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Abstract: In matrix population modeling the multi-year monitoring of a population structure results
in a set of annual population projection matrices (PPMs), which gives rise to the stochastic growth
rate λS, a quantitative measure of long-term population viability. This measure is usually found in
the paradigm of population growth in a variable environment. The environment is represented by
the set of PPMs, and λS ensues from a long sequence of PPMs chosen at random from the given set.
because the known rules of random choice, such as the iid (independent and identically distributed)
matrices, are generally artificial, the challenge is to find a more realistic rule. We achieve this with the
a following a Markov chain that models, in a certain sense, the real variations in the environment.
We develop a novel method to construct the ruling Markov chain from long-term weather data and
to simulate, in a Monte Carlo mode, the long sequences of PPMs resulting in the estimates of λS.
The stochastic nature of sequences causes the estimates to vary within some range, and we compare
the range obtained by the “realistic choice” from 10 PPMs for a local population of a Red-Book species
to those using the iid choice. As noted in the title of this paper, this realistic choice contracts the range
of λS estimates, thus improving the estimation and confirming the Red-Book status of the species.

Keywords: discrete-structured population; matrix population model; population projection matrices;
stochastic growth rate; random choice; weather indices; Markov chain; Monte Carlo simulations

1. Introduction

Matrix population models (MPMs) represent the basic tool in the mathematical demography of
plant and animal populations that are discrete-structured with regard to a certain classification trait [1],
such as the age, size, or developmental stage of individuals in a local population of a given species.
Mathematically, the MPM is a system of difference equations,

x(t + 1) = L(t)x(t), t = 0, 1, 2, . . . , (1)

where the vector of population structure, x(t) ∈ Rn
+ belongs to the positive orthant of the n-dimensional

vector space and L(t) is a nonnegative n × n matrix called the population projection matrix (PPM) [1,2].
Each component of x(t) is the (absolute or relative) number of individuals in the corresponding
status-specific group at moment t, while the elements of L(t), called vital rates [1], carry information
about the rates of demographic processes in the population. They are time-dependent in general,
but the zero-nonzero pattern of the population projection matrix (PPM) corresponds invariably to a
single associated directed graph [3], which is called the life cycle graph [1] (LCG), as a condensed graphical
representation of the biological knowledge involved in the model and the way the population structure
is observed in the study (an example is given in the next Section).
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The LCG is (practically always) strongly connected [3], signifying certain integrity of the life
history of individuals and providing for the PPM being irreducible [4], or indecomposable in the other
terminology [5].

The classical Perron–Frobenius Theorem for nonnegative irreducible matrices [4–6] provides
the key to understanding the dynamics of x(t) as t → ∞ when L(t) = L does not change in time.
According to the Theorem, in the spectrum of L, there always exists a simple positive eigenvalue,
λ1 > 0, the dominant eigenvalue, which is equal to the spectral radius, ρ(L), of the matrix; matrix L has a
positive eigenvector, x* > 0, corresponding to λ1. Hereafter, the sequence of x(t)/λ1

t converges to a
vector proportional to x* for any nonzero x(0) ≥ 0 when matrix L is primitive [1,2,5] (the imprimitive
PPM guarantees convergence to a periodic vector function of t).

Thus, the dominant eigenvalue represents the asymptotic growth rate: if λ1(L) < 1, the population
declines and it grows exponentially if λ1(L) > 1. In applications, λ1(L) “does measure the adaptation
that the local population possessed in the place where, and at the time when, the population data were
collected to calibrate the matrix L“ ([7], p. 176; [8]).

Real populations are, however, exposed to temporal variations in the environment, so that the vital
rates estimated at one moment do not remain the same at another. A quantitative measure of adaptation
that can be inferred from a time-depended PPM, i.e., a finite number of L(t)s, t = 0, 1, . . . , T, is based
on the concept of population dynamics in a stochastic environment ([1], and refs therein). Each of
the given L(t)s represents a particular state of the environment, which provides either exponential
growth or decline if the state remained unchanged. However, the stochastic environment is considered
as a sequence of “annual” PPMs chosen at random from the given set [1]. Each of these projects the
current population vector further for one step, and such a sequence of total population sizes (|| . . . ||1)
converges, under unrestrictive technical conditions, to a finite limit with probability 1 [9–11]:

lim
1
τ

τ→∞

ln N(τ) = lim
1
τ

τ→∞

ln ‖Lτ−1 . . . L0‖1 = lnλS (2)

(ln denotes the natural logarithm). The value of λS is then called the stochastic growth rate, and the
question is how to estimate the Limit (2), given a particular set of “annual” PPMs.

There exist several theoretical estimates of λS [1,12] suggesting certain assumptions about the
L(t)s, such as their distribution (in a metric space) around an average matrix with a known variance.
However, the question of estimation still remains open when the given PPMs differ drastically
from one another ([13], and refs therein). Those who remember lectures on real analysis know an
immediate answer: the limit of a convergent sequence is approached by its finite, distant enough term.
The well-known Monte Carlo (MC) method prompts the means to construct the sequence once we
accept a rule for the random choice of matrices at each step τ. A popular simple rule reduces to the
independent, identically distributed (iid) matrices [1,13]. The iid choice can be readily implemented in
(long enough) MC simulations, which produce a set of random realizations and result in a range of λS

estimates over the set [13].
However, the iid choice is a crude caricature of the reality in which the PPMs follow variations

in the environment rather than any iid rule, while the variations are caused by changing weather
or/and other factors. The first step towards reality leads to Markov chains in weather modeling [14–17],
and the Markov chain was suggested long ago [11,18] to govern the random choice of PPMs and
provide for the theoretical estimates of λS. Now, this tradition is continued in models “in which the
environment makes transitions among several discrete states according to a Markov chain” ([19], p. 1).
Indeed, Markov chains have been applied in practical estimates of λS, in which the transition matrix
construction varies from very simple, such as switching between “bad” and “good” environments [20],
to highly sophisticated ones [21–24], yet these are nonetheless invented by the authors rather than
by nature.

On the contrary, our study represents an attempt to construct a Markov chain that describes these
real variations in the environment of a local population that are indirectly expressed in a given 10-year
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time series of annual PPMs. Neither the pattern (graph) of transitions, nor the transition probabilities are
a priori known, and the task is to reveal the pattern and estimate the probabilities (hence obtain the
transition matrix, P = [pij]) from a vast variety of local meteorological and microphysical data comprising
59 years of observations. Constructed and calibrated in this way, then used in a series of MC simulations
of Sequence (2), matrix P enables us to obtain more realistic estimates of the stochastic growth rate
than those obtained before under the iid equiprobable matrices [13]. It was intuitively expected that
the range of estimates should appear to be narrower than the former range [13], but absolutely not
clear whether the more realistic λS estimate should be greater or less than the iid estimate. Our study
gives certain answers to these questions.

A by-product of this approach provides the opportunity to test a hypothesis that a realistic λS

estimate should be close enough to the iid estimate under the distribution (of matrices to be randomly
chosen at each step τ) given by the steady-state distribution of the chain states (the dominant eigenvector
of P). The hypothesis is, however, rejected, and we discuss the reason why.

2. Materials and Methods

2.1. Case Study of Androsace albana

Androsace albana Stev. is an alpine short-lived perennial monocarpic plant classified in Red Books
as a Near Threatened species [25,26], inhabiting alpine heaths. The biology, ecology, and ontogenesis
of the species (Figure 1) were described earlier [27,28], and the corresponding LCG was developed
(Figure 2).
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Figure 1. Ontogenetic stages of Androsace albana: pl, seedlings; j, juvenile plants; im, immature plants;
v, adult vegetative plants, and g, generative plants, the stages being distinguishable in the field [28].
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Figure 2. Life cycle graph for a local population of Androsace albana observed once per year. Ontogenetic
stage notations as in Figure 1. Solid arrows indicate transitions occurring for one year (no transitions,
in particular); dashed arrows correspond to annual recruitment [28].
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Although the species reproduces by seeds and much is known about seed germination in the
laboratory ([27] and refs therein), the germination rate and the rate of seed mortality are highly
uncertain in the field. To avoid uncertainties in model calibration, it was shown mathematically that
removing the seed stage from the LCG does not affect the calibration of the remaining vital rates from
the observation data (Appendix A in [29]).

Consecutive transitions from stage to stage in 1 year proceed in parallel with the following
observed events:

- delays	 in stages im and v, which can be explained by the fact that the harsh conditions of the
highlands force the plants to resort to the “space-holder strategy” [30], i.e., staying or growing in
one place for as long as possible. Poor soil quality also results in some virginal plants accumulating
resources for fruiting longer than one year [30–34];

- accelerated transitions
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as a manifestation of polyvariant ontogeny in A. albana under
the alpine belt conditions in South-Western Caucasus.

The monocarpic species has only one reproductive event in its life history, and the population
recruitment can be observed at each of the three stages pl, j, or im, at the moment of next census.
The parameters a, b and c are accordingly the average numbers of recruiting individuals (per generative
plant) found at the corresponding stage by the next census [35].

The population vector, x(t) ∈ Rn
+, consists of 5 components:

x(t) = [pl(t), j(t), im(t), v(t), g(t)]T, t = 2009, 2010, . . . , 2019, (3)

observed on permanent sample plots in Teberda State Nature Biosphere Reserve (North-West Caucasus)
and censused once a year (early August) [28] during 11 successive years (Table 1).

Table 1. Structure of the local A. albana population according to observation data (Table 1 in [36]).

Stage
Stage Group Sizes (in Absolute Numbers) at the Year of Observation

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

pl 37 30 19 49 19 16 4 10 3 12 13
j 110 48 45 86 137 98 19 29 8 23 38

im 99 55 43 87 95 34 10 13 4 13 2
v 35 26 57 58 73 50 20 16 18 23 23
g 13 1 1 4 6 3 4 2 1 2 1

The observation data gained at each pair of successive years, t and t + 1, enabled us to calibrate
the annual PPM, L(t), in a unique way to obey System (2) for t = 2009, . . . , 2018 (Table 2). Note that
these 10 PPMs differ drastically from one another, with their λ1s being either markedly greater or less
than 1. This means that variations in the environment from year to year do affect the germination and
growth of A. albana plants.



Mathematics 2020, 8, 2252 5 of 15

Table 2. A. albana population projection matrices (PPMs) calibrated from 2009–2019 data, their dominant
eigenvalues, and the corresponding eigenvectors (Table 3 in [36]).

Census Year,
t Matrix L(t): t→ t + 1 λ1(L(t)) Vector x*, %

2009


0 0 0 0 30/13

8/37 0 0 0 40/13
2/37 22/110 28/99 0 3/13

0 0 7/99 19/35 0
0 0 0 1/35 0

 0.5661


10.61
18.20
16.99
51.59
2.60



2010


0 0 0 0 19/1

14/30 0 0 0 31/1
4/30 22/48 17/55 0 0/1

0 0 34/55 23/26 0
0 0 0 1/26 0

 1.2283


15.90
31.99
18.25
32.83
1.03



2011


0 0 0 0 49/1

1/19 0 0 0 85/1
6/19 35/45 21/43 0 25/1

0 0 10/43 48/57 0
0 0 0 4/57 0

 1.5779


17.20
30.40
39.39
12.45
0.55



2012


0 0 0 0 19/4

1/49 0 0 0 136/4
10/49 45/86 39/87 0 1/4

0 0 28/87 45/58 0
0 0 0 6/58 0

 1.2641


6.01
43.15
29.67
19.56
1.60



2013


0 0 0 0 16/6

0 0 0 0 98/6
2/19 16/137 14/95 0 2/6

0 0 6/95 44/73 0
0 0 0 3/73 0

 0.6345


7.76
47.54
14.34
28.51
1.85



2014


0 0 0 0 4/3

0 0 0 0 19/3
2/16 2/98 6/34 0 0/3

0 0 4/34 16/50 0
0 0 0 4/50 0

 0.3988


11.71
56.64
11.69
17.46
3.50



2015


0 0 0 0 10/4

0 0 0 0 29/4

0 10/19 3/10 0 0/4

0 0 5/10 17/20 0
0 0 0 2/20 0

 1.0679


9.19
26.66
18.28
41.94
3.93



2016


0 0 0 0 3/2

0 0 0 0 8/2
2/10 5/29 5/13 0 0/2

0 0 8/13 20/22 0
0 0 0 1/22 0

 0. 9611


5.26
14.04
6.02
71.30
3.37



2017


0 0 0 0 12/1

0 0 0 0 23/1
3/3 2/8 8/12 0 0/1

0 0 2/12 21/28 0
0 0 0 2/28 0

 1.1206


12.93
24.78
42.13
18.95
1.21



2018


0 0 0 0 13/2

0 0 0 0 38/2
1/12 1/23 0/13 0 0/2

0 0 1/13 22/23 0
0 0 0 1/23 0

 0.9617


13.22
38.66
2.89
43.27
1.96
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2.2. Local Meteodata, Statistical Treatment

In addition to monitoring the local population of A. albana, also monitored were climatic parameters
at the site (an alpine heath), close to the permanent plots of the population under study. From a
variety of meteorological data on the air and soil registered by the local temperature/ humidity
sensors, we selected certain key environmental factors effecting the population status and development,
i.e., seed germination, and seedling survival and growth, under severe conditions of the alpine
belt. Twenty-one parameters were selected: the minimal, maximal, and average air temperatures
in the previous-year autumn (September–October) and current-year spring plus early summer
period (May–June); the soil surface and 10-cm-depth temperatures in the previous-year autumn
(September–October) and current-year spring plus early summer period (May–June) the duration of
freezing on the soil surface and 10 cm depth during the winter period (the sum of the days when the
maximal temperature did not exceed −1 ◦C from the previous-year November to the current-year
April); the daily average soil moisture pressure at the 10 cm soil depth during 17–30 June, The data on
meteorological and soil indicators were collected by standard methods with automatic sensors.

In addition, a weather station, the Teberda State Meteorological Station (TSMS, the
Karachay-Cherkess Republic, Russian Federation), is located in a mountain valley (43.45◦ N, 41.73◦ E)
5 km from the alpine plots. We developed a database of 13 years (2007–2019) of observations at the
TSMS accounting for 15 climatic indicators, which might demonstrate statistical relationships with the
status and growth of the population under study. Ecologically significant climatic indicators were
taken: the average, minimal and maximal temperatures in the previous-year autumn (September and
October); the minimum, maximum, and average temperatures in spring (May) and early summer (June);
the amount of precipitation in the previous-year fall (September and October), the current-year spring
to early summer period (May and June), and the winter period (from the previous-year November to
the current-year May). The TSMS collects climatic indicators according to the standard list of indicators
framed by international requirements. Station staff kindly shared these data with us.

To detect a factor effecting λ1(t), we developed multiple regression models by the least-squares
method (ordinary least squares, OLS). Because the number of analyzed factors significantly exceeds
the number of observations and only three predictors at most could be included in the model, they
were selected by stepwise regression (forward regression). Before the analysis, all of the factors
were checked for correlations, so as not to include factors correlated with each other in one model.
The distribution of λ1(t), a dependent variable, corresponds to the normal distribution (p = 0.793 in
the Shapiro–Wilk test [37]). Whether the errors are normally distributed was visually assessed on the
quantile–quantile plots.

Because λ1(t) was calculated annually, this variable can be considered a time series, so we checked
the best models for autocorrelations. To do this, we built two generalized linear models (function gls
of the nlme package in the statistical environment R [38]) with and without level-1 autocorrelation
(AR1) and compared them with each other using the log-likelihood ratio (anova function in R [39]).
It was found that autocorrelations did not make any significant contributions and were therefore not
included in the final models.

As a result, the study allows us to conclude that the λ1(t) variable depends positively on
the minimum air temperatures in May–June in the alpine heath; this was found to be the only
significant predictor in the models with one factor included. The best multiple regression model
explained 99% of the variance and included three factors: minimum air temperatures in May–June,
precipitation from November to May, and maximum 10-cm-depth soil temperatures in May–June
(Supplementary Material). The λ1(t) variable increases with increasing temperatures and decreasing
precipitation. We revealed the highest significance of relationships between λ1(t) and weather factors
(registered at the TSMS) in the models including the precipitation from November to May and the
minimum temperatures from May to June (p < 0.1). However, the temperature time series had certain
gaps, so that only the time series of the November-to-May precipitation sum, Pr(t), was selected for the
further study.



Mathematics 2020, 8, 2252 7 of 15

2.3. Revealing the Pattern of Transition Matrix and Estimating Its Elements

We construct a Markov chain formalism in which the element pij of the transition matrix, P = [pij],
is a probability of the j to i transition, i.e., matrix P is column-stochastic [40]. For example, if we consider
the sequence of given annual PPM as a realization of a Markov chain, then we see the chronological
10-year sequence: L(2009), . . . , L(2018) (Table 2). If this short-term sequence is repeated periodically in
the long term, the transition matrix of the corresponding Markov chain would then have the following
10 × 10 pattern:

P =



0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0


,

The chain thus becomes a deterministic, rather than a stochastic, process.
To obtain a longer-than-10 stochastic sequence of PPMs, we identify each of the 10 given PPMs,

L(t), t = 2009, . . . , 2018, with the value of precipitation sum, Pr(t), during the corresponding, t→ t + 1,
period (see Section 2.2). All of these values are different, and we call them reference values, numbered
from 1 to 10 in chronological order. Fortunately, precipitations have been measured in the TSMS since
1960, providing a 59-point time series. The task is thereafter to associate each successive point, Pr(k),
k = 1960, . . . , 2018, of that series to one of the 10 reference values, which was done using the absolute
difference, |Pr(k) − Pr(t)|, as a measure of distance, selecting the closest reference point:

tnext = t ∈ {2009, . . . , 2018}
∣∣∣∣∣|Pr(k) − Pr(t)| = min

t
|Pr(k) − Pr(t)|. (4)

Because the reference values are different, we obtain, in a unique way, a 59-member sequence of
year labels “t” (t = 2009, . . . , 2018) where every next label represents a particular transition event and
the last 9 labels only represent the course of time. The total sequence enables identifying all possible
types of transition occurring in the sequence and representing them as a directed graph (digraph, [3])
of transitions between 10 nodes identified with the reference years. The nine successive transitions
2009→ 2010→ . . . → 2018 should constitute an evident subgraph of the total digraph. Counting the
number of times a particular label transits to itself or another specific label, we obtain the frequency of
this transition to be considered as the corresponding transition probability.

For instance, to obtain the value of p12 we find first how many times label ”2010” occurs among
the 59 labels (8 times, in fact), then count how many of all ”2010”s in the sequence are followed by
“2009” (i.e., “2009” occurs immediately after “2010”; 1 time, in fact); the fraction of the latter by the
former (1/8) gives therefore the frequency needed. Inspecting all of the remaining potential “followers”
in this way, we obtain all remaining elements of the 2nd column in P. The nonzero values of these
generate all the digraph arcs outgoing from the “2010” node. Repeating this step for each column of P
results both in the completed digraph (matrix pattern) and the column-stochastic matrix itself.

Once the transition matrix, P, has been found, its dominant eigenvector is calculated in a routine
way. When normalized to be stochastic, this vector gives the steady-state distribution, ss*, of the
chain states [40], and can be used in iid MC simulations (ss* iid) instead of the uniform distribution
(equiprobable states).

2.4. Estimating λS by the Direct MC Method with a Markov Chain

Once the transition matrix, P = [pij], has been found, it allows MC experiments in which the
sequence of PPMs follows a realization of the corresponding Markov chain that has a given finite
length, long enough to reveal the convergence in the Sequence (2). To ensure that the random sequences
are reproducible in computer experiments, we begin each realization with the same initial population
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vector, x(τ = 0) = x(2009) (Table 1) and the same PPM, L0 = L(2009) (Table 2), albeit the limit does not
depend on this choice [9–12].

Then, the first column of P, equal to [p11, p21, . . . , p10,1]T, gives the finite probability distribution
for the next state, i, of the chain (a row number in this column) and, hence, for the next annual PPM to
be chosen. This is equivalent to tossing an imperfect 10-face dice with unequal face probabilities, some
of which may be zero in accordance with the pattern of P to be revealed. Face i gives the number of
next column, [p1i, p2i, . . . , p10,i]T, thus defining the dice to be tossed. This is the basic step of our MC
simulations, and Appendix A illustrates how efficiently it can be implemented in MATLAB.

Note that the iid choice represents a particular case of the Markov chain choice when the transition
matrix P consists of 10 identical columns giving the desired distribution, hence the dice becoming
perfect when the distribution is uniform. This enables us to use the same computer program for
simulating both nontrivial Markov chain sequences and the iid ones.

3. Results

3.1. The Pattern of P = [pij] and the Estimates of pij

Following the procedure introduced in Section 2.3, we revealed a pattern of transitions among the
Markov chain states associated with the 10 known annual PPMs, L(t), t = 2009, . . . , 2018 (Figure 3).
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Figure 3. The pattern of transitions between the weather types associated with given annual PPMs as
revealed in the 59-year observations.

Although appearing to be entangled, the graph is not trivially complete: some transitions have
not been observed, and hence are not presented here. Clearly observed are the chronological successive
transitions from 2009 to 2018, shown as the straightforward green arrows in the figure. In addition to a
small number of backward curvilinear arrows, they clearly ensure the graph is strongly connected,
i.e., for any pair of nodes there exists a finite directed path from one node to the other [3]. This means
matrix P is irreducible [4] and, hence, the Markov chain is regular [40], containing the sole ergodic set of
all 10 states; thus, Limit (2) exists when the random choice of PPMs is governed by this Markov chain.

The elements of transition matrix, P = [pij], of this chain are obtained as the frequencies of the
corresponding transitions revealed by means of the procedure introduced in Section 2.3 (Table 3).
The last column of Table 3 shows the steady-state distribution of chain states (given by ss*, the dominant
stochastic eigenvalue of P).

Table 3. Transition matrix of the Markov chain governing the random choice of annual PPMs and its
dominant stochastic eigenvector.

Incoming States
Outgoing States

Eigenvector, ss*
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2009 0 1/8 0 1/9 0 0 0 0 0 0 0.0359
2010 1/2 1/4 0 1/9 1/3 0 0 1/9 0 1/3 0.1437
2011 0 1/4 0 0 0 0 0 0 1/2 0 0.0359
2012 0 0 1/2 1/9 1/3 1/4 0 0 0 1/3 0.1613
2013 0 0 0 1/9 0 1/8 1/7 0 0 0 0.0519
2014 0 1/8 1/2 1/9 1/3 0 2/7 1/9 0 1/6 0.1389
2015 0 1/8 0 1/9 0 1/8 0 1/3 0 1/6 0.1164
2016 1/2 0 0 0 0 1/4 2/7 1/3 0 0 0.1289
2017 0 0 0 1/9 0 1/8 0 1/9 1/4 0 0.0661
2018 0 1/8 0 2/9 0 1/8 2/7 0 1/4 0 0.1210

Column Sum 1 1 1 1 1 1 1 1 1 1 1
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3.2. Estimates of λS

Each realization of the finite random sequence from Definition (2) generates its own value of the
λS estimate. (An algorithm to calculate the final term of the sequence, then to obtain an estimate, is
presented in Appendix B). Several realizations generate a set of estimates, with their minimal and
maximal values, and hence a range of estimates. The length of the finite sequence and the number of
times it has to be constructed constitute a design of MC experiments to estimate the λS for a given set
of annual PPMs. The longer the sequence, the closer its final term to the limit value. The greater the
number of random realizations, the wider should be the range of estimates ensuing from the set.

We apply the same design of simulation experiments as before (Table 6 in [13]) plus two more
options for comparison of the results. (The algorithm to repeat construction of the sequence of a given
length and to obtain the range of estimates is presented in Appendix C).

The figures shown in Table 4 confirm our expectations described above (see the digits in bold).
In this regard, one thousand repetitions of the one-million-long sequence in the Markov chain series
generate the most reliable range of λS estimates, and this range has an order of 10−3. Other series
generate consistently greater estimates and the markedly wider ranges of estimates as was expected
(see Section 1). Unfortunately, the first decimal digit only obtained in the iid estimates can be trusted.

Table 4. Estimating the stochastic growth rate, λS, of the local A. albana population by the direct Monte
Carlo technique.

Product “Length” 1 Number of Realizations

Range of Variations in the Estimates of λS; Range Length in the
Following Series:

Markov Chain Equiprobable iid ss* iid

1 × 105

13 [0.924332, 0.928207];
0.003876

[0.935773, 0.939521];
0.003749

[0.940098, 0.945336];
0.005237

33 [0.924332, 0.928207];
0.003876

[0.933281, 0.939521];
0.006240

[0.939897, 0.945336];
0.005439

100 [0.923628, 0.928371];
0.004743

[0.933281, 0.940469];
0.007188

[0.939383, 0.945336];
0.005953

2 × 105

13 [0.925053, 0.927760];
0.002707

[0.935810, 0.938245];
0.002434

[0.940534, 0.943727];
0.003193

33 [0.924339, 0.927760];
0.003420

[0.935694, 0.93465];
0.002770

[0.940534, 0.943727];
0.003193

100 [0.924046, 0.927760];
0.003714

[0.935120, 0.939514];
0.004394

[0.940331, 0.943907];
0.003571

3 × 105

13 [0.925153, 0.927434];
0.002281

[0.935323, 0.938044];
0.002721

[0.940505, 0.942882];
0.002377

33 [0.924483, 0.927434];
0.002950

[0.935323, 0.938272];
0.002949

[0.940505, 0.942919];
0.002415

100 [0.924483, 0.927434];
0.002950

[0.934746, 0.938613];
0.003867

[0.939569, 0.943653];
0.004084

5 × 105

13 [0.924771, 0.926431];
0.001660

[0.936047, 0.937644];
0.001597

[0.941309, 0.942485];
0.001176

33 [0.924771, 0.926558];
0.001787

[0.936047, 0.937886];
0.001838

[0.941043, 0.943080];
0.002037

100 [0.924714, 0.926724;
0.002009

[0.935679, 0.938194];
0.002515

[0.941012, 0.943089];
0.002077

1 × 106

13 [0. 925045, 0.925313];
0.000676

[0.936453, 0.937261];
0.000807

[0.941301, 0.942233];
0.000933

33 [0. 925045, 0.926010];
0.000965

[0.936453, 0.937261];
0.000808

[0.941301, 0.942275];
0.000974

100 [0.925045, 0.926048];
0.001003

[0.936341, 0.937473];
0.001133

[0.941218, 0.942491];
0.001273

1000 [0.924874, 0.926079];
0.001205

[0.936297, 0.937635];
0.001339

[0.941195, 0.942521];
0.001326

1 The number of a finite member of the sequence {N(τ)} that approximates its limit (2) as τ→∞; this coincides with
the number of cofactors in the product of randomly chosen matrices Lτ–1 Lτ–2 . . . L1 L0 that still retains vector x(τ)
from becoming the computer zero due to normalizing, at each step, by coef = 0.936979, a specially selected “scaling
factor”; greater detail is provided in [41].
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4. Discussion

The LCG for the stage-structured population of A. albana (Figure 2) deliberately does not contain
the stage of dormant seeds. The motivation for this was provided in the original case study [28] and
repeated here in Section 2.1. In fact, the dormant seeds represent one of the “cryptic life stages” ([42], p.1),
and one of the ‘’persistent problems in the construction of matrix population models” ([43], p.1). It has
recently become a subject of extensive discussion [42–44], yet without any definite conclusion that the
seed stage is necessary in a model. Moreover, a deeper investigation of the A. albana model with the
seed stage incorporated within certain botanical bounds for uncertain seed-related parameters [29]
revealed that it cannot principally change the qualitative outcome of the “no-seeds” model.

The expectations of how the ranges of the stochastic growth rate depend on the length of the
finite sequence and the number of realizations were both prompted by a tenet of real analysis, in
addition to common sense and our observations from our former MC experiments (Table 6 in [13]).
However, it was only a hypothesis that “Realistic choice of annual matrices contracts the range of
λS estimates” as compared to the iid choice. This hypothesis is now confirmed with the evident proof
in Table 4: every line, excepting those with the smallest number (13) of realizations, confirms the point.
Thus, the outcome of this comparison is not surprising to the authors.

The unexpected finding is that the ss* iid experiments always yield worse estimates than the
equiprobable iid series (cf. the 4th and 5th columns), despite the former being strongly related to
the Markov chain (the steady-state distribution). Moreover, these figures indicate our corresponding
hypothesis (see the last paragraph of Section 1) is unfounded. Indeed, the “hypothesis” was rejected
by experts [45] who studied population dynamics under environmental variability [21,45–47], with an
argument that the ss* iid choices ignore the transient dynamics and possible autocorrelations.

Regarding the absolute values of the λS estimates obtained from 10 annual PPMs (Table 2),
these are markedly greater than those obtained from eight PPMs (Table 6 in [13], the difference is in the
order of 10−1) and correspondingly closer to 1. A clear reason is that λ1 of the 9th ppm is clearly greater
than 1, while the 10th λ1, although less than 1, is close to 1 (Table 2). However, the 10-year estimates of
λS are still less than 1, implying an unfavorable forecast of the species viability in this habitat in the
long term. This confirms the Red-Book classification of A. albana [25,26], although the classification is
traditionally based on field observations and expert assessments rather than any quantitative measures
ensuing from the population models.

Comparing the values obtained under the “realistic choice” to those in the iid series, we reveal the
former to be markedly lower (Table 2). This means that less favorable environments occurred in the
long time series of observations much more frequently than would be the case under the independent
permanent probability distributions. If a model is a kind of caricature of reality, then the governing
Markov chain calibrated from real weather data represents a step forward, from the crude iid to a softer
image of reality. As a method that provides more accurate estimates of λS, it can be recommended for
the application to any discrete-structured population case study with multi-year data combined with
weather observations.

It may seem at first glance that, in our Markov chain simulations, we have used the well-known
MCMC method (Markov Chain Monte Carlo). However, our method is original: although the classical
MCMC searches for “an ergodic Markov chain whose stationary distribution is f ” ([48], p. 268) (ss* in
our notation), a given steady-state distribution of its state probabilities, we build a chain by analyzing
its long (59-year) realization in a vast array of local meteorological data and obtain ss* in a routine way
from the transition matrix.

5. Conclusions

Given a finite set of annual PPMs signifying the variable environment of a local population,
the stochastic growth rate, λS, can be approximated, in accordance with its definition as a certain limit
of the time-averaged population size, from a finite sequence of PPMs chosen randomly from the set
for each successive term of the sequence. The rule of the random choice should conform with real
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variations in key factors of the environment, and a governing Markov chain represents a step forward
in this direction. Once the transition matrix of the chain has been constructed and calibrated from real
observation data, it can govern the choice in a series of Monte Carlo simulations to result in a certain
range of λS estimates. The greater the number of random realizations in a series, the wider is the range.
However, the longer the sequence, the closer the estimate approaches to the limit.

The main conclusion concerning the range of λS estimates is given in the title of this paper,
compared to the iid rule of the random choice, which is a simple artificial construction popular in the
literature. In our case study, the “realistic choice” results in a range of 10−3 order of magnitude, while
the actual value of λS is markedly less than those obtained in the iid estimates. Therefore, only their
first decimal digits can be trusted in the absence of the governing Markov chain. The absolute value of
λS in the range of [0.924874, 0.926079] means that the local Androsace albana population may decrease
by more than half in 10 years under the observed conditions. This confirms the current Red-Book
classification of the species [25,26] as Near Threatened, albeit the findings indicate it is even more
“Threatened” than previously indicated by the iid method, witnessing the urgent need to further
monitor the population of this rare endemic species.
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Appendix A. Tossing a 10-Face Dice with Unequal Face Probabilities

Consider an imperfect 10-face dice with unequal faces numbered from 1 to 10, and let
Column = [p1, p2, . . . , p10]T

∈ be a given stochastic vector, a finite probability distribution of faces at
each tossing, with some faces being improbable (zero probability). The cumulative sum, cumsum(Column)
= [p1, p1 + p2, . . . , p1 + p2 + . . . + p10]T, is then a 10-vector specifying the corresponding partition of the
segment [0, 1]. If rand is the name of a standard random number generator [49] sampling a number from
those uniformly distributed in (0, 1), then ran = rand is a next random number and we have to see
which smaller part of [0, 1] it falls into. This can be done by the logical operation ‘≤’ comparing ran
with cumsum(Column), whereby the number of the first ‘1’ in the output logical vector gives the face
number as a result of tossing. We easily find it by subtracting the sum of the vector from (10 + 1).

A MATLAB string implementing this basic step of the MC simulation algorithm can be shown
as follows:

>> 11−sum(rand <= cumsum(Column)); (A1)

and it returns a face number as a result of random tossing.

Appendix B. Calculating the Final Term of a Given-Length Sequence

A MATLAB user-developed function, called lamS_Ana_num, has three input variables: All, a 3D
numeric array representing a finite set of given annual PPMs arranged along the 3rd dimension in
the chronological order; Tau, a length of the sequence to be obtained, and coef, a scaling factor that

http://www.mdpi.com/2227-7390/8/12/2252/s1
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provides for each successive term of the sequence not becoming computer zero, nor infinity (see the
footer to Table 4). The function works with a global variable [50] Pnum, the numeric form of a given
column-stochastic matrix P, and returns the corresponding estimate of λS. The MATLAB code is as
follows (non-executable comments after %):

function [lamS] = lamS_Ana_num(All,Tau, coef)
% function lamS_Ana_num calculates stochastic lambda following definition (2)
% input All is a 3D array of all numeric annual matrices available in the study.
% in 2020, all = 10; Tau= Length of the product
% random choice is governed by a Markov chain with an m-by-m matrix P (see below)
% transition matrix Pnum is a global numeric variable.
% @ Logofet D.O., 2020
global Pnum; size(All);m=ans(3);
% removed all checks for correct arguments!
tau=1; Column=Pnum(:,1); xPROD = [37 110 99 35 13]’;% initial vector = x2009 for A.albana
while (tau <= Tau), % length of the product = Tau
row = (m+1)-sum(rand<=cumsum(Column)); % random choice from ‘m’ annual matrices
Ltau = All(:,:,row); % randomly (MC) chosen current matrix.
xPROD = double(Ltau * xPROD/coef); % double precision calculation.
tau=tau+1;Column=Pnum(:,row);
end;
lamS = (exp(log(norm(xPROD, 1))/Tau + log(coef)));
end

To implement a series of MC simulations with the equiprobable iid choice, it is sufficient to assign
the Pnum to have all of the columns identical and equal to [1, 1, . . . , 1]T/10:

>> Pnum = ones(10)/10; (A2)

and to call the former function as before. For an ss* iid series (Table 4), the trick is similar:

>> Pnum = diag(ss_star)∗ones(10); (A3)

here ss_star denotes the stochastic dominant eigenvector of the transition matrix P.

Appendix C. Getting a Given Number of Random Realizations

To ensure stochastic results are reproducible, the random number generator must be launched
from the same initial status in all series. In MATLAB, this is achieved, for instance, by returning the
status to its default value [51]:

>> rng(‘default’); (A4)

A MATLAB user-developed function, called repeatAnaMC, has the same three input variables as
lamS_Ana_num (Appendix B) in addition to the first one, the given number of random realizations.
Two output variables are the minimal and the maximal values of the λS estimates over the set of
realizations. The MATLAB code is the following (non-executable comments after %):

ffunction [lamSmin, lamSmax] = repAnaMCnum(repeat, AllLnum, Tau, coef)
% repeats calculation of stochastic lambda for ‘repeat’ times (=13, 33, . . . )
% and detects the range of variations for A.albana (‘Ana’ in the function name);
% the rest 2 input arguments are the same as in function ‘lamS_Ana_num’(MC).
% @ Logofet D.O., 2020
size(repeat); rng(‘default’); % to reproduce the results.
if any(size(repeat)~=[1 1]), error ‘Incorrect size of the input!’, end;
first=[];
for rep=1:repeat,
lamS=lamS_Ana_num(AllLnum,Tau, coef);% next lambdaS, which may happen = 0;
if lamS==0, lamS=[]; end;% excludes 0 lambdaS from accumulation in ‘first’
first=[first; lamS];% adjoins the next nonzero lambdaS;
if rem(rep,10)==0, rep, min(first),max(first),end,% for vision during the long calculation
end;
format long; lamSmin=min(first); lamSmax=max(first);%bounds of the range
end
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