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1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy set and fuzzy logic, providing a
new context as an extension of the classical sets and logic. In ordinary set theory, an element
either does or does not belong to a set under consideration, whereas, in the fuzzy logic,
the bonding of an element to a set is expressed as a real number from the interval [0, 1].
Since the establishment of this setting, a substantial number of pieces of literature have
been developed in order to gain insight into the theory of fuzzy sets and their applications.
Heilpern [2] introduced the concept of fuzzy mapping and provided some fixed point
results for this type of mappings.

The concept of metric, a distance-measuring mapping, has been generalized in a
number of ways in the last seven decades (see, for instance, [3,4]). If the distance between
the elements can not be expressed by an exact real number, then the factor of inaccuracy is
incorporated in the metric. A significant generalization of the class of metrics is molded
by the idea of fuzzy metrics. In 1975, Kramosil and Michalek [5] presented the concept
of fuzzy distance and fuzzy metrics using the concepts of fuzzy set and triangular norm
(t-norm, for short). While in metric spaces, the distance between two objects is given by
an exact real number, in fuzzy metric spaces, it is given by a “distribution function” that
models the degree of possibility of the event in which two arbitrary objects are at a distance
less than a certain real parameter.

In 1988, Grabiec [6] weakened the condition of completeness in fuzzy metric spaces by
defining a notion of Cauchy sequence known as G-Cauchy sequence, and the corresponding
completeness concept, known as G completeness. George and Veeramani [7] modified
the definition of fuzzy metric space and proved that every fuzzy metric space induces a
Hausdorff topology.

Gregori and Sapena [8] introduced fuzzy contractive mappings and proved Banach
fixed point theorem for complete fuzzy metric spaces. Subsequently, several fixed point
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results for various types of contractive mappings in fuzzy metric spaces were established
(see [9–18]). Nǎdǎban [19] generalized the notion of b-metric space by introducing fuzzy
b-metric spaces. Mehmood et al. [20,21] defined extended fuzzy b-metric spaces and
fuzzy rectangular b-metric spaces and, thus, further extrapolated contractions to this
general setting.

Samet et al. [22] established some fixed point results in metric spaces for α-ψ-
contractions. Stimulated by this work, Gopal and Vetro [18] introduced the concept of
α-φ-contractive mapping and established some theorems for G-complete fuzzy metric
spaces in the sense of Grabiec [6]. Later, many researchers explored α-admissibility in fuzzy
metric spaces (see [18,23,24]). We also mention the recent extension to spaces endowed
with a graph given in [25].

Motivated by the works [20,24], we introduce the notion of extended fuzzy rectangular
b-metric space (EFRbMS) and establish some fixed point results via α-admissibility in the
setting of EFRbMS. Our work, being in a more general framework than the classes of
“extended fuzzy b-metric spaces” and “rectangular fuzzy b-metric spaces”, relaxes the
triangle inequality of classical fuzzy metric spaces and generalizes the notion of distance.
Consequently, more efficient techniques and algorithms can be devised for image filtering
in such spaces. Some interesting applications of the relaxed triangle inequality and fuzzy
metrics to the removal of image noise can be found in [26–31].

Our notions and results generalize some other concepts and fixed point results existing
in the literature for fuzzy metric spaces. To demonstrate the validity of our results, some
examples, along with an application for the existence of solutions to a class of integral
equations, are provided.

2. Materials and Methods

In the following, some terms and definitions are provided, which will be needed in
the sequel. Throughout this paper, N represents the set of positive integers, and all the sets
under consideration are assumed to be non-empty.

Definition 1. ([32]) Let ∗ : [0, 1]2 → [0, 1] be a (continuous) binary operation and ([0, 1],≤, ∗)
be an ordered abelian topological monoid with unit 1, then ∗ is referred to as a continuous t-norm.

Examples of some frequently used continuous t-norms are a ∗L b = max{a + b− 1, 0}
(Lukasievicz t-norm), a ∗P b = ab (product t-norm) and a ∗m b = min{a, b} (minimum
t-norm).

Definition 2. ([5]) Let * be a continuous t-norm and M a fuzzy set on S × S × [0, ∞) which
satisfies the following conditions, for all p, q, u ∈ S:

(KM1) M(p, q, 0) = 0;
(KM2) M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(KM3) M(p, q, δ) = M(q, p, δ);
(KM4) M(p, q, δ + t) ≥ M(p, u, δ) ∗M(u, q, t), ∀ δ, t > 0;
(KM5) M(p, q, ·) : [0, ∞)→ [0, 1] is continuous;
(KM6) limδ→∞ M(p, q, δ) = 1.

Then the 3-tuple (S, M, ∗) is termed as fuzzy metric space.

M(p, q, δ) indicates the degree of closeness between p and q with respect to δ ≥ 0.

Remark 1. For p 6= q and δ > 0, it is always true that 0 < M(p, q, δ) < 1.

Lemma 1. ([8]) M(p, q, ·) is non-decreasing for every fixed p, q ∈ S.
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Example 1. ([28]) Consider the space (S, d), where d is a metric on S. A fuzzy set M : S× S×
[0, ∞)→ [0, 1] defined on (S, d) as follows is a fuzzy metric on S

M(x, y, δ) =
kδm

kδm + n ∗ d(x, y)
, for every x, y ∈ S and δ > 0.

Here k, m and n are positive real numbers, and ∗ is the product t-norm. This is a fuzzy metric
induced by the metric d. In the above terms, a fuzzy metric is also defined if the minimum t-norm is
used instead of the product t-norm.

For k = m = n = 1, it reduces to the standard fuzzy metric.

Definition 3. ([19]) Let * be a continuous t-norm, b ≥ 1 be a given real number and M be a fuzzy
set on S× S× [0, ∞) satisfying the following conditions, for all p, q, u ∈ S:

(FbM1) M(p, q, 0) = 0;
(FbM2) M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(FbM3) M(p, q, δ) = M(q, p, δ);
(FbM4) M(p, q, b(δ + t)) ≥ M(p, u, δ) ∗M(u, q, t), ∀δ, t > 0;
(FbM5) M(p, q, ·) : (0, ∞)→ [0, 1] is continuous and limδ→∞ M(p, q, δ) = 1.

Then the 3-tuple (S, M, ∗) is termed as fuzzy b-metric space.

Definition 4. ([21]) Let * be a continuous t-norm, ϑ : S× S→ [1, ∞) be a given function and M
be a fuzzy set on S× S× [0, ∞) satisfying the following conditions, for all p, q, u ∈ S:

(FbM1) M(p, q, 0) = 0;
(FbM2) M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(FbM3) M(p, q, δ) = M(q, p, δ);
(FbM4) M(p, q, ϑ(p, q)(δ + t)) ≥ M(p, u, δ) ∗M(u, q, t), ∀δ, t > 0;
(FbM5) M(p, q, ·) : (0, ∞)→ [0, 1] is continuous and limδ→∞ M(p, q, δ) = 1.

Then the 3-tuple (S, M, ∗) is called an extended fuzzy b-metric space.

Chugh and Kumar [33] defined the notion of fuzzy rectangular metric space as follows:

Definition 5. Let * be a continuous t-norm and M be a fuzzy set on S× S× [0, ∞) satisfying the
following conditions, for all p, q, u, v ∈ S and δ, µ, κ > 0:

(FRM1)M(p, q, 0) = 0;
(FRM2)M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(FRM3)M(p, q, δ) = M(q, p, δ);
(FRM4)M(p, q, δ + µ + κ) ≥ M(p, u, δ) ∗M(u, v, µ) ∗M(v, q, κ), for all u, v ∈ S\{p, q};
(FRM5)M(p, q, ·) : (0, ∞)→ [0, 1] is continuous and

lim
δ→∞

M(p, q, δ) = 1.

Then the ordered triple (S, M, ∗) is called a fuzzy rectangular metric space.

Mehmood et al. [20] proposed the concept of fuzzy rectangular b-metric space
as follows:

Definition 6. Let * be a continuous t-norm, b ≥ 1 be a given real number and M be a fuzzy set on
S× S× [0, ∞) satisfying the following conditions, for all p, q, r, s ∈ S and δ, µ, κ > 0:

(FRb M1) M(p, q, 0) = 0;
(FRb M2) M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(FRb M3) M(p, q, δ) = M(q, p, δ);
(FRb M4) M(p, q, b(δ + µ + κ)) ≥ M(p, r, δ) ∗M(r, s, µ) ∗M(s, q, κ), ∀ r, s ∈ S\{p, q}.
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(FRb M5) M(p, q, ·) : (0, ∞)→ [0, 1] is continuous and

lim
δ→∞

M(p, q, δ) = 1.

Then, the ordered triple (S, M, ∗) is called a fuzzy rectangular b-metric space.

Example 2. ([20]) Let (S, d) be a rectangular b-metric space and M : S2 × [0, ∞) → [0, 1] be
defined as

M(a, b, δ) =

{
δ

δ+d(a,b) if δ > 0,

0 if δ = 0.

Then (S, M, ∗) is a fuzzy rectangular b-metric space with ∗m as t-norm.

Remark 2. Condition (FRb M2) of Definition 6 can be, equivalently, stated as

M(p, p, δ) = 1, ∀ p ∈ S and δ > 0, and M(p, q, δ) < 1, ∀ p 6= q and δ > 0.

3. Results

By pursuing the idea of fuzzy rectangular b-metric space presented by Mehmood et al. [20],
we introduce the notion of extended fuzzy rectangular b-metric space and generalize some
fixed point results via α-η-β contractions.

Definition 7. Let * be a continuous t-norm, ϑ : S× S→ [1, ∞) be a given function and M be a
fuzzy set on S× S× [0, ∞) satisfying the following conditions, for all p, q, u, v ∈ S and δ, µ, κ > 0:

(FRb M1) M(p, q, 0) = 0;
(FRb M2) M(p, q, δ) = 1, ∀ δ > 0 iff p = q;
(FRb M3) M(p, q, δ) = M(q, p, δ);
(FRb M4) M(p, q, ϑ(p, q)(δ + µ + κ)) ≥ M(p, u, δ) ∗ M(u, v, µ) ∗ M(v, q, κ), for all u, v ∈

S\{p, q};
(FRb M5) M(p, q, ·) : (0, ∞)→ [0, 1] is continuous and limδ→∞ M(p, q, δ) = 1.

Then, the 3-tuple (S, M, ∗) is called an extended fuzzy rectangular b-metric space.

For ϑ(p, q) = b ≥ 1, Definition 7 reduces to Definition 6. In the following, we
exemplify Definition 7.

Example 3. Let S = {1, 2, 3, 4} and define a b-metric d : S× S→ [0, ∞) as d(m, n) = (m− n)2.
Let ϑ : S× S→ [1, ∞) be defined as ϑ(m, n) = 1 + m + n and

M(m, n, δ) =

{
δ

δ+d(m,n) if δ > 0,

0 if δ = 0.

Then, (S, M, ∗m) is an extended fuzzy rectangular b-metric space, where ∗m is the minimum
t-norm.
As d(θ, θ) = 0 for all θ ∈ S, d(θ, θ − 1) = d(θ − 1, θ) = 1 for all θ ∈ S\{1},
d(θ, θ − 2) = d(θ − 2, θ) = 4 for all θ ∈ S\{1, 2} and d(1, 4) = d(4, 1) = 9.
Also
ϑ(1, 1) = 3, ϑ(2, 2) = 5, ϑ(3, 3) = 7 and ϑ(4, 4) = 9,
ϑ(1, 2) = 4 = ϑ(2, 1), ϑ(1, 3) = 5 = ϑ(3, 1),
ϑ(1, 4) = 6 = ϑ(4, 1), ϑ(2, 3) = 6 = ϑ(3, 2),
ϑ(2, 4) = 7 = ϑ(4, 2), ϑ(3, 4) = 8 = ϑ(4, 3).
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Conditions (FRb M1), (FRb M2), (FRb M3), and (FRb M5) trivially hold. In the following,
we prove that property (FRb M4) is valid.
Indeed, for all δ, µ, κ > 0, we have

M(1, 2, ϑ(1, 2)(δ + µ + κ)) =
ϑ(1, 2)(δ + µ + κ)

ϑ(1, 2)(δ + µ + κ) + d(1, 2)

=
4(δ + µ + κ)

4(δ + µ + κ) + 1
= 1− 1

4(δ + µ + κ) + 1
,

M(1, 3, δ) =
δ

δ + 4
= 1− 4

δ + 4
,

M(3, 4, µ) =
µ

µ + 1
= 1− 1

µ + 1
,

M(4, 2, κ) =
κ

κ + 4
= 1− 4

κ + 4
.

Now,

M(1, 2, ϑ(1, 2)(δ + µ + κ)) = 1− 1
4(δ + µ + κ) + 1

= 1− 4
16δ + 16µ + 16κ + 4

> 1− 4
16δ + 4

> 1− 4
δ + 4

= M(1, 3, δ).

Furthermore,

M(1, 2, ϑ(1, 2)(δ + µ + κ)) > M(3, 4, µ),

M(1, 2, ϑ(1, 2)(δ + µ + κ)) > M(4, 2, κ).

Therefore,

M(1, 2, ϑ(1, 2)(δ + µ + κ)) ≥ min{M(1, 3, δ), M(3, 4, µ), M(4, 2, κ)},

that is,

M(1, 2, ϑ(1, 2)(δ + µ + κ)) ≥ M(1, 3, δ) ∗m M(3, 4, µ) ∗m M(4, 2, κ).

Similarly, it can be shown that

M(1, 3, ϑ(1, 3)(δ + µ + κ)) ≥ M(1, 2, δ) ∗m M(2, 4, µ) ∗m M(4, 3, κ),

M(1, 4, ϑ(1, 4)(δ + µ + κ)) ≥ M(1, 2, δ) ∗m M(2, 3, µ) ∗m M(3, 4, κ),

M(2, 3, ϑ(2, 3)(δ + µ + κ)) ≥ M(2, 1, δ) ∗m M(1, 4, µ) ∗m M(4, 3, κ),

M(2, 4, ϑ(2, 4)(δ + µ + κ)) ≥ M(2, 1, δ) ∗m M(1, 3, µ) ∗m M(3, 4, κ),

M(3, 4, ϑ(3, 4)(δ + µ + κ)) ≥ M(3, 1, δ) ∗m M(1, 2, µ) ∗m M(2, 4, κ).

Therefore,

M(m, n, ϑ(m, n)(δ + µ + κ)) ≥ M(m, p, δ) ∗m M(p, q, µ) ∗m M(q, n, κ),

for every p, q ∈ S\{m, n} and δ, µ, κ > 0.

Hence, (S, M, ∗m) is an extended fuzzy rectangular b-metric space.
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Definition 8. In an extended fuzzy rectangular b-metric space (S, M, ∗), we state that a sequence
{νn}n∈N:

1. converges to ν ∈ S if lim
n→∞

M(νn, ν, δ) = 1, for every δ > 0;

2. is M-Cauchy if, for every ε ∈ (0, 1) and δ > 0, there is nε ∈ N such that M(νn, νm, δ) >
1− ε, for every m, n ≥ nε;

3. is G-Cauchy if lim
n→∞

M(νn+k, νn, δ) = 1, for all δ > 0 and each k ∈ N.

Definition 9. An EFRbMS is G complete (resp., M complete) if every G-Cauchy (resp., M-Cauchy)
sequence converges in it.

Definition 10. Let (S, M, ∗) be an EFRbMS and α : S2 × (0, ∞)→ [0, ∞) be a mapping. Then
L : S→ S is called α-admissible if, for all a, b ∈ S and δ > 0,

α(a, b, δ) ≥ 1⇒ α(La,Lb, δ) ≥ 1. (1)

Definition 11. Let (S, M, ∗) be an EFRbMS and α, η : S2 × (0, ∞) → [0, ∞) be two functions.
Then, L : S→ S is said to be α-η-admissible if, for all a, b ∈ S and δ > 0,

α(a, b, δ) ≥ η(a, b, δ)⇒ α(La,Lb, δ) ≥ η(La,Lb, δ). (2)

For η(a, b, δ) = 1, this definition reduces to Definition 10. L is called η-subadmissible if
α(a, b, δ) = 1.

Definition 12. Let (S, M, ∗) be an EFRbMS. Let α, η : S2 × (0, ∞)→ [0, ∞) be two functions.
Then, L : S→ S is called an α-η-β contraction if there is some function β : [0, 1]→ [1, ∞) such
that, for any sequence {rn} ⊂ [0, 1], it is satisfied the condition β(rn) → 1 ⇔ rn → 1 when
n→ ∞, and, moreover, for all a, b ∈ S and δ > 0

α(a,La, δ)α(b,Lb, δ) ≥ η(a,La, δ)η(b,Lb, δ)

⇒ M(La,Lb, δ) ≥ β
(

M(a, b, δ)
)

N(a, b, δ), (3)

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

.

Theorem 1. Let (S, M, ∗) be a G-complete EFRbMS, and L : S → S be an α-η-β contraction
such that:

(i) L is α-η-admissible;
(ii) There is some a0 ∈ S such that α(a0,La0, δ) ≥ η(a0,La0, δ) for all δ > 0;
(iii) For {an} ⊂ S, if α(an, an+1, δ) ≥ η(an, an+1, δ) for all n ∈ N, δ > 0 and limn→∞an = a,

then α(a,La, δ) ≥ η(a,La, δ) for all δ > 0.

Suppose also that M is such that

(FRb M6) M(p, q, ·) : (0, ∞) → [0, 1] is continuous uniformly for (p, q) ∈ [0, 1]× [0, 1] and
limδ→∞ M(p, q, δ) = 1 uniformly for (p, q) ∈ [0, 1]× [0, 1].

Then L has a unique fixed point.

Proof. Define an iterative scheme {an} by an+1 = Lan, for n ≥ 0, where a0 ∈ S is such
that α(a0,La0, δ) ≥ η(a0,La0, δ). Suppose that an+1 6= an for every n ≥ 0; if not, then an is
a fixed point of L. From α(a0,La0, δ) ≥ η(a0,La0, δ) along with the α-η-admissibility of L,
we have

α(a1, a2, δ) = α(La0,La1, δ) ≥ η(La0,La1, δ) = η(a1, a2, δ),

therefore,
α(a0,La0, δ)α(a1,La1, δ) ≥ η(a0,La0, δ)η(a1,La1, δ).
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Proceeding in the same way, we have

α(an−1,Lan−1, δ)α(an,Lan, δ) ≥ η(an−1,Lan−1, δ)η(an,Lan, δ),

for all n ∈ N and δ > 0. Using (3), we have

M(an, an+1, δ) = M(Lan−1,Lan, δ)

≥ β
(

M(an−1, an, δ)
)

N(an−1, an, δ).

Here,

N(an−1, an, δ) = min
{

M(an−1, an, δ), max{M(an−1,Lan−1, δ), M(an,Lan, δ)}
}

= min
{

M(an−1, an, δ), max{M(an−1, an, δ), M(an, an+1, δ)}
}

.

In each of the two possible cases above, it is true that

N(an−1, an, δ) = M(an−1, an, δ) for all n ∈ N and δ > 0.

Therefore,

M(an, an+1, δ) ≥ β
(

M(an−1, an, δ)
)

M(an−1, an, δ)

≥ M(an−1, an, δ). (4)

It means that {M(an, an+1, δ)} is an increasing sequence in (0, 1]. Furthermore, from
(4), it follows that

M(an, an+1, δ)

M(an−1, an, δ)
≥ β

(
M(an−1, an, δ)

)
≥ 1

⇒ lim
n→∞

β
(

M(an−1, an, δ)
)
= 1

⇒ lim
n→∞

M(an−1, an, δ) = 1. (5)

Now, we are going to prove that {an} is a Cauchy sequence. Suppose it is not.
Then, there will be some r ∈ (0, 1) and δ0 > 0 such that, for all p ≥ 1, there exist
m(p), n(p) ∈ N where m(p) > n(p) ≥ p with m(p) being the least integer, which exceeds
n(p) and satisfying

M

(
am(p), an(p),

δ0

ϑ(am(p), an(p))

)
≤ 1− r.

Note that, from (5), m(p) ≥ n(p) + 2 for p large. Therefore,

M

(
am(p)−2, an(p),

δ0

ϑ(am(p), an(p))

)
> 1− r, (6)

which is deduced if m(p)− 2 exceeds n(p), or trivially obtained if both indexes are equal.
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Using (FRb M4), we have

1− r ≥ M

(
am(p), an(p),

δ0

ϑ(am(p), an(p))

)

≥ M

(
am(p), am(p)−1,

δ0

3ϑ(am(p), an(p))

)

∗ M

(
am(p)−1, am(p)−2,

δ0

3ϑ(am(p), an(p))

)

∗ M

(
am(p)−2, an(p),

δ0

3ϑ(am(p), an(p))

)
. (7)

Now, if δ := lim sup
p→∞

δ0

3ϑ(am(p), an(p))
< +∞, then

M

(
am(p), am(p)−1,

δ0

3ϑ(am(p), an(p))

)

= M

(
am(p), am(p)−1,

δ0

3ϑ(am(p), an(p))

)
−M

(
am(p), am(p)−1, δ

)
+ M

(
am(p), am(p)−1, δ

)
,

and similarly for the second term. Using (5) and (6) and (FRb M6), for p large enough, we
have, from (7),

1− r > 1− r,

which is a contradiction. If lim sup
p→∞

δ0

3ϑ(am(p), an(p))
= +∞, then, by (FRb M6), we obtain

the same conclusion. Hence {an} is a Cauchy sequence. The G-completeness of (S, M, ∗)
ensures the existence of some ã ∈ S such that

lim
n→∞

an → ã⇒ lim
n→∞

M(an, ã, δ) = 1 for all δ > 0.

From (iii), it follows that

α(ã,Lã, δ) ≥ η(ã,Lã, δ) ∀δ > 0

⇒ α(an,Lan, δ)α(ã,Lã, δ) ≥ η(an,Lan, δ)η(ã,Lã, δ) for all n ∈ N∪ {0} and δ > 0.

Using the hypothesis (i) of the theorem we have, for all δ > 0,

M(Lã,Lan, δ) = M(Lã, an+1, δ) ≥ β
(

M(ã, an, δ)
)

N(ã, an, δ). (8)

Therefore, using (FRb M4) and (8), we have

M(Lã, ã, δ) ≥ M
(
Lã, an+1,

δ

3ϑ(Lã, ã)

)
∗M

(
an+1, an,

δ

3ϑ(Lã, ã)

)
∗M

(
an, ã,

δ

3ϑ(Lã, ã)

)
≥ β

(
M
(

an, ã,
δ

3ϑ(Lã, ã)

))
N
(

ã, an,
δ

3ϑ(Lã, ã)

)
∗M

(
an+1, an,

δ

3ϑ(Lã, ã)

)
∗ M

(
an, ã,

δ

3ϑ(Lã, ã)

)
, (9)
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where

N
(

ã, an,
δ

3ϑ(Lã, ã)

)
= min

{
M
(

ã, an,
δ

3ϑ(Lã, ã)

)
, max

{
M
(

ã,Lã,
δ

3ϑ(Lã, ã)

)
, M
(

an, an+1,
δ

3ϑ(Lã, ã)

)}}
.

Besides, (5) implies

lim
n→∞

N
(

ã, an,
δ

3ϑ(Lã, ã)

)
= 1. (10)

Using the hypotheses of the theorem along with (5), (10), and (9) implies that

lim
n→∞

M(Lã, ã, δ) = 1 for every δ > 0.

Hence, Lã = ã and ã is a fixed point of L.

To show the uniqueness, suppose that b 6= ã is another fixed point of L. Then

M(ã, b, δ) < 1⇒ β
(

M(ã, b, δ)) > 1. (11)

Therefore, from (3), it follows that

M(ã, b, δ) = M(Lã,Lb, δ) ≥ β
(

M(ã, b, δ)
)

N(ã, b, δ), (12)

where

N(ã, b, δ) = min
{

M(ã, b, δ), max{M(ã,Lã, δ), M(b,Lb, δ)}
}

= min
{

M(ã, b, δ), max{M(ã, ã, δ), M(b, b, δ)}
}

= M(ã, b, δ).

Finally, (11) and (12) imply that

M(ã, b, δ) ≥ β
(

M(ã, b, δ)
)

M(ã, b, δ) > M(ã, b, δ),

which is a contradiction. Hence, ã = b.

Letting η(a, b, δ) = 1 in the above theorem, we have the following result.

Corollary 1. Let (S, M, ∗) be a G-complete EFRbMS, L : S → S be an α-admissible mapping
and α : S2 × (0, ∞) → [0, ∞), β : [0, 1] → [1, ∞) be two functions such that, for any {rn} ⊂
[0, 1], β(rn)→ 1⇔ rn → 1 and, for all a, b ∈ S and δ > 0, the following is satisfied:

α(a,La, δ)α(b,Lb, δ) ≥ 1⇒ M(La,Lb, δ) ≥ β
(

M(a, b, δ)
)

N(a, b, δ),

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

. Assume that (FRb M6)
and the following conditions hold:

(i) There is some a0 ∈ S such that α(a0,La0, δ) ≥ 1 for all δ > 0;
(ii) For {an} ⊂ S, if α(an, an+1, δ) ≥ 1 for all n ∈ N and

limn→∞ an = a, then, α(a,La, δ) ≥ 1, for all δ > 0.

Then, L has a unique fixed point.
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Corollary 2. Let L : S → S be an α-admissible mapping, where (S, M, ∗) is a G-complete
EFRbMS and α : S2 × (0, ∞)→ [0, ∞), β : [0, 1]→ [1, ∞) are two functions such that, for any
{rn} ⊂ [0, 1], β(rn)→ 1⇔ rn → 1 and, for all a, b ∈ S and δ > 0, the following is satisfied:

α(a,La, δ)α(b,Lb, δ)M(La,Lb, δ) ≥ β
(

M(a, b, δ)
)

N(a, b, δ),

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

.

Furthermore, suppose that (FRb M6) and the following conditions hold:

(i) There is some a0 ∈ S such that α(a0,La0, δ) ≥ 1 for all δ > 0 ;
(ii) For {an} ⊂ S, if α(an, an+1, δ) ≥ 1 for all n ∈ N and

limn→∞ an = a, then α(a,La, δ) ≥ 1, for all δ > 0.

Then, L has a unique fixed point.

For α(a, b, δ) = 1, the following corollary is deduced from the above theorem.

Corollary 3. Let L : S → S be an η-subadmissible mapping, where (S, M, ∗) is a G-complete
EFRbMS. Let β : [0, 1] → [1, ∞) be a function such that, for any {rn} ⊂ [0, 1], β(rn) → 1 ⇔
rn → 1 and, for all a, b ∈ S and δ > 0, the following statement is true:

η(a,La, δ)η(b,Lb, δ) ≤ 1⇒ M(La,Lb, δ) ≥ β
(

M(a, b, δ)
)

N(a, b, δ),

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

. Moreover, assume that
(FRb M6) and the following conditions hold:

(i) There is some a0 ∈ S such that η(a0,La0, δ) ≤ 1 for all δ > 0;
(ii) For {an} ⊂ S, if η(an, an+1, δ) ≤ 1 for all n ∈ N and

lim
n→∞

an = a, then η(a,La, δ) ≤ 1, for all δ > 0.

Then, there is a unique x ∈ S such that Lx = x.

Corollary 4. Let L : S→ S be an η-subadmissible mapping, (S, M, ∗) be a G-complete EFRbMS
and the function β : [0, 1] → [1, ∞) be such that, for any sequence {rn} ⊂ [0, 1], β(rn) → 1⇔
rn → 1 and, for all a, b ∈ S, δ > 0, the following condition is true:

M(La,Lb, δ) ≥ η(a,La, δ)η(b,Lb, δ)β
(

M(a, b, δ)
)

N(a, b, δ),

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

. Furthermore, assume that
(FRb M6) and the following conditions hold:

(i) There is some a0 ∈ S such that η(a0,La0, δ) ≤ 1 for all δ > 0;
(ii) For {an} ⊂ S, if η(an, an+1, δ) ≤ 1 for all n ∈ N and

lim
n→∞

an = a, then η(a,La, δ) ≤ 1, for all δ > 0.

Then L has a unique fixed point.

Remark 3. Due to the definition of the sequence {an} in the proof of Theorem 1, the condition (iii)
in Theorem 1 can be replaced by the following condition:

(iii)∗ For {an} ⊂ S, if α(an,Lan, δ) ≥ η(an,Lan, δ) for all n ∈ N, δ > 0 and limn→∞an = a,
then α(a,La, δ) ≥ η(a,La, δ) for all δ > 0.

Similarly, in Corollaries 1 and 2, condition (ii) can be replaced by the following condition:

(ii)∗ For {an} ⊂ S, if α(an,Lan, δ) ≥ 1 for all n ∈ N and
limn→∞ an = a, then α(a,La, δ) ≥ 1, for all δ > 0.

In Corollaries 3 and 4, the condition (ii) can be replaced by the following condition:

(ii)∗ For {an} ⊂ S, if η(an,Lan, δ) ≤ 1 for all n ∈ N and
lim

n→∞
an = a, then η(a,La, δ) ≤ 1, for all δ > 0.



Mathematics 2021, 9, 2009 11 of 18

The following example supports Theorem 1.

Example 4. Let S = [0, ∞) and M(a, b, δ) = e
−(a−b)2

δ for all a, b ∈ S, δ > 0, with r ∗ s = rs for
r, s ∈ [0, 1]. It can be easily verified that (S, M, ∗) is a G-complete EFRbMS. Define L : S→ S by

L(a) =

{
a
2 if a ∈ [0, 1],
ln(a + e− 1) if a ∈ (1, ∞).

Consider the mappings α, η : S× S× (0, ∞)→ [0, ∞) given, respectively, by

α(a, b, δ) =

{
3 if a, b ∈ [0, 1],
0 otherwise,

and

η(a, b, δ) =

{
2 if a, b ∈ [0, 1],
1 otherwise.

For a, b ∈ S, if
α(a, b, δ) ≥ η(a, b, δ),

then a, b ∈ [0, 1], and, for every u ∈ [0, 1], we have Lu < 1, therefore

α(La,Lb, δ) ≥ η(La,Lb, δ).

That is, L is α-η-admissible. Furthermore, α(a,La, δ) ≥ η(a,La, δ) for a ∈ [0, 1]. If
{an} ⊂ S satisfies that α(an,Lan, δ) ≥ η(an,Lan, δ) for all n ∈ N, δ > 0, and lim

n→∞
an →

a, then {an} ⊂ [0, 1], hence a ∈ [0, 1]. This implies that α(a,La, δ) ≥ η(a,La, δ), for all δ > 0.
On the other hand, obviously

α(a,La, δ)α(b,Lb, δ) ≥ η(a,La, δ)η(b,Lb, δ) ⇒ a, b ∈ [0, 1].

Choose β : [0, 1]→ [1, ∞) as a function such that β(x) ≤ x−
3
4 , for x > 0, and that, for any

sequence {rn} ⊂ [0, 1], it is satisfied the condition β(rn) → 1⇔ rn → 1 when n → ∞. Hence,

β(e
−(a−b)2

δ ) ≤ e
3(a−b)2

4δ , and, therefore,

M(La,Lb, δ) = e
−(La−Lb)2

δ

= e
− 1

4 (a−b)2

δ

≥ β(e
−(a−b)2

δ )e
−(a−b)2

δ

= β
(

M(a, b, δ)
)

M(a, b, δ)

≥ β
(

M(a, b, δ)
)

N(a, b, δ).

Note that (FRb M6) holds since M is continuous on [0, 1]× [0, 1]× (0, ∞) and 1 ≥ M(a, b, δ) ≥
e−

1
δ , δ > 0.

To summarize, all conditions of Theorem 1 are fulfilled. Clearly, 0 ∈ S is the only fixed point
of L.

4. α-η-ψ Contractions in Extended Fuzzy Rectangular b-Metric Spaces

Let Ψ be the collection of all continuous and non-decreasing mappings ψ : [0, 1] →
[0, 1] such that ψ(t) > t for all t ∈ (0, 1).
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Definition 13. Let L : S → S, (S, M, ∗) be an EFRbMS and α, η : S2 × (0, ∞) → [0, ∞) be
functions such that, for all a, b ∈ S and δ > 0,

α(a,La, δ)α(b,Lb, δ) ≥ η(a,La, δ)η(b,Lb, δ)

⇒ M(La,Lb, δ) ≥ ψ
(

N(a, b, δ)
)
, (13)

with N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

and ψ ∈ Ψ. Then L is
called an α-η-ψ contraction.

In the following, we establish a fixed point theorem for α-η-ψ contractions in EFRbMS.

Theorem 2. Let (S, M, ∗) be a G-complete EFRbMS and L : S → S be an α-η-ψ contraction
such that:

(a) L is α-η-admissible;
(b) There exists a0 ∈ S such that α(a0,La0, δ) ≥ η(a0,La0, δ) for all δ > 0;
(c) For {an} ⊂ S, if α(an, an+1, δ) ≥ η(an, an+1, δ) for all n ∈ N, δ > 0 and

limn→∞an = a, then α(a,La, δ) ≥ η(a,La, δ) for all δ > 0.

Then, there is a unique ã ∈ S such that Lã = ã.

Proof. Arguing as in the proof of Theorem 1, we have

α(an−1,Lan−1, δ)α(an,Lan, δ) ≥ η(an−1,Lan−1, δ)η(an,Lan, δ) for all n ∈ N and δ > 0.

Using (13), we have

M(an, an+1, δ) = M(Lan−1,Lan, δ)

≥ ψ
(

N(an−1, an, δ)
)
, (14)

where

N(an−1, an, δ) = min
{

M(an−1, an, δ), max{M(an−1,Lan−1, δ), M(an,Lan, δ)}
}

= min
{

M(an−1, an, δ), max{M(an−1, an, δ), M(an, an+1, δ)}
}

.

In each of the two above possible cases, it is true that

N(an−1, an, δ) = M(an−1, an, δ), for all n ∈ N and δ > 0.

Therefore, from (14), we have

M(an, an+1, δ) ≥ ψ
(

M(an−1, an, δ)
)
> M(an−1, an, δ).

This means that {M(an, an+1, δ)} is an increasing sequence in (0,1].
Let lim

n→∞
M(an, an+1, δ) = `(δ). We prove that `(δ) = 1 for all δ > 0. Suppose there is

some δ0 > 0 for which `(δ0) < 1. Letting n→ ∞ and using the definition of ψ, (14) gives
the following contradiction

`(δ0) ≥ ψ
(
`(δ0)

)
> `(δ0).

Hence,

lim
n→∞

M(an, an+1, δ) = 1, for all δ > 0. (15)

Using a similar argument as the proof of Theorem 1, it can be shown that the sequence
{an} is of Cauchy type.

As (S, M, ∗) is complete, there will be some ã ∈ S such that

lim
n→∞

an → ã⇒ lim
n→∞

M(an, ã, δ) = 1 for all δ > 0.
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From (c), we have

α(ã,Lã, δ) ≥ η(ã,Lã, δ)

⇒ α(an,Lan, δ)α(ã,Lã, δ) ≥ η(an,Lan, δ)η(ã,Lã, δ) for all n ∈ N∪ {0} and δ > 0.

Using the α-η-ψ contractivity hypothesis of the theorem, we have, for all δ > 0,

M(Lã,Lan, δ) ≥ ψ
(

N(ã, an, δ)
)
. (16)

Therefore, using (FRb M4) and (16), and fixing ϑ(Lã, ã) > 0, we have

M(Lã, ã, δ) ≥ M
(
Lã, an+1,

δ

3ϑ(Lã, ã)

)
∗M

(
an+1, an,

δ

3ϑ(Lã, ã)

)
∗M

(
an, ã,

δ

3ϑ(Lã, ã)

)
≥ ψ

(
N
(

ã, an,
δ

3ϑ(Lã, ã)

))
∗M

(
an+1, an,

δ

3ϑ(Lã, ã)

)
∗M

(
an, ã,

δ

3ϑ(Lã, ã)

)
, (17)

where

N
(

ã, an,
δ

3ϑ(Lã, ã)

)
= min

{
M
(

ã, an,
δ

3ϑ(Lã, ã)

)
, max

{
M
(

ã,Lã,
δ

3ϑ(Lã, ã)

)
, M
(

an, an+1,
δ

3ϑ(Lã, ã)

)}}
.

At this point, (15) implies

lim
n→∞

N
(

ã, an,
δ

3ϑ(Lã, ã)

)
= 1. (18)

Using the hypotheses of the theorem along with (15), (18) and (17) implies that

lim
n→∞

M(Lã, ã, δ) = 1, for all δ > 0.

Hence, Lã = ã and ã is a fixed point of L.
To show the uniqueness, suppose that b 6= ã is another fixed point of L. Then

Lã = ã 6= b = Lb, therefore M(ã, b, δ) < 1.

Hence,

M(ã, b, δ) = M(Lã,Lb, δ) ≥ ψ
(

M(ã, b, δ) > M(ã, b, δ),

which is not possible. Hence, ã = b.

Placing η(a, b, δ) = 1 in Theorem 2, we obtain the following corollaries:

Corollary 5. Let (S, M, ∗) be a G-complete EFRbMS, and L : S→ S be an α-admissible mapping
such that

α(a,La, δ)α(b,Lb, δ) ≥ 1⇒ M(La,Lb, δ) ≥ ψ
(

N(a, b, δ)
)
,

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

for all a, b ∈ S and δ > 0.
Assume that the following conditions hold:

(a) There is some a0 ∈ S such that α(a0,La0, δ) ≥ 1 for all δ > 0;
(b) For {an} ⊂ S, if α(an, an+1, δ) ≥ 1 for all n ∈ N, δ > 0 and

limn→∞an = a, then α(a,La, δ) ≥ 1 for all δ > 0.

Then, L has a unique fixed point.
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Corollary 6. Let (S, M, ∗) be a G-complete EFRbMS, and L : S→ S be an α-admissible mapping
such that

α(a,La, δ)α(b,Lb, δ)M(La,Lb, δ) ≥ ψ
(

N(a, b, δ)
)
,

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

for all a, b ∈ S and δ > 0.
Assume that the following conditions hold:

(a) There is some a0 ∈ S such that α(a0,La0, δ) ≥ 1 for all δ > 0;
(b) For {an} ⊂ S, if α(an, an+1, δ) ≥ 1 for all n ∈ N, δ > 0 and

limn→∞an = a, then α(a,La, δ) ≥ 1 for all δ > 0.

Then, there is a unique ã ∈ S such that Lã = ã.

Letting α(a, b, δ) = 1 in Theorem 2, we obtain the following corollaries.

Corollary 7. Let (S, M, ∗) be a G-complete EFRbMS, and L : S → S be an η-subadmissible
mapping such that

η(a,La, δ)η(b,Lb, δ) ≤ 1⇒ M(La,Lb, δ) ≥ ψ
(

N(a, b, δ)
)
,

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

for all a, b ∈ S and δ > 0.
Suppose that:

(i) There is some a0 ∈ S such that η(a0,La0, δ) ≤ 1 for all δ > 0;
(ii) For {an} ⊂ S, if η(an, an+1, δ) ≤ 1 for all n ∈ N, δ > 0 and

limn→∞ an = a, then η(a,La, δ) ≤ 1 for all δ > 0.

Then, there is a unique ã ∈ S for which Lã = ã.

Corollary 8. Let L : S→ S be an η-subadmissible mapping, (S, M, ∗) be a G-complete EFRbMS
and suppose that

M(La,Lb, δ) ≥ η(a,La, δ)η(b,Lb, δ)ψ
(

N(a, b, δ)
)

for all a, b ∈ S and δ > 0,

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

. Suppose also that:

(i) There is some a0 ∈ S for which η(a0,La0, δ) ≤ 1 for all δ > 0;
(ii) For {an} ⊂ S, if η(an, an+1, δ) ≤ 1 for all n ∈ N, δ > 0 and

limn→∞ an = a, then η(a,La, δ) ≤ 1 for all δ > 0.

Then, L has a unique fixed point.

Remark 4. Similar comments given in Remark 3 apply to Theorem 2 and Corollaries 5–8.

Taking α(a, b, δ) = 1 in Corollary 6 and η(a, b, δ) = 1 in Corollary 8, we obtain the
following corollary, which is the result by Mihet [34] for EFRbMS.

Corollary 9. Let (S, M, ∗) be a G-complete EFRbMS and L : S→ S. Assume that

M(La,Lb, δ) ≥ ψ
(

N(a, b, δ)
)

for all a, b ∈ S and δ > 0,

where N(a, b, δ) = min
{

M(a, b, δ), max{M(a,La, δ), M(b,Lb, δ)}
}

. Then L has a unique
fixed point.
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Example 5. Theorem 2 is also applicable to Example 4 with any continuous and nondecreasing
mapping ψ : [0, 1]→ [0, 1] such that t

1
4 ≥ ψ(t) > t for all t ∈ (0, 1). Indeed,

M(La,Lb, δ) = e
−(La−Lb)2

δ

= e
− 1

4 (a−b)2

δ

≥ ψ

(
e
−(a−b)2

δ

)
= ψ(M(a, b, δ))

≥ ψ(N(a, b, δ)).

5. Application to Integral Equations

Integral equations find applications in a variety of scientific fields, such as biology,
chemistry, physics, or engineering. Furthermore, fuzzy integral equations constitute one of
the important branches of fuzzy analysis theory and play a major role in numerical analysis.
One of the approaches followed for the study of integral equations is the application of
fixed point theory directly to the mapping defined by the right-hand side of the equation,
or by the development of homotopy methods, which are largely considered in fixed point
theory. In particular, for its connection with the study of fuzzy integral problems, we
highlight a very recent paper [35], in which the author proposes a homotopy analysis
method to find an approximate solution of the two-dimensional non-linear fuzzy Volterra
integral equation. We also refer the reader to [18,20,23,36,37] for other related works.

We apply our theory of fixed point to ensure the existence of solutions to the following
type of integral equations:

u(t) = f (t) +
∫ t

0
H(t, s, u(s))ds, t ∈ [0, b], (19)

where b > 0. The Banach space C([0, b],R) of all real continuous functions defined on
[0, b], with norm ‖u‖ := sup

s∈[0,b]
|u(s)| for every u ∈ C([0, b],R), can be considered as a fuzzy

Banach space [38] (for more details concerning the relation between Banach spaces and
fuzzy Banach spaces, see [39]). Consider the fuzzy metric on C([0, b],R) given by

M(u, v, δ) = e−
sup

s∈[0,b]
|u(s)−v(s)|2

δ ,

for all u, v ∈ C([0, b],R) and δ > 0, furnished with the t-norm ∗p defined as x ∗p y = xy for
all x, y ∈ [0, 1]. Then C([0, b],R, M, ∗p) is a G-complete EFRbMS.

In the following, we discuss the existence of solutions for the integral equations of the
form (19).

Theorem 3. Let P : C([0, b],R)→ C([0, b],R) be the integral operator given by

[P(u)](t) = f (t) +
∫ t

0
H(t, s, u(s))ds, u ∈ C([0, b],R), t ∈ [0, b],

where f ∈ C([0, b],R) and H ∈ C([0, b]× [0, b]×R,R) satisfies the following condition:
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(i) There exists a continuous and non-decreasing mapping ψ : [0, 1]→ [0, 1] with ψ(t) > t for all
t ∈ (0, 1), such that, for all u, v ∈ C([0, b],R), and every δ > 0,

sup
s∈[0,b]

(∫ s

0
|H(s, r, u(r))− H(s, r, v(r))|dr

)2

≤ − ln

ψ

e−
sup

s∈[0,b]
|u(s)−v(s)|2

δ

δ

.

Then, the integral Equation (19) has a solution u∗ ∈ C([0, b],R).

Proof. For all u, v ∈ C([0, b],R), and δ > 0, we have

M(P(u), P(v), δ) = e−
sup

s∈[0,b]
|[P(u)](s)−[P(v)](s)|2

δ

≥ e−
sup

s∈[0,b]
(
∫ s

0 |H(s,r,u(r))−H(s,r,v(r))|dr)2

δ

≥ ψ

e−
sup

s∈[0,b]
|u(s)−v(s)|2

δ


= ψ(M(u, v, δ))

≥ ψ
(

N(u, v, δ)
)
.

Hence, using Theorem 2, P has a fixed point u∗ ∈ C([0, b],R), which is a solution to
the integral Equation (19).

6. Discussion

We proposed the notion of extended fuzzy rectangular b-metric space and proved
some results concerning the existence and uniqueness of fixed points via α-η-β and α-η-ψ
contractions. Our framework, being more general than the classes of “extended fuzzy
b-metric spaces” and “rectangular fuzzy b-metric spaces”, relaxes the triangle inequality of
classical fuzzy metric spaces. Consequently, our notions and results generalize some other
concepts and fixed point results existing in the literature for fuzzy metric spaces. On the
other hand, the relaxed triangle inequality can give some interesting applications to the
removal of image noise, as shown in [26,27,29–31], so that the new concepts may lead to
further investigation and applications. We also presented some examples and illustrated
the implication of the new results in the study of the existence of solutions for a class of
integral equations.
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