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Abstract: The foreign exchange (FX) market, one of the important components of the financial market,
is a typical complex system. In this paper, by resorting to the complex network method, we use the
daily closing prices of 41 FX markets to build the dynamical networks and their minimum spanning
tree (MST) maps by virtue of a moving window correlation coefficient. The properties of FX networks
are characterized by the normalized tree length, node degree distributions, centrality measures and
edge survival ratios. Empirical results show that: (i) the normalized tree length plays a role in
identifying crises and is negatively correlated with the market return and volatility; (ii) 83% of FX
networks follow power-law node degree distribution, which means that the FX market is a typical
heterogeneous market, and a few hub nodes play key roles in the market; (iii) the highest centrality
measures reveal that the USD, EUR and CNY are the three most powerful currencies in FX markets;
and (iv) the edge survival ratio analysis implies that the FX structure is relatively stable.

Keywords: foreign exchange markets; complex network; minimum spanning tree;
market phenomena

1. Introduction

The foreign exchange (FX) market is the most liquid and largest financial market [1–3]. It identifies
the exchange rates of global trade and also determines the relative wealth of a country [4–6].
The volatility of the FX market is affected by many factors, and its occurrence, formation and evolution
show the typical feature of complex system [7–9]. To date, networks and dynamics modeling have
attracted great attention in natural, social science and engineering technology [10–22]. Using complex
network theory to study the FX market has become popular [23–29].

In general, there are two methods to build FX networks: one is to use static methods and the other
is to employ time-varying methods. Mcdonald et al. [30] was the pioneer for adopting the Pearson
correlation coefficient and the minimum spanning tree (MST) method to build the static FX network
and found that USD was predominant. Thereafter, similar studies applied these methods to analyze
the static FX network topology, such as community structure [31–33], node degree distributions [34]
and centrality measures [35–37]. In addition, other methods are adopted to establish an FX network
and studied their static characteristics. Wang and Xie [38] applied the copula model and the MST
method to build an FX network, and the study found that USD plays a dominant role in the FX market.
Cao et al. [39] utilized the mutual information method and threshold method to set up an FX network,
and the research found that the FX network displayed small world properties.

Notably, the literature above is all based on topology properties of the static FX network. However,
the FX market is constantly changing and the connections between the FX network are variable.
Dynamic FX networks are better to describe the structural variation. Fenn et al. [40] used the
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moving window Pearson correlation coefficient and the MST method to construct dynamic FX
networks and found that community structure had a significant change during the sub-prime crisis.
Similarly, Wang et al. [41] found that USD was the most influential currency during the sub-prime
crisis. Fenn et al. [42] discovered that the communities of the FX network had an obvious variation
during the Mexican peso crisis, the Asian currency crisis and the sub-prime crisis.

The studies of dynamic FX networks are related to the structural variation during the significant
events, such as the Mexican peso crisis, the Asian currency crisis and the sub-prime crisis [40–42].
Some research has also confirmed that the European debt crisis and the CNY’s participation in
special drawing rights has an impact on the FX market [43,44]. However, these studies lack a network
perspective because of FX markets being interconnected [45]. In addition, investors are more concerned
about the return [46–50] and volatility [51–55] levels of the FX market. Literature dealing with the
relationship between the topology variation of networks and FX market’s return and volatility has not
been studied. Such research not only helps us understand the topology variation of FX networks, but
also provides good guidance for the risk management of FX investment.

In this paper, we employ a moving window Pearson correlation coefficient in the daily closing
prices of 41 FX markets from January 2005 to December 2017. Then, we use the MST method to
construct the corresponding networks. The topology evolution of FX networks is depicted by the
normalized tree length, node degree distributions, centrality measures and edge survival ratios.

The crucial novelty of this paper is highlighted in the following aspects:

1. Taking fully into consideration of the temporal characteristics of the FX market, using the method
of the moving window correlation coefficient, we establish dynamic networks instead of a static
network to investigate the FX market.

2. This paper originally revealed that the normalized tree length of the FX network is strongly
correlated with the European debt crisis and the CNY’s participation in special drawing rights by
employing the complex network method.

3. Literature dealing with the FX market is largely restricted to the return and volatility; investigation
combining the topology variation of FX networks and market’s return and volatility appears to
be scarce. Our research fills this gap.

The reminder of this paper is arranged as follows: Section 2 introduces the methodology. Section 3
gives an empirical analysis. Section 4 presents some conclusions.

2. Methodology

In this section, we first propose a moving window correlation coefficient and the MST method to
construct dynamic FX networks. Then, in order to measure the properties of networks, we introduce
the definitions of normalized tree length, node degree distribution, node degree and node strength,
betweenness centrality, closeness centrality and edge survival ratio. Lastly, we present measures of
market phenomena, such as the moving window return and volatility.

2.1. Network Construction

A network is generally defined as a set of nodes linked by edges. If we build time-varying FX
networks, each FX market represents a network node, and each pair of the FX markets is linked with an
edge calculated by a moving window Pearson correlation coefficient. Although the Pearson correlation
coefficient neglects the analysis of monotonic associations [56], it is the simplest method to describe
the correlation between financial market and is widely used to construct FX network [30–33].

The evolution process of the FX network is investigated by setting a time window with a length of
T days and moving the window along time. A new network is gained after each window replacement.
This procedure is repeated until the end of the original time series is attained. In other words, the first
network is established by using Pearson correlation coefficient to calculate the correlation between
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each pair of FX returns from the sample beginning at day t1
1 = 1 and terminating at day t1

2 = ϕ.
The Pearson correlation coefficient of the return series of FX i and j in the mth window is defined as:
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where 〈· · · 〉 represent the statistical mean value, −1 ≤ Cm
i,j ≤ 1, Rm

i (t) = ln CPm
i (t)− ln CPm

i (t− 1),
Rm

i (t) stands for FX i at day t in the mth window and CPm
i (t) denotes the closing price of FX rates i on

days t.
The second network is built by employing Pearson correlation coefficient to calculate the

correlation between each pair of FX returns from the sample starting at day t2
1 = 1 + τ and ending at

day t2
2 = ϕ + τ, and so on. Consequently, we can get the number of N (N = 1 + T − ϕ) networks.
However, such Pearson correlation coefficient network displays all the connections, which could

cause the picture to be unreadable [36]. Minimum spanning tree (MST) graph is an appropriate method
in this paper [30–33].

Before we obtain a MST network, the Pearson correlation coefficient matrix ought to be converted
into a distance matrix according to Mantegna [57]. The distances are defined as follows:

dm
i,j =

√
2
(

1− Cm
i,j

)
. (2)

Based on the obtained distance matrix, this paper adopts the MST method to construct the FX
network according to the Kruskal [58] algorithm. Here is a brief introduction to the MST method:

(1) Created a network edge matrix (which contains (41× 41)
/

2 edges) and sorted increase
progressively based on distances.

(2) Chose the first element (that is, the smallest distance) and connected them to form one edge.
(3) Selected the next element and connected to constitute an edge. If it can make the network graph

tree-like (ie, it cannot form a ring), then the edge was kept, otherwise the edge was abandoned.
(4) Repeated step (3) until all elements were exhausted.

We construct the MST network in each window, and one thus obtains N successive networks.

2.2. Network Topological Properties

2.2.1. Normalized Tree Length

Normalized tree length (NTL) captures the FX network’s average distance of edges [59]. It is
defined as:

NTLm =
1

N − 1 ∑
dm

a,b∈Em
dm

a,b, (3)

where dm
a,b stands for the distance from node a to node b, and Em denotes the edge set of the FX network.

2.2.2. Node Degree and Node Strength

Node degree denotes the quantity of nodes which is adjacent to node i [60]. It is defined as:

ki = ∑
j∈Ni

Aij, (4)

where Aij represents the adjacent matrix to the FX network.
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Node strength reflects the importance of the node’s on FX network. It is defined as [61]:

si = ∑
j∈Ni

wij, (5)

where Ni is the number of neighbor node; wij represents the Pearson correlation coefficient between
node i and node j.

2.2.3. Node Degree Distribution

A large number of studies have been demonstrated that the node degree of numerous actual
networks obey paw-law distribution[62–64]. The cumulative distribution function of node degree is
defined as:

P(k) =
(

k
kmin

)−β+1
, (6)

where k is expressed as the degree set of the node {ki |i = 1, 2, · · · , N } , kmin represents the power-law’s
lower bound model, and the β can be estimated by maximum likelihood.

Generally, in order to judge for the power-law distribution, there are several statistics, such as
Cramer–von Mises, Kolmogorov–Smirnov, Anderson–Darling, Kuiper V, Watson U2, and H1 Statistic
are employed [65]. This paper employs the K–S statistic to judge for it because the K–S statistic is
one of the commonly adopted statistics to identify whether the degree of nodes obeys power-law
distribution [66–68].

2.2.4. Betweenness Centrality

The betweenness centrality (CB (vc) ) describes the intermediate process between other nodes.
The larger value of CB (vc), the more important positions a node possesses [69]. It is defined as:

CB (vc) =
1

(N − 2) (N − 1) ∑
a,b

nab (c)
nab

, (7)

where nab denotes the quantity of the shortest paths from node a to node b, and nab (c) stands for the
quantity of nab shortest paths from node a to node b through node c.

2.2.5. Closeness Centrality

Closeness centrality (cm
a ) measures the mean of the distance from node a to all others [70].

Those strongly linked to the core nodes usually possess a larger value of closeness centrality.
The closeness centrality is defined as:

Cm
a =

1
N
∑

j=1
lab

, (8)

where la,b symbolizes the shortest distance from node a to node b.

2.2.6. Survival Ratio

The survival ratio depicts the FX network topology robustness [59]. The single-step survival ratio
measures common edges in the two successive FX networks, and it is defined as:

ϕ (s) =
1

N − 1

∣∣∣Es ∩ Es−1
∣∣∣ , (9)

where |·| denotes the quantity of the elements in the set and ∩ represents the intersection operator.
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In order to identify the relative long time stability of edges, we compute the multi-step survival
ratio as:

ϕ (s, k) =
1

N − 1

∣∣∣Es ∩ Es−1 · · · ∩ Es−k+1 ∩ Es−k
∣∣∣ , (10)

where ϕ (s, k) indicates the k-step survival ratio of edges in the FX network. A larger value for ϕ (s, k)
implies higher robustness of the FX network.

2.3. Market Phenomena

This paper defines the market phenomena as a moving window return and volatility of the
individual FX market i in each w-day window [62].

The return rm
i of FX i in the mth ω-day window is defined as:

rm
i =

1
ω ∑

t
Rm

i (t), (11)

where Rm
i denotes the log-return of FX i.

The volatility σm
i is calculated as follows:

σm
i =

√
∑t(Rm

i (t)− rm)2

ω
. (12)

3. Empirical Analysis

3.1. Data

This paper analyzes the FX rate of 41 countries or regions from 2005 to 2017. The data are (For
the missing data of FX, this paper makes up for the previous trading day.) made up of closing prices
offered by the Pacific exchange rate service (http://fx.sauder.ubc.ca/data.html). The FX rates are
priced against each other. Therefore, the choice of the base currency is very important. There are
usually two methods for the choice of the base currency: one is to select the currency that has less
influence on the world economy, for example, the Turkish lira [32]; and the other is to select a basket of
currencies that can reflect world economy, for example, special drawing rights. Like in the literature
of [38,67,71], we choose special drawing rights as a base currency. The 41 countries or regions are from
seven continents, and the corresponding symbols are displayed in Table 1.

http://fx.sauder.ubc.ca/data.html
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Table 1. Forty-one countries or regions and corresponding symbols.

Continent Country Symbol Continent Country Symbol

Africa Egyptian Pound EGP Europe Romania RON
South Africa ZAR Russia RUB

Asia China CNY Sweden SEK
India INR Switzerland CHF

Indonesia IDR Turkey TRY
Japan JPY Middle East Bahrain BHD

Malaysia MYR Israeli ILS
Pakistan PKR Kuwait KWD

Philippine PHP Saudi Arab SAR
Singapore SGD United Arab Emirates AED

South Korea KRW North America Canada CAD
Taiwan, China TWD Mexico MXN

Thailand THB USA USD
Vietnam VND South America Argentina ARS

Europe the UK GBP Brazilia BRL
Czech CZK Chile CLP

Europe EUR Colombia COP
Hungary HUF Peru PEN
Iceland ISK Oceania Australia AUD
Norway NOK New Zealand NZD
Poland PLN

3.2. Dynamic Network Topological Properties

3.2.1. Normalized Tree Length

This paper employs a moving window correlation coefficient to compute the relationship between
FX markets. To guarantee the statistical reliability, we choose the window length ω = 150 and roll
forward at τ = 1 intervals. We analyze dynamic FX networks properties from the index of normalized
tree length based on Formula (3), and the results are shown in Figure 1.

Figure 1. The normalized tree length of the foreign exchange (FX) network in each period.

It can be seen from Figure 1 that the initial period of normalized tree length is followed by slow
increasing tendency. When the sub-prime mortgage crisis broke out in August 2007, the normalized
tree length dropped slightly. Since then, the normalized tree length had experienced a stationary period.
When the European debt crisis broke out in 2010, the normalized tree length dropped sharply again.
Afterwards, the normalized tree length had gone through a steady period of growth. In November 2015,
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the CNY belongs to an SDR currency basket, which is decided by the International Monetary Fund
(IMF). The normalized tree length dropped to its lowest point once again. Henceforth, the normalized
tree length had experienced an upward growth period. Therefore, we can find that the European debt
crisis and the CNY join the special drawing rights have a significant impact on the FX network.

Considering the fact that the events (for example, sub-prime crisis, European debt crisis and the
CNY join the special drawing rights) have a significant effect on FX markets, this paper selects three
periods as representatives of major events and displays their networks in Figures 2–4.

Figure 2 identifies the situation of FX markets during the sub-prime crises. It can find that (1) the
USD is at the center of the FX network, which is directly linked with currencies from four continents
(i.e., Africa, Asia, Europe, and Middle East); (2) three international currencies (i.e., USD, CNY and
EUR) are linked together in the FX market, and USD is at their center; and (3) most of the currencies
are connected together based on geography, such as the currencies of CNY, VND, TWD, MYR and
SGD being in the Asian cluster. The currencies of EUR, NOK, SEK, PLN, CZK and HUF are in the
European cluster. The currencies of BHD, AED, KWD and SAR are in the Middle East cluster. The
currencies of BRL, CLP and COP are in the South America cluster. The currencies of AUD and NZD
are in the Oceania cluster.

Compared with Figure 2, it can learn from Figure 3, which identifies the situation of FX markets
during the European debt crises. (1) The USD is also at the center of the FX network, while there are
more connecting nodes (i.e., Africa, Asia, Europe, Middle East and South America). (2) The European
cluster still remains in the FX network, while their currencies are more aggregated. (3) The Asian cluster
also exists in the FX network, but their structure and position are altered because of the financial crisis.

Compared with Figures 2 and 3, it can learn from Figure 4, which identifies the situation of FX
markets during the event of the CNY joining the special drawing rights. (1) The USD is not the only
currency with more links in the FX network, and the EUR and MXN also have more connections.
(2) The Asian cluster remains in the network, and the currencies of Asian are more aggregated.
(3) The currencies of GBP, AUD, NZD and SGD are linked together because they all come from the
Commonwealth countries.

Overall, this paper makes some conclusions as follows: (1) USD has a predominant position in
the global currency market, but its dominance is decreasing because the status of other economies
is rising. (2) The currencies of European are more closely and relatively stably linked during the
periods of European debt crises and the event that the CNY joins the special drawing rights. This may
be due to the fact that the EUR has the strongest influence in the European monetary system. (3) The
currencies of Asian are more closely linked during the period in the event that the CNY joins the
special drawing rights. This may be caused by the fact that the CNY has been regionalized in the
process of promoting internationalization. (4) In addition to the ILS, the currencies in the Middle East
form a cluster and connect to the US dollar. This could be ascribed to the fact that the Middle East
are oil-producing countries and have a large amount of USD, and their currencies are pegged to the
USD. (5) The currencies in the Oceania form a cluster. A possible interpretation is that they come from
Commonwealth countries with the same political and cultural background.

Furthermore, this paper investigates the relationship between the normalized tree length (NTL)
and market phenomena (moving window return and volatility of FX market index, which is calculated
by Formulas (11) and (12)). Market phenomena are instructive of how the global FX market acts. In this
paper, we consider the USD as the representative of the market index. Because it has been found that
the USD has the dominant position in all of the periods, and its trend can better reflect the conditions
of the global FX market.
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Figure 2. FX network during 18 March 2008–21 October 2008, as a representative of sub-prime crises.
FX markets from the same region are labeled with the same color and shape (i.e., Africa, red circles;
Asia, blue squares; Europe, green up triangles; Middle East, light blue things; North America, gray
boxes; South America, pink down triangles; Oceania, yellow diamonds) henceforth.

Figure 3. FX network during 22 February 2010–24 September 2010, as a representative of European
debt crises.
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Figure 4. FX network during 12 May 2015–15 December 2015, as a representative event of the CNY
joining the special drawing rights.

For the convenience of analysis, we divided the average return of the FX market index into 10
equal groups, and the trend from group 1 to group 10 represents the return of FX market index from
the lowest to the highest value. Then, we count the quantity of networks corresponding to each group,
and the results are shown in Figure 5.

Figure 5. The quantity of FX networks in each group according to the average return of the FX market
index with the corresponding time window.

As can be seen from Figure 5, we can find that (1) group 4 (with the mean value of the FX market
index return varies from −0.000310 to −0.000007) has 662 FX networks, which is the largest in all
groups, and (2) the quantity of FX networks, which belong to high or low value of the average FX
market index’s return, is the smallest.

Furthermore, we calculate the mean value of the normalized tree length (NTL) of the
corresponding network for each group, and the results are shown in Figure 6.
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Figure 6. The mean value of the normalized tree length in each group according to the average return
of the FX market index with the corresponding time window.

Figure 6 shows that there is a complex relationship between the NTL with the FX market
index’s return. We can discover an increasing tendency of the NTL from group 1 to group 2 (the NTL’s
mean value is from 0.978572 to 1.025761), and we then find a decreasing tendency of the NTL from
group 2 to group 10 (the NTL’s mean value is from 1.025761 to 0.995016). It indicates that the FX
network structure becomes looser at first and then becomes denser as the FX return rises.

Meanwhile, we split the average return volatility of the FX market index into 10 equal groups,
and the trend from group 1 to group 10 represents the return volatility of the FX market index from the
lowest to the highest value. Then, we calculate the quantity of networks corresponding to each group,
and the results are shown in Figure 7.

Figure 7. The quantity of FX networks in each group according to the average return volatility of the
FX market index with the corresponding time window.

It can be seen from Figure 7 that (1) the quantity of FX networks, which is attributed to group
4 (with volatility varies from 0.004423 to 0.005178), is the largest in all groups; (2) the number of FX
networks with low volatility are more than those of the FX networks with high volatility; and (3) the
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quantity of groups 7 to 10 (with volatility varies from 0.002146 to 0.004420) contains the smaller FX
networks.

In addition, we compute the mean value of the NTL of the corresponding network for each group,
and the results are shown in Figure 8.

Figure 8. The mean value of the normalized tree length in each group according to the average return
volatility of the FX market index with the corresponding time window.

Figure 8 shows that there is a negative relationship between the NTL with the average return
volatility of the FX market index. We can discover a decreasing tendency of the normalized tree length
from group 1 with the smallest volatility (the NTL’s mean value is 1.077535) to group 10 with the
largest volatility group (the NTL’s mean value is 0.977163). This means that the FX network structure
turns denser, when FX market index volatility increases.

Overall, it can discover that the normalized tree length plays a role in identifying crises and is
negatively correlated with the market return and volatility. Regulators can judge the possibility of the
currency crisis and formulate relevant preventive measures according to the relationship between the
NTL and market phenomena. This provides a new method for financial risk management.

3.2.2. Degree Distribution

This paper analyzes the degree distribution of the FX network according to Formula (6),
and Figure 9 displays the power-law exponent and the corresponding p-value.

As can be seen from Figure 9, the estimated power-law exponent varies from 2.06 to 3.50.
Even though a small number of p-values are no more than 0.1, this paper can find that 83.41%
of the FX network follows a power-law distribution. That is to say, a few nodes (such as USD) in
the network occupy most of the edges, while the majority of nodes have a small number of edges.
Therefore, these few nodes dominate the operation of the FX market.
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Figure 9. In the top panel, we estimated power-law exponent β of degree distribution at a different
time. In the bottom panel, we estimated the corresponding p-value of the power-law exponent, and
the red line denotes the value of 0.1. If the p-value is over 0.1, we accepted the power-law hypothesis,
otherwise it was rejected.

3.2.3. Centrality Analysis

Centrality analysis is employed to measure the key nodes in the network. In practice, we choose
four commonly used centrality measures, i.e., node degree, node strength, betweenness centrality and
closeness centrality measures, which is calculated by Formulas (4), (5), (7) and (8). In addition, the
results are shown in Figure 10.

Figure 10. The highest centrality measures in the FX network.

It can be seen from Figure 10 that the four centrality measurements mentioned above vary from 5
to 17, from 1.9168 to 8.4200, from 0.5615 to 0.9462 and from 0.0048 to 0.0150, respectively. In addition,
it shows a downward trend.

After analyzing the central analysis of the time-varying FX networks, it can find that the USD
was not always in the center of the FX network. Some currencies are more influential than the USD



Mathematics 2019, 7, 832 13 of 19

for some periods. Therefore, this paper computes the occurrences of important nodes in each period.
The results are shown in Table 2.

Table 2. Top 10 foreign exchange (FX) markets ranked by the highest centrality measures.

Highest Node Degree Highest Node Strength Highest Betweenness
Centrality

Highest Closeness Centrality

Currency Frequency Currency Frequency Currency Frequency Currency Frequency

USD 2519 USD 1393 USD 1921 USD 1346
EUR 337 MXN 337 EUR 553 EUR 786
MXN 212 CNY 193 PLN 132 PLN 242
AUD 164 SAR 164 HUF 113 CNY 107
MYR 148 AUD 154 ZAR 65 HUF 94
CNY 102 AED 147 PHP 65 PHP 92
PLN 68 MYR 135 TRY 60 TWD 78
TRT 50 CZK 108 CNY 36 NOK 55
HUF 36 PLN 105 MXN 31 INR 50
KRW 27 HUF 100 TWD 28 CZK 33

Table 2 displays the top 10 FX markets ranked by the highest centrality measures in each period.
It can find that the ranking of top ten FX markets has a minor differences for different highest centrality
measures. However, USD is the most influential currency, which is in line with its economic status.
Meanwhile, this paper believes that EUR is the second most influential currency, which is consistent
with the position of the EUR in the international monetary system. In addition, CNY (By calculating
the average ranking of four central measures, we can find that CNY ranks third.) is the third most
influential currency from a comprehensive point of four indicators. This may be related to the
increasing international status of the CNY. Therefore, this paper finds that the USD, EUR and CNY are
the three most influencing currencies.

Furthermore, this paper studies the relationship between the centrality measures and market
phenomena (return, and return volatility) by Pearson correlation coefficients. In addition, the results
are shown as follows.

Table 3 summarizes the Pearson correlation coefficients between each pair of FX return and
centrality measures, and the results are displayed in Figure 11. We can discover that 17 FX markets’
return (41.46% of them) significantly positively correlated to their node degrees, 21 FX markets’ return
(51.22% of them) significantly positively correlates to their node strengths, 18 FX markets’ return
(43.90% of them) significantly positively correlates to their betweenness centrality, and 29 FX markets’
return (70.73% of them) significantly positively correlates to their closeness centrality. In total, we find
that FX returns are positively correlated to their centrality measures.

Table 3. Summarize the correlation coefficients between FX returns and centrality measures.

The Quantity of
ρ (k, r)

The Quantity of
ρ (s, r)

The Quantity of
ρ (b, r)

The Quantity of
ρ (c, r)

0.40∼0.59 1 2 1 0
0.20∼0.39 1 8 3 3
0.00∼0.19 19 14 15 28
−0.19∼0.00 16 13 18 10
−0.39∼−0.20 3 2 4 0
−0.59∼−0.40 1 2 0 0

Significant positive 17 21 18 29
Significant negative 14 14 16 9



Mathematics 2019, 7, 832 14 of 19

Figure 11. Pearson correlation coefficients between return and (a) node degree; (b) node strength; (c)
betweenness centrality; (d) closeness centrality for each FX market.

Table 4 summarizes the Pearson correlation coefficients between each pair of FX return volatility
and centrality measures, and the results are expressed as Figure 12. We can find that 26 FX markets’
volatility (63.41% of them) significantly negatively correlated to their node degrees, 23 FX markets’
volatility (56.10% of them) significantly negatively correlated to their node strengths, 21 FX markets’
volatility (51.22% of them) significantly negatively to their betweenness centrality, and 18 FX markets’
volatility (43.90% of them) significantly positively correlated to their closeness centrality. In total, it can
find that FX volatility is negatively correlated to their centrality measures.

Figure 12. Pearson correlation coefficients between volatility and (a) node degree; (b) node strength; (c)
betweenness centrality; (d) closeness centrality for each FX market.
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Table 4. Summarize the correlation coefficients between FX volatility and centrality measures.

The Quantity of
ρ (k, σ)

The Quantity of
ρ (s, σ)

The Quantity of
ρ (b, σ)

The Quantity of
ρ (c, σ)

0.40∼0.59 1 1 2 0
0.20∼0.39 8 8 6 0
0.00∼0.19 5 8 9 28
−0.19∼0.00 22 11 19 13
−0.39∼−0.20 5 5 5 0
−0.59∼−0.40 0 6 0 0
−0.79∼−0.60 0 2 0 0

Significant positive 14 16 16 18
Significant negative 26 23 21 6

From the above results, this paper can conclude that the majority of FX markets’ return
significantly positively correlates to their centrality measures, and the volatility significantly negatively
correlates to their centrality measures. When major events occur in the FX markets, we can focus on
important FX rates based on the relationship between market phenomena and centrality measures.
In addition, we can classify the portfolio investment from the relationship between market phenomena
and node centrality measures. It can provide a novel method for the government to manage risk and
investment in the FX market.

3.2.4. Survival Ratio Analysis

The survival ratio is computed by Formulas (9) and (10), which is examining the FX network’s
consecutive stability. Figure 13 presents the survival ratio of the FX network at different steps.
This paper calculates the steps of 1, 4, 7.

Figure 13. Survival ratio under different steps.

As can be seen from Figure 13, the mean of the single-step survival ratio series is 0.95, which
indicates that a large number of the edges of the FX networks survive from time t to t + 1. i.e., most of
the edges in the adjacent two FX networks have not changed, and only about 5% of edges has changed.
In other words, from the perspective of the short-term evolution of the network, the FX market has a
robust relationship that can hardly be broken.

From the view of multiple survival ratio analysis, each multiple survival ratio (MSR) curve
decreases quickly over time, which denotes that the stability of the global FX network has dropped
sharply with time. However, each MSR curve has a constant interval, which means that part of the
global FX network topology (such as the Middle East region) has remained constant and it shows a
good stability.
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4. Conclusions

This paper employs a moving window Pearson correlation coefficient in the daily closing prices
of 41 FX markets from January 2005 to December 2017. Then, we adopt the MST method to build
the corresponding networks. The dynamic topology properties of networks are characterized by the
normalized tree length, node degree distributions, centrality measures and edge survival ratios.

Some basic findings of this paper can be concluded as follows: (1) the sub-prime mortgage crisis,
the European debt crisis and the CNY joining the special drawing rights make NTL decrease sharply.
Meanwhile, the USD has a predominant position in the FX market of these three periods, but its
dominance is decreasing due to the status of other economies rising. The FX rates of European are
more closely and relatively stably linked during the periods of European debt crises because the EUR
has the strongest influence in the European monetary system. The currencies of Asian are more closely
linked during the period of the event when the CNY joins the special drawing rights. This may be
caused by the fact that CNY has been regionalized in the process of promoting internationalization.
Furthermore, it can find that the NTL are negative against the FX market return and volatility with
the corresponding window. Regulators can judge the possibility of the currency crisis and formulate
relevant preventive measures according to the relationship between the NTL and the returns and risks
of the FX market index. (2) The degree distribution of the 83% networks show scale-free characteristic
and the power-law exponent varies from 2.06 to 3.50, which means that the FX market is a typical
heterogeneous market, and a few hub nodes play key roles in the market. (3) The USD, EUR and CNY
are the three most powerful currencies. Moreover, we further discover that the majority of FX markets’
return significantly positively correlate to their centrality measures, and the volatility significantly
negatively correlates to their centrality measures. (4) Single-step survive reveals that 95% of the links
of the FX network survives between adjacent time periods, and multi-step survive denotes that the
robustness of FX networks decreases quickly as the time elapses.
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