣ = 0,

then (1) and (4) can realize global projective lag synchronization, where λ is the projective coefficient and τ is
the projective transmittal delay.

Remark 1. If τ = 0, systems (1) and (4) can realize global projective synchronization. If τ = 0, λ = 1, the (1)
and (4) can realize global complete asymptotical synchronization. if τ = 0, λ = −1, systems (1) and (4) can
realize anti-synchronization.

Remark 2. If λ = 0, the inequality in above Definition 4 is reduced into the following form:

lim
t→∞

n

∑
i=1

∣∣∣ỹi(t)
∣∣∣+ lim

t→∞

m

∑
j=1

∣∣∣z̃j(t)
∣∣∣ = 0.

In this situation, the FOMBNNs (1) is said to be global asymptotical stabilized to the origin.

Assumption (H). The nonlinear activation function f j and gi satisfies the Lipschitz-continuous
if there exists constants Li > 0 and L̃j > 0 such that

|gi(ỹ)− gi(y)| ≤ Li|ỹ− y|
| f j(z̃)− f j(z)| ≤ L̃j|z̃− z|,

for all y, z, ỹ, z̃ ∈ R and i = 1, 2, . . . , n, j = 1, 2, . . . , m.

3. Main Results

In this section, by using the suitable Lyapunov-function, some sufficient conditions are derived
to ensure the global projective lag synchronization via hybrid control schemes, and we will derive to
guarantee the several synchronization criteria for things such as drive-response systems.

Let αi(t) = ỹi(t)− λyi(t− τ), β j(t) = z̃j(t)− λzj(t− τ) and a hybrid controller is designed as

ζi(t) = ζ̂i(t) + ζ̌i(t) and ς j(t) = ς̂ j(t) + ς̌ j(t), (7)
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where

ζ̂i(t) = −λ
m

∑
j=1

[
bji(ỹi(t))− bji(yi(t))

]
f j(zj(t− τ))−

m

∑
j=1

[bji(ỹi(t))]
[
( f j(λzj(t− τ))− λ( f jzj(t− τ))

]
−λ

m

∑
j=1

[
cji(ỹi(t))− cji(yi(t))

]
f j(zj(t− τ − ρ(t− τ)))−

m

∑
j=1

[cji(ỹi(t))]
[

f j(λzj(t− τ

−ρ(t− τ)))− λ( f j(zj(t− τ − ρ(t− τ))))
]
− λ

m

∑
j=1

[
dji(ỹi(t))− dji(yi(t))

] ∫ t

t−r(t)
f j(zj(s− τ))ds

−
m

∑
j=1

[dji(ỹi(t))]
∫ t

t−r(t)

[
f j(λzj(s− τ)− λ( f jzj(s− τ))

]
ds + (λ− 1)Ji,

ζ̌i(t) = −ηi(t)αi(t), η̇i(t) =
−κiθi|αi(t)|

ηi(t)
+ κi|αi(t)|

and

ς̂ j(t) = −λ
n

∑
i=1

[
vij(z̃j(t))− vij(zj(t))

]
gi(yi(t− τ))−

n

∑
i=1

[vij(z̃j(t))]
[

gi(λyi(t− τ))− λ(giyi(t− τ))
]

−λ
n

∑
i=1

[
wij(z̃j(t))− wij(zj(t))

]
gi(yi(t− τ − ρ(t− τ)))−

n

∑
i=1

[wij(z̃j(t))]
[

gi(λyi(t− τ

−ρ(t− τ)))− λ(gi(yi(t− τ − ρ(t− τ))))
]
− λ

n

∑
i=1

[
xij(z̃j(t))− xij(zj(t))

] ∫ t

t−r(t)
gi(yi(s− τ))ds

−
n

∑
i=1

[xij(z̃j(t))]
∫ t

t−r(t)

[
gi(λyi(s− τ))− λ(giyi(s− τ))

]
ds + (λ− 1)Hj,

ς̌ j(t) = −µj(t)β j(t), µ̇j(t) =
−ιjδj|β j(t)|

µj(t)
+ ιj|β j(t)|,

where κi, θi, ξi, ιj, δj and γj are the positive constants, ηi(t) and µj(t) stands for the adaptive
coupling strengths. Based on the hybrid controller scheme (7), combining Equations (2) and (5),
then the synchronization error system can be obtained as follows:

Dqαi(t) ∈ −aiαi(t) +
m

∑
j=1
K[bji(αi(t) + λyi(t− τ))]

[
f j(β j(t) + λzj(t− τ))− f j(λzj(t− τ))

]
+

m

∑
j=1
K[cji(αi(t) + λyi(t− τ))]

[
f j(β j(t− ρ(t)) + λzj(t− τ − ρ(t− τ)))− f j(λzj(t− τ

−ρ(t− τ)))
]
+

m

∑
j=1
K[dji(αi(t) + λyi(t− τ))]

∫ t

t−r(t)

[
f j(β j(s) + λzj(s− τ))

− f j(λzj(s− τ))
]
ds− ηi(t)αi(t), t ≥ 0,

Dqβ j(t) ∈ −uj z̃j(t) +
n

∑
i=1
K[vij(β j(t) + λzj(t− τ))]

[
gi(αi(t) + λyi(t− τ))− gi(λyi(t− τ))

]
+

n

∑
i=1
K[wij(β j(t) + λzj(t− τ))]

[
gi(αi(t− ρ(t)) + λyi(t− τ − ρ(t− τ)))− gi(λyi(t− τ

−ρ(t− τ)))
]
+

n

∑
i=1
K[xij(β j(t) + λzj(t− τ))]

∫ t

t−r(t)

[
gi(αi(s) + λyi(s− τ))

−gi(λyi(s− τ))
]
ds− µj(t)β j(t), t ≥ 0.
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or b̌ji(αi(t) + λyi(t− τ)) ∈ K[bji(αi(t) + λyi(t− τ))], čji(αi(t) + λyi(t− τ)) ∈ K[cji(αi(t) + λyi(t−
τ))], ďji(αi(t)+λyi(t− τ)) ∈ K[dji(αi(t)+λyi(t− τ))], v̌ij(β j(t)+λzj(t− τ)) ∈ K[vij(β j(t)+λzj(t−
τ))], w̌ij(β j(t) + λzj(t− τ)) ∈ K[wij(β j(t) + λzj(t− τ))] and x̌ij(β j(t) + λzj(t− τ)) ∈ K[xij(β j(t) +
λzj(t− τ))] exist such that

Dqαi(t) = −(ai + ηi(t))αi(t) +
m

∑
j=1

b̌ji[(αi(t) + λyi(t− τ))]
[

f j(β j(t) + λzj(t− τ))− f j(λzj(t− τ))
]

+
m

∑
j=1

čji[(αi(t) + λyi(t− τ))]
[

f j(β j(t− ρ(t)) + λzj(t− τ − ρ(t− τ)))− f j(λzj(t− τ − ρ(t

−τ)))
]
+

m

∑
j=1

ďji[(αi(t) + λyi(t− τ))]
∫ t

t−r(t)

[
f j(β j(s) + λzj(s− τ))− f j(λzj(s− τ))

]
ds (8)

and

Dqβ j(t) = −(uj + µj(t))β j(t) +
n

∑
i=1

v̌ij[(β j(t) + λzj(t− τ))]
[

gi(αi(t) + λyi(t− τ))− gi(λyi(t− τ))
]

+
n

∑
i=1

w̌ij[(β j(t) + λzj(t− τ))]
[

gi(αi(t− ρ(t)) + λyi(t− τ − ρ(t− τ)))− gi(λyi(t− τ − ρ(t

−τ)))
]
+

n

∑
i=1

x̌ij[(β j(t) + λzj(t− τ))]
∫ t

t−r(t)

[
gi(αi(s) + λyi(s− τ))− gi(λyi(s− τ))

]
ds. (9)

Theorem 1. Suppose that Assumptions [H] hold, then drive system (1) and response system (4) are globally
projective lag synchronized via hybrid controller (7) if the following conditions hold:

Ω1 = min1≤i≤n

{
ai + θi −∑m

j=1

(
Vij +

Wij
1−σ + ρXij

)
Li

}
> 0,

Θ2 = min1≤j≤m

{
uj + δj −∑n

i=1

(
Bji +

Cji
1−σ + ρDji

)
L̃j

}
> 0.

Here, Bji = max{|b?ji|, |b??ji |}, Cji = max{|c?ji|, |c??ji |}, Dji = max{|d?ji|, |d??ji |}, Vij =

max{|v?ij|, |v??ij |},Wij = max{|w?
ij|, |w??

ij |} and Xij = max{|x?ij|, |x??ij |}, while θi > 0 and δj > 0
denote constants.

Proof. Consider the following Lyapunov-like functional

V(t) = V1(t) + V2(t) + V3(t), (10)

where

V1(t) = D−(1−q)
( n

∑
i=1
|αi(t)|+

m

∑
j=1
|β j(t)|

)
,

V2(t) =
n

∑
i=1

1
2κi

ηi(t)2 +
m

∑
j=1

1
2ιj

µj(t)2,

V3(t) =
m

∑
j=1

n

∑
i=1

Cji L̃j

∫ t

t−τ(t)
|β j(s)|ds +

m

∑
j=1

n

∑
i=1

Dji L̃j

∫ 0

−ρ(t)

∫ t

t+s
|β j(s)|ds

+
n

∑
i=1

m

∑
j=1

WijLi

∫ t

t−τ(t)
|αi(s)|ds +

n

∑
i=1

m

∑
j=1

XijLi

∫ 0

−ρ(t)

∫ t

t+s
|αi(s)|ds.
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Then, by applying the Riemann–Liouville derivative for Lyapunov functional (10), one has

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t), (11)

where

V̇1(t) = Dq
[ n

∑
i=1
|αi(t)|+

m

∑
j=1
|β j(t)|

]
≤

n

∑
i=1

sgn(αi(t))Dqαi(t) +
m

∑
j=1

sgn(β j(t))Dqβ j(t)

≤
n

∑
i=1

sgn(αi(t))
{
− (ai + ηi(t))αi(t) +

m

∑
j=1

b̌ji[(αi(t) + λyi(t− τ))]
[

f j(β j(t) + λzj(t− τ))

− f j(λzj(t− τ))
]
+

m

∑
j=1

čji[(αi(t) + λyi(t− τ))]
[

f j(β j(t− ρ(t)) + λzj(t− τ − ρ(t− τ)))

− f j(λzj(t− τ − ρ(t− τ)))
]
+

m

∑
j=1

ďji[(αi(t) + λyi(t− τ))]
∫ t

t−r(t)

[
f j(β j(s) + λzj(s− τ))

− f j(λzj(s− τ))
]
ds
}
+

m

∑
j=1

sgn(β j(t))
{
− (uj + µj(t))β j(t) +

n

∑
i=1

v̌ij[(β j(t) + λzj(t− τ))]

[
gi(αi(t) + λyi(t− τ))− gi(λyi(t− τ))

]
+

n

∑
i=1

w̌ij[(β j(t) + λzj(t− τ))]
[

gi(αi(t− ρ(t))

+λyi(t− τ − ρ(t− τ)))− gi(λyi(t− τ − ρ(t− τ)))
]
+

n

∑
i=1

x̌ij[(β j(t) + λzj(t− τ))]

∫ t

t−r(t)

[
gi(αi(s) + λyi(s− τ))− gi(λyi(s− τ))

]
ds
}

≤
n

∑
i=1

{
− (ai + ηi(t))|αi(t)|+

m

∑
j=1

Bji L̃j|β j(t)|+
m

∑
j=1

Cji L̃j|β j(t− ρ(t))|

+
m

∑
j=1

Dji L̃j

∫ t

t−r(t)
|β j(s)|ds

}
+

m

∑
j=1

{
− (uj + µj(t))|β j(t)|+

n

∑
i=1

VijLi|αi(t)|

+
n

∑
i=1

WijLi|αi(t− ρ(t))|+
n

∑
i=1

XijLi

∫ t

t−r(t)
|αi(s)|ds

}

V̇2(t) =
n

∑
i=1

2ηi(t)η̇i(t)
2κi

+
m

∑
j=1

2µj(t)µ̇j(t)
2ιj

=
n

∑
i=1

ηi(t)
κi

[−κiθi|αi(t)|
ηi(t)

+ κi|αi(t)|
]
+

m

∑
j=1

µj(t)
ιj

[−ιjδj|β j(t)|
µj(t)

+ ιj|β j(t)|
]

=
n

∑
i=1

[
− θi|αi(t)|+ ηi(t)|αi(t)|

]
+

m

∑
j=1

[
− δj|β j(t)|+ µj(t)|β j(t)|

]
,
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and

V̇3(t) = − 1
1− σ

n

∑
i=1

m

∑
j=1

WijLi

[
(1− ρ̇(t))|αi(t− ρ(t))| − |αi(t)|

]
+

n

∑
i=1

m

∑
j=1

XijLi

∫ 0

−r(t)

[
|αi(t)|

−|αi(t + s)|
]
ds− 1

1− σ

m

∑
j=1

n

∑
i=1

Cji L̃j

[
(1− ρ̇(t))|β j(t− ρ(t))| − |β j(t)|

]
+

m

∑
j=1

n

∑
i=1

Dji L̃j

∫ 0

−r(t)

[
|β j(t)| − |β j(t + s)|

]
ds

≤ −
n

∑
i=1

m

∑
j=1

WijLi|αi(t− ρ(t))|+ 1
1− σ

n

∑
i=1

m

∑
j=1

WijLi|αi(t)|+
n

∑
i=1

m

∑
j=1

XijLir|αi(t)|

−
n

∑
i=1

m

∑
j=1

XijLi

∫ t

t−r(t)
|αi(s)|ds−

m

∑
j=1

n

∑
i=1

Cji L̃j|β j(t− ρ(t))|+ 1
1− σ

m

∑
j=1

n

∑
i=1

Cji L̃j|β j(t)|

+
m

∑
j=1

n

∑
i=1

Dji L̃jr|β j(t)| −
m

∑
j=1

n

∑
i=1

Dji L̃j

∫ t

t−r(t)
|β j(s)|ds.

From Equation (11), it follows that

V̇(t) ≤ −
n

∑
i=1

{
ai + θi −

m

∑
j=1

(
Vij +

Wij

1− σ
+ rXij

)
Li

}
|αi(t)|

−
m

∑
j=1

{
uj + δj −

n

∑
i=1

(
Bji +

Cji

1− σ
+ rDji

)
L̃j

}
|β j(t)|.

We can choose the appropriate positive scalars Ω1, Θ1 such that

V̇(t) ≤ −Ω1

n

∑
i=1
|αi(t)| −Θ1

m

∑
j=1
|β j(t)|

≤ −Υ
[ n

∑
i=1
|αi(t)|+

m

∑
j=1
|β j(t)|

]
≤ −ΥΨ(t),

where Ψ(t) = ∑n
i=1 |αi(t)| + ∑m

j=1 |β j(t)| and Υ = min{Ω1, Θ1}. We can get V(0) ≥ V(t) +

Υ
∫ t

0 Ψ(γ)dγ; it is simple to get
∫ t

0 Ψ(γ)dγ has a finite limit and Ψ(γ) bounded that is αi(t) and
β j(t) is bounded. Therefore, there exist a constant v > 0 such that Dq|Ψ(t)| ≤ v, t ≥ 0 is bounded.
Based on the Barbalet’s Lemma 2, we show that Ψ(t) is uniformly continuous. For 0 ≤ t1 < t2
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∣∣∣Ψ(t1)−Ψ(t2))
∣∣∣ =

∣∣∣(Ψ(t1)−Ψ(0)
)
−
(

Ψ(t2)−Ψ(0)
)∣∣∣

=
∣∣∣D−qDq(Ψ(t1)

)
− D−qDq(Ψ(t2)

)∣∣∣
=

1
Γ(q)

∣∣∣∣∣
∫ t1

0
(t1 − γ)q−1Dq(Ψ(γ)

)
dγ−

∫ t2

0
(t2 − γ)q−1Dq(Ψ(γ)

)
dγ

∣∣∣∣∣
≤ 1

Γ(q)

[∣∣∣ ∫ t1

0
[(t1 − γ)q−1 − (t2 − γ)q−1]Dq(Ψ(γ)

)
dγ
∣∣∣

+
∣∣∣ ∫ t2

t1

(t2 − γ)q−1Dq(Ψ(γ)
)
dγ
∣∣∣]

≤ v

Γ(q)

[∣∣∣ ∫ t1

0
[(t1 − γ)q−1 − (t2 − γ)q−1]dγ

∣∣∣+ ∣∣∣ ∫ t2

t1

(t2 − γ)q−1dγ
∣∣∣]

≤ 2v

qΓ(q)

[
tq
1 − tq

2 + 2(t2 − t1)
q
]

≤ 2v

Γ(q + 1)

(
t2 − t1

)q
< ε,

where |t2 − t1| < ε(ι) =
q
√

ιΓ(q+1)
2v . Thus, Ψ(t) is uniformly continuous, by Lemma 2, we have

lim
t→+∞

n

∑
i=1
|αi(t)| = 0

and

lim
t→+∞

m

∑
j=1
|β j(t)| = 0.

Therefore, based on Definition 4, systems (1) and (4) are globally projective lag synchronized via
hybrid controller (7). The proof is completed.

Suppose the systems (1) and (4) are without distributed delay, then we have to select the following
hybrid controller in a response system such as

ζi(t) = ζ̂i(t) + ζ̌i(t) and ς j(t) = ς̂ j(t) + ς̌ j(t), (12)
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where

ζ̂i(t) = −λ
m

∑
j=1

[
bji(ỹi(t))− bji(yi(t))

]
f j(zj(t− τ))−

m

∑
j=1

[bji(ỹi(t))]
[
( f j(λzj(t− τ))− λ( f j(zj(t− τ)))

]
−λ

m

∑
j=1

[
cji(ỹi(t))− cji(yi(t))

]
f j(zj(t− τ − ρ(t− τ)))

−
m

∑
j=1

[cji(ỹi(t))]
[

f j(λzj(t− τ − ρ(t− τ)))− λ( f j(zj(t− τ − ρ(t− τ)))
]
+ (λ− 1)Ji

ζ̌i(t) = −ηi(t)αi(t), η̇i(t) =
−κiθi|αi(t)|

ηi(t)
+ κi|αi(t)|

and

ς̂ j(t) = −λ
n

∑
i=1

[
vij(z̃j(t))− vij(zj(t))

]
gi(yi(t− τ))−

n

∑
i=1

[vij(z̃j(t))]
[

gi(λyi(t− τ))− λ(gi(yi(t− τ))
]

−λ
n

∑
i=1

[
wij(z̃j(t))− wij(zj(t))

]
gi(yi(t− τ − ρ(t− τ)))

−
n

∑
i=1

[wij(z̃j(t))]
[

gi(λyi(t− τ − ρ(t− τ)))− λ(gi(yi(t− τ − ρ(t− τ)))
]
+ (λ− 1)Hj

ς̌ j(t) = −µj(t)β j(t), µ̇j(t) =
−ιjδj|β j(t)|

µj(t)
+ ιj|β j(t)|.

These corollaries are directly obtained from our main Theorem 3.

Corollary 1. Suppose that Assumptions [H] hold, then drive system (1) and response system (4) without
distributed delay are globally projective lag synchronized via hybrid controller (12), if the following
conditions hold:

Ω1 = min
1≤i≤n

{
ai + θi −

m

∑
j=1

(
Vij +

Wij

1− σ

)
Li

}
> 0,

Θ2 = min
1≤j≤m

{
uj + δj −

n

∑
i=1

(
Bji +

Cij

1− σ

)
L̃j

}
> 0,

where Bji = max{|b?ji|, |b??ji |}, Cji = max{|c?ji|, |c??ji |}, Vij = max{|v?ij|, |v??ij |} and Wij =

max{|w?
ij|, |w??

ij |}, θi, ξi, δj and γj denotes the appropriate positive constants.

Proof. The proof is repeated to Theorem 3. Hence, the proof is omitted here.

Supposing the drive-response systems are without discrete and distributed delay, then we have
to select the following hybrid controller in a response system such as

ζi(t) = ζ̂i(t) + ζ̌i(t) and ς j(t) = ς̂ j(t) + ς̌ j(t), (13)
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where

ζ̂i(t) = −λ
m

∑
j=1

[
bji(ỹi(t))− bji(yi(t))

]
f j(zj(t))−

m

∑
j=1

[bji(ỹi(t))]
[
( f j(λzj(t))− λ( f jzj(t))

]
+ (λ− 1)Ji

ζ̌i(t) = −ηi(t)αi(t), η̇i(t) =
−κiθi|αi(t)|

ηi(t)
+ κi|αi(t)|,

ς̂ j(t) = −λ
n

∑
i=1

[
vij(z̃j(t))− vij(zj(t))(t)

]
gi(yi(t))−

n

∑
i=1

[vij(z̃j(t))]
[

gi(λyi(t))− λ(giyi(t))
]
+ (λ− 1)Hj,

ς̌ j(t) = −µj(t)β j(t), µ̇j(t) =
−ιjδj|β j(t)|

µj(t)
+ ιj|β j(t)|.

These corollaries are directly obtained from our main Theorem 3.

Corollary 2. Suppose that Assumptions [H] hold, then systems (1) and (4) are without discrete and distributed
delay are globally projective lag synchronized via hybrid controller (13) if the following conditions hold:

Ω1 = min
1≤i≤n

{
ai + θi −

m

∑
j=1

VijLi

}
> 0,

Θ2 = min
1≤j≤m

{
uj + δj −

n

∑
i=1

Bji L̃j

}
> 0.

where Bji = max{|b?ji|, |b??ji |} and Vij = max{|v?ij|, |v??ij |}, θi and δj denotes the appropriate
positive constants.

Proof. The proof is similar to the proof of Theorem 3. Hence, the proof is omitted here.

Let αi(t) = ỹi(t)− λyi(t) and β j(t) = z̃j(t)− λzj(t). If τ = 0, the control input (7) can be reduced
into the following form:

ζi(t) = −λ
m

∑
j=1

[
bji(ỹi(t))− bji(yi(t))

]
f j(zj(t))− λ

m

∑
j=1

[
cji(ỹi(t))− cji(yi(t))

]
f j(zj(t− ρ(t)))

−λ
m

∑
j=1

[
dji(ỹi(t))− dji(yi(t))

] ∫ t

t−r(t)
f j(zj(s))ds−

m

∑
j=1

[bji(ỹi(t))]
[
( f j(λzj(t))− λ( f j(zj(t))

]
−

m

∑
j=1

[cji(ỹi(t))]
[

f j(λzj(t− ρ(t)))− λ( f j(zj(t− ρ(t)))
]
−

m

∑
j=1

[dji(ỹi(t))]
∫ t

t−r(t)

[
f j(λzj(s)

−λ( f jzj(s))
]
ds + (λ− 1)Ji − ηi(t)αi(t), (14)

ς j(t) = −λ
n

∑
i=1

[
vij(z̃j(t))− vij(zj(t))

]
gi(yi(t))− λ

n

∑
i=1

[
wij(z̃j(t))− wij(zj(t))

]
gi(yi(t− ρ(t)))

−λ
n

∑
i=1

[
xij(z̃j(t))− xij(zj(t))

] ∫ t

t−r(t)
gi(yi(s))ds−

n

∑
i=1

[vij(z̃j(t))]
[

gi(λyi(t))− λ(gi(yi(t)))
]

−
n

∑
i=1

[wij(z̃j(t))]
[

gi(λyi(t− ρ(t)))− λ(gi(yi(t− ρ(t))))
]
−

n

∑
i=1

[xij(z̃j(t))]
∫ t

t−r(t)

[
gi(λyi(s))

−λ(giyi(s))
]
ds + (λ− 1)Hj − µj(t)β j(t). (15)
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Let αi(t) = ỹi(t)− yi(t) and β j(t) = z̃j(t)− zj(t). If τ = 0 and λ = 1, the control input (7) can be
reduced into the following form:

ζi(t) = −
m

∑
j=1

[
bji(ỹi(t))− bji(yi(t))

]
f j(zj(t))−

m

∑
j=1

[
cji(ỹi(t))− cji(yi(t))

]
f j(zj(t− ρ(t)))

−
m

∑
j=1

[
dji(ỹi(t))− dji(yi(t))

] ∫ t

t−r(t)
f j(zj(s))ds− ηi(t)αi(t), (16)

ς j(t) = −
n

∑
i=1

[
vij(z̃j(t))− vij(zj(t))

]
gi(yi(t))−

n

∑
i=1

[
wij(z̃j(t))− wij(zj(t))

]
gi(yi(t− ρ(t)))

−
n

∑
i=1

[
xij(z̃j(t))− xij(zj(t))

] ∫ t

t−r(t)
gi(yi(s))ds− µj(t)β j(t). (17)

Let αi(t) = ỹi(t) + yi(t) and β j(t) = z̃j(t) + zj(t). If τ = 0 and λ = −1, the control input (7) can
be reduced into the following form:

ζi(t) = −
m

∑
j=1

bji(yi(t)) f j(zj(t))−
m

∑
j=1

cji(yi(t)) f j(zj(t− ρ(t)))−
m

∑
j=1

dji(yi(t))
∫ t

t−r(t)
f j(zj(s))ds

−
m

∑
j=1

bji(ỹi(t)) f j(−zj(t))−
m

∑
j=1

cji(ỹi(t)) f j(−zj(t− ρ(t)))

−
m

∑
j=1

dji(ỹi(t))
∫ t

t−r(t)
f j(−zj(s))ds− 2Ji − ηi(t)αi(t), (18)

ς j(t) = −
n

∑
i=1

vij(zj(t))gi(yi(t))−
n

∑
i=1

wij(zj(t))gi(yi(t− ρ(t)))−
n

∑
i=1

xij(zj(t))
∫ t

t−r(t)
gi(yi(s))ds

−
n

∑
i=1

vij(z̃j(t))gi(−yi(t))−
n

∑
i=1

wij(z̃j(t))gi(−yi(t− ρ(t)))

−
n

∑
i=1

xij(z̃j(t))
∫ t

t−r(t)
gi(−yi(s))ds− 2Hj − µj(t)β j(t). (19)

Corollary 3. Supposing that Assumptions [H] hold and conditions of Theorem 3 hold, then systems (1) and
(4) are globally projective synchronized, globally complete synchronized, globally anti-synchronized based on
the hybrid controller (14) and (15), (16), (17) and (18), (19) when η̇i(t), µ̇j(t) designs as follows:

η̇i(t) =
−κiθi|αi(t)|

ηi(t)
+ κi|αi(t)|, µ̇j(t) =

−ιjδj|β j(t)|
µj(t)

+ ιj|β j(t)|,

where κi, θi, ξi, ιj, δj and γj denote the positive constants, ηi(t) and µj(t) denotes the adaptive constants.

Proof. The proof of Corollary 3 is similar to the proof of Theorem 3. Hence, the proof is
omitted here.
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Remark 3. In [54], the author considers lag-synchronization error systems as g̃(e(t − ρ(t))) = g(y(t −
ρ(t)))− g(x(t− σ− ρ(t))), where σ is lag transmittal delay. However, the author of [46] argues that the
above synchronization error systems are not valid—thus corrected lag synchronization error systems such as
g̃(e(t− ρ(t))) = g(y(t− ρ(t)))− g(x(t− σ− ρ(t− σ))). In addition, the above consideration affects the
validity of obtained proposed results. Here, evidently, we can choose the corrected lag synchronization errors
with a projective sense. Thus, our error models are more valid and reasonable.

Remark 4. Suppose memristive connection weights satisfy these conditions b?ji = b??ji , c?ji = c??ji , d?ji =

d??ji , v?ij = v??ij , w?
ij = w??

ij and z?ij = z??ij . Our problems turn up to the hybrid control for a general class of
global projective lag synchronization of Riemann–Liouville type FOMBNNs with mixed time delays. In fact,
we can easily derive from Theorem 3 to lag projective synchronization criteria for considered network models by
employing the hybrid control method. When q = 1, our result is still true for an integer order case.

Remark 5. In order to portray how to tune the control gains to achieve the projective lag synchronization goal
for considered FOMBNNs, we take Theorem 3 and present some rules, which are listed below:

1. Based on the hybrid control, we choose the values of τ, ρ, σ, ai, uj, v?ij, w?
j , x?ij, b?ji, c?ji, d?ji, Li and Lj

according to assumptions and system parameters.
2. Next, justify whether

θi >

[
m

∑
j=1

(
Vij +

Wij

1− σ
+ rXij

)
Li − ai

]
,

δj >

[
n

∑
i=1

(
Bji +

Cji

1− σ
+ ρDji

)
L̃j − uj

]
.

When we adjust the above parameters of the system, then the control gains of the hybrid controller (7) can
be tuned slightly to realize a projective synchronization goal.

3. Next, we choose a time lag ϑ = 2 and projective coefficient λ = 3.
4. Then, by using the dedicated simulation software tools and also selecting the simulation step size h = 0.01,

the output trajectories confirm that the tuned control gains converge gradually to some positive constants.

Remark 6. Basically, the Lyapunov method provides a very effective tool to realize synchronization analysis
of a nonlinear system. However, it is very complicated to calculate the fractional order derivative of an
auxiliary function. In order to avoid this complication, we design the integer order auxiliary function including
fractional order derivative and integral terms and it helps to calculate its first-order derivative of an auxiliary
function, which is guaranteed by the Definition of R-L fractional order differentiation and integration. The
main advantage of our proposed method is that we can avoid calculating the fractional-order derivatives of the
Lyapunov functional.

4. Numerical Example

Consider a vector form of two-state FOMBNNs as follows:

Dqy(t) = −Ay(t) + B(y(t)) f (z(t)) + C(y(t)) f (z(t− ρ(t))) + D(y(t))
∫ t

t−r(t)
f (z(s))ds + J,

Dqz(t) = −Uz(t) + V(z(t))g(y(t)) + W(z(t))g(y(t− ρ(t))) + X(z(t))
∫ t

t−r(t)
g(y(s))ds + H, (20)
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where q = 0.97, y(t) = (y1(t), y2(t))T , z(t) = (z1(t), z2(t))T , f (z) = ( f1(z1), f2(z2))
T , g(y) =

(g1(y1), g2(y2))
T , f j(zj) = tanh(zj), gi(yi) = tanh(yi), ρ(t) = 0.8et

1+et , r(t) = 0.5 cos t + 1, σ = 0.2 <

1, r = 1, ρ = 2, J = (0 0)T , H = (0 0)T , a1 = a2 = 4, u1 = u2 = 5, and

B(y(t)) =

(
b11(y1) −3

2 b22(y2)

)
, C(y(t)) =

(
c11(y1) 1
−5 c22(y2)

)
, D(y(t)) =

(
d11(y1) 3
−2 d22(y2)

)
,

V(z(t)) =

(
v11(z1) −1.8
−2.5 v22(z2)

)
, W(z(t)) =

(
w11(z1) −2.8

4.5 w22(z2)

)
, X(z(t)) =

(
x11(z1) −3.8

2 x22(z2)

)
,

b11(y1(t)) =

{
2.31, |y1(t)| ≤ 1

−2.31, |y1(t)| > 1,
b22(y2(t)) =

{
2, |y2(t)| ≤ 1

−2, |y2(t)| > 1,

c11(y1(t)) =

{
1.62, |y1(t)| ≤ 1

−1.62, |y1(t)| > 1,
c22(y2(t)) =

{
2.5, |y2(t)| ≤ 1

−2.5, |y2(t)| > 1,

d11(y1(t)) =

{
1.3, |y1(t)| ≤ 1

−1.3, |y1(t)| > 1,
d22(y2(t)) =

{
1.72, |y2(t)| ≤ 1

−1.72, |y2(t)| > 1.

v11(z1(t)) =

{
0.81, |z1(t)| ≤ 1

−0.81, |z1(t)| > 1,
v22(z2(t)) =

{
0.88, |z2(t)| ≤ 1

−0.88, |z2(t)| > 1,

w11(z1(t)) =

{
1.37, |z1(t)| ≤ 1

−1.37, |z1(t)| > 1,
w22(z2(t)) =

{
1.03, |z2(t)| ≤ 1

−1.03, |z2(t)| > 1,

x11(z1(t)) =

{
1.21, |z1(t)| ≤ 1

−1.21, |z1(t)| > 1,
x22(z2(t)) =

{
0.42, |z2(t)| ≤ 1

−0.42, |z2(t)| > 1.

The response system is given by

Dq ỹ(t) = −Aỹ(t) + B(ỹ(t)) f (z̃(t)) + C(ỹ(t)) f (z̃(t− ρ(t))) + D(ỹ(t))
∫ t

t−r(t)
f (z̃(s))ds + J + ζ(t),

Dq z̃(t) = −Uz̃(t) + V(z̃(t))g(ỹ(t)) + W(z̃(t))g(ỹ(t− ρ(t))) + X(z̃(t))
∫ t

t−r(t)
g(ỹ(s))ds + H + ς(t), (21)

where ζ(t) = (ζ1(t), ζ2(t))T and ς(t) = (ς1(t), ς2(t))T. All other parameters are similar to that defined in a
drive system. In hybrid control scheme (7), we can choose ηi(0) = µj(0) = 0.01, κi = θi = 0.1, ιj = δi =

0.1 for i, j = 1, 2. θ1 = 11.6, θ2 = 11.5, δ1 = 7, δ2 = 7.5 and λ = 3, , L1 = L2 = 0.8, L̃1 = 0.5, L̃2 = 0.4.
It is easy to check the following inequities hold
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min
i

{
ai + θi −

m

∑
j=1

(
Vij +

Wij

1− σ
+ rXij

)
Li

}
> 0,

min
j

{
uj + δj −

n

∑
i=1

(
Bji +

Cji

1− σ
+ rDji

)
L̃j

}
> 0

for i, j = 1, 2. Based on Theorem 3, the drive-response systems (20) and (21) are globally projective lag
synchronized via hybrid controller (7). Next, we select the initial values of FOMBNNs (20) and (21)
as (y(t), z(t)) = (1.8,−1.5,−1.9,−0.5) and (ỹ(t), z̃(t)) = (−1.2, 1.1,−1.1,−1.2). The projective lag
synchronization error evolution for state variables are depicted in Figures 1 and 2, which shows that
synchronization of projective error dynamical systems converges to origin, while the adaptive control
gains are provided in Figures 3 and 4, which confirms that the adaptive control gains converge to
some positive constants.
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Figure 1. The error state trajectory of ri(t) and r̃j(t).
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Figure 2. The error state trajectory of ri(t) and r̃j(t).
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Figure 3. The control gains of controller (7).
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Figure 4. The control gains of controller (7).

5. Conclusions

In this research work, a hybrid control scheme for projective lag synchronization of FOMBNNs with
mixed delays is investigated. On the one hand, by a key role of Lyapunov theory, differential inclusion
theory and fractional order Barbalet’s lemma, some novel sufficient conditions have been established
to assure the projective lag synchronization of the designed fractional order neural network model.
On the other hand, as a special case of complete synchronization, anti-synchronization and projective
synchronization of FOMBNNs are also investigated, and these results have not been seen yet. Lastly, we
give some computer simulations to delineate the correctness of the proposed main consequences.

In [50,54,55], the authors discussed lag synchronization of integer and fractional order memristive
neural networks with switching jump mismatch, based on different control approaches including
a state feedback control, period intermittent control. In [56,57], authors proposed the projective
synchronization with (or without) memristive neural networks via hybrid control schemes in the
Caputo sense. Inspired by [21], the author derived asymptotic stability conditions of delayed
FOMBNNs via fractional Barbalat’s Lemma and R-L derivative properties. However, the hybrid
control for projective lag synchronization with the combination of the Riemann–Liouville sense
fractional order memristive BAM neural networks model is discussed for the first time in this work.
Moreover, the presented hybrid control can be applied for solving projective lag synchronization of
Riemann–Liouville sense fractional order Cohen–Grossberg coupled neural networks with mixed
delays, and we will consider this interesting issue for future work.
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