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Abstract: The COVID-19 epidemic has recently led in Italy to the implementation of different external
strategies in order to limit the spread of the disease in response to its transmission rate: strict national
lockdown rules, followed first by a weakening of the social distancing and contact reduction feedback
interventions and finally the implementation of coordinated intermittent regional actions, up to
the application, in this last context, of an age-stratified vaccine prioritization strategy. This paper
originally aims at identifying, starting from the available age-structured real data at the national
level during the specific aforementioned scenarios, external-scenario-dependent sets of virulence
parameters for a two-age-structured COVID-19 epidemic compartmental model, in order to provide
an interpretation of how each external scenario modifies the age-dependent patterns of social contacts
and the spread of COVID-19.

Keywords: COVID-19 epidemic; model identification; parameter estimation; compartmental model;
national lockdown; regional action; vaccine prioritization strategy

1. Introduction

COVID-19 (SARS-CoV-2) is at the root of the recent economic and public health
crisis worldwide. Since it was reported in December 2019 in China, the virus quickly took
pandemic proportions throughout six continents and over 210 countries. Over 100 countries
declared lockdowns and curfews, with an estimated global economic loss of one trillion US
dollars in 2020 (see [1] and references therein). By October 2020, over 36 million people
were definitely reported to be infected with COVID-19 and more than one million people
had died from virus-related complications.

COVID-19 causes respiratory disease: common symptoms include fever, dry cough,
fatigue, shortness of breath and loss of smell or taste, with possible complications including
pneumonia and acute respiratory distress syndrome up to severe respiratory failures, septic
shocks and death [2].

A huge amount of effort has been spent with the aim of finding novel methods for
mathematical modeling and control of epidemics [3]. Mathematical models can in fact
accurately portray the epidemic’s dynamic spread [3–9]. Eight stages of infection, namely
susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed
(H) and extinct (E), are presented in [8] to illustrate how restrictive social-distancing
measures have to include a combination with widespread testing and contact tracing. A
control-oriented SIR model that stresses the effects of delays and compares the outcomes of
different containment policies is proposed in [5], whereas stochastic transmission models
are considered in [3,9]. A method for the joint optimal lockdown and release design in a
pandemic is proposed in [4] and then applied in a realistic simulation scenario based on the
data of COVID-19’s evolution in Italy. A dynamical model specifically designed for COVID-
19 is used in [6] to describe the epidemic evolution in Italy, with different kinds of control
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actions (social, political, and medical) being explicitly modeled. A parameter-varying
modification of the SIRD model is finally proposed in [7] for describing and predicting the
behavior of the COVID-19 contagion in Italy through identification of model parameters,
written as linear combinations of basis functions.

An important feature of COVID-19 is its highly non-uniform attack of different age
strata of society [2]: the infection fatality ratio for individuals older than 80 is likely
significantly higher than the infection fatality ratio for individuals younger than 50 years.
In particular, [10], which fit an age-structured mathematical model to epidemic data from
China, Italy, Japan, Singapore, Canada and South Korea, shows that susceptibility to
infection in individuals under 20 years of age is approximately half that in adults aged over
20 years, and that clinical symptoms manifest in 21% of infections in 10- to 19-year-olds,
rising to 69% of infections in people aged over 70 years. On the other hand, ref. [11]
estimates an overall infection fatality rate of 1.29%, as well as large differences by age, with
a low infection fatality rate of 0.05% for those under 60 years old and a substantially higher
4.25% for people above 60 years of age; even if only 10% of the population were infected,
the infection fatality rate would not rise above 0.2% for people under 60.

Since social contacts are influenced by age structure of the population and the fre-
quency of contacts across the population [12], the spread of the disease relies on contact
patterns among different subjects in the infected population. Epidemic models that are
stratified by age are therefore particularly relevant when the hospital load and fatalities
related to COVID-19 are to be estimated, with age-dependent patterns of social contacts
being incorporated. Such models, which take into account the mechanism of its trans-
mission, including the (possibly heterogeneous) pattern of mixing among the population,
the susceptibility within the population, the virulence of the infection, the probability
of transmission per contact, and the changes in behavior in the affected population in
response to an epidemic [13], constitute useful tools to understand and characterize the
complex transmission dynamics acting among different groups of the population (see [13]),
as well as to identify and predict the effects of different age-stratified intervention strategies
in slowing the spread. They concurrently (i) provide valuable information for public-health
policy makers, (ii) avoid health systems saturation, and (iii) mitigate the impact on costs.

In this respect, despite containing simplifying assumptions, common variants of
SIR-type models, including age-dependent substructures, are of great help in charac-
terizing epidemics (see [14] and references therein). The reader is referred to the very
recent [1,12,14–18] for age-structured modeling of the COVID-19 epidemic and related
age-dependent analyses. The reader is also referred to [19] for the latest study adopting a
model with an age-dependent pre-pandemic contact matrix, reflecting the goal of a return
to pre-pandemic routines once a vaccine is available, to compare five age-stratified vaccine
prioritization strategies. A modified age-structured SIR model—based on known patterns
of social contact and distancing measures within Washington, USA—is presented in [20]:
population age-distribution has a significant effect on disease spread and mortality rate
and contributes to the efficacy of age-specific contact and treatment measures. On the other
hand, ref. [21] shows that if transmission rates’ return to normal in the future and the
epidemic ends only when population immunity is sufficient to survive reintroduction of
infection, then age-targeted mitigations can still achieve a large mortality reduction.

This paper, unlike any other approach in the literature, aims to illustrate how six
different diseases transmission scenarios and concurrently adopted social distancing and
feedback interventions—including an age-stratified vaccine prioritization strategy—modify
the age-dependent patterns of social contacts and the spread of COVID-19 disease. To this
purpose, we use a (deterministic) two-age-structured COVID-19 epidemic compartmental
model, in which two-age-classes (lower than 60 years old and not lower than 60 years old)
are adopted, in order to comply with the adopted vaccination strategy while avoiding
issues related to the lack of identifiability. In innovation is that identification of virulence
parameters within the two groups is performed during the different phases. Real data,
indeed, are taken from the Italian context, in which the implementation of the following
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subsequent-in-time different strategies has been carried out over time in response to
different disease transmission scenarios:

(i) a strict national lockdown rule (scenario a), as necessary in the first place (in the
presence of a relatively high estimate of the disease transmission rate) to remove
social contacts in workplaces, schools, markets and other public areas;

(ii) a weakened feedback social distancing and contact reduction intervention (in the pres-
ence of a relatively low estimate of the disease transmission rate), which is composed
of a weakened lockdown phase (scenario b), a low distancing phase (scenario c), a
low distancing + workplace/school-contacts re-activation phase (scenario d), with a
progressive release of the population back to their daily routine appearing;

(iii) a coordinated intermittent regional action (scenario e)—in the presence of a newly
alarming increase in the estimated disease transmission rate—where social distancing
measures are put in place or relaxed independently by each region according to the
ratio between hospitalized individuals and the total capacity of the health system in
that region; and

(iv) direct mRNA-vaccination of subjects—especially the elderly—(scenario f ) at highest
risk for severe outcomes, along with Vaxzevria-vaccination of young subjects belong-
ing to crucial occupational categories, to indirectly protect subjects at highest risk for
severe outcomes.

In particular, the recent [22] is at the foundation of the intermittent intervention, which
is inspired by the regionalism as an integral part of the Italian constitution and involves
regional feedback strategies, where each of the twenty regions strengthens or weakens
local mitigating actions, namely social distancing, inflow–outflow control, as a function of
the saturation of their hospital capacity. It is worth noticing that the regional action was
actually intermittent in a strict sense, owing to the presence, over time, of Italian regions
with actually weakened social distancing.

The resulting framework originally exploited in the paper thus enriches the one
proposed in [19], while turning out to be useful to compare impacts of national or regional
intervention contexts and age-stratified vaccine prioritization strategies on the virulence
parameters (within the age-dependent groups) of the age-stratified model (though the
effects of seasonality on COVID-19 remain unsettled, they might be represented by the
estimation results.). The results of this paper thus move in the direction of understanding
the impact of human contact networks and human behavior on the spread of infectious
diseases (no prediction purpose is declared), while assessing the implications of this for
the planning of public health policy. In fact, even though the simplest mathematical
models assume that the population mixes homogeneously, such an assumption is often
only sufficient to obtain general insights, with the pattern of contacts between different
age groups playing an essential role in determining the spread of disease. Indeed, in a real
epidemic, the behavioral changes will not only reduce the number of contacts and intensity
but will even change the structure of the contact network.

2. The Model

The (deterministic) compartmental model used in this paper is reported in this section.
It is a natural extension of the classical SIR model [23]. The compartments are subdivided
into two different age groups: group of subjects with age lower than 60; group of subjects
with age not lower than 60. There are many reasons for the choice to split the population
into these two groups. The first one, which is more conceptual, is that this division more or
less coincides with a division of active and retired populations, in which one may expect
different patterns of social interactions, leading to different transmission dynamics. The
second one is in accordance with the recent literature, where empirical estimates based
on population-level data show a sharp difference in fatality rates between young and old
people and firmly rule out overall fatality ratios below 0.5% in populations with more
than 30% being over 60 years old [11]. The third reason relies on the fact that this choice
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is compatible with the vaccination strategy adopted in scenario f. Finally, a closer look at
the Italian data reveals that this choice is the one that divides the number of COVID-19
cases in the most uniform way, allowing a better exploitation of the data information and
reducing the bias due to non-uniform cardinality division between the two classes. The
resulting model thus reads:

Sy(t + 1) = Sy(t)− Sy(t)(v11 Iy(t) + v12 Io(t))/N(t)

So(t + 1) = So(t)− So(t)(v21 Iy(t) + v22 Io(t))/N(t)

Iy(t + 1) = (1− τ1 − γ)Iy(t) + Sy(t)(v11 Iy(t) + v12 Io(t))/N(t)

Io(t + 1) = (1− τ2 − γ)Io(t) + So(t)(v21 Iy(t) + v22 Io(t))/N(t) (1)

Cy(t + 1) = Cy(t) + τ1 Iy(t)

Co(t + 1) = Co(t) + τ2 Io(t)

where: t is the time, measured in days; Si, Ii and Ci, i = y, o are the numbers of susceptible,
infected and reported cases for the two age classes, respectively; and N(t) is the number
of persons who are not quarantined, hospitalized or dead at time t. The parameters
vij, i, j = 1, 2 represent the virulence of the virus among the different age classes, while
1/τi, i = 1, 2 is the average time for disease identification and γ = 0.07 is the rate of
asymptomatic infected who recover without being reported [22,24]. Note that the model
is not autonomous, since N(t) cannot be reconstructed from the state variables. In other
words, such a model does not count the number of quarantined, hospitalized, recovered
or dead, and thus it needs this time-series in order to be simulated. Even though this
model might be certainly extended so it can used for prediction, this would be out of the
scope of this paper. As aforementioned, the goal here is to understand the demographical
habits (how people interconnected) starting from the epidemiological data while estimating
model parameters to overview people’s reactions under the six different scenarios.

3. Estimation of Model Parameters

To fit the model, we first detected the six scenarios of Section 1 that characterized the
COVID-19 pandemic in Italy:

a. From ta
0 = 9 March 2020 to ta

e = 28 April 2020: strict national lockdown rule in which
social contacts in workplaces, schools, markets and other public areas are removed;

b. From tb
0 = 7 May 2020 to tb

e = 3 June 2020: weakened feedback social distancing
and contact reduction intervention, with a slow release of the population back to
their daily routine appearing (especially the elderly, as a psychological toll due to the
suffered isolation);

c. From tc
0 = 9 June 2020 to tc

e = 8 September 2020: low feedback social distancing and
contact reduction intervention, due to a low ratio between hospitalized individuals
and the total capacity of the national health system;

d. From td
0 = 15 September 2020 to td

e = 27 October 2020: low feedback social distancing
and contact reduction intervention, with social contacts in workplaces and schools
being re-activated;

e. From te
0 = 7 November 2020 to te

e = 29 December 2020: coordinated intermittent
regional action, where social contacts in schools is decreased at national level and
social distancing measures are put in place or relaxed independently by each region
according to the ratio between hospitalized individuals and the total capacity of the
health system in that region; and

f. from t f
0 = 5 January 2021 to t f

e = 15 May 2021: direct mRNA-vaccination of subjects
(the elderly) at highest risk for severe outcomes and indirect protection through
Vaxzevria vaccination of young subjects belonging to crucial occupational categories.

Real data about the pandemic on each of these scenarios are taken from the official
Ministerial website https://www.epicentro.iss.it/coronavirus/aggiornamenti (accessed
on 1 June 2021). In particular, in the data centre, it is possible to find:

https://www.epicentro.iss.it/coronavirus/aggiornamenti
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• The cumulative detected cases on a weekly scale C(t) divided by age (so it is possible
to compute Cy(t) and Co(t));

• The number of recovered people (not divided by age) R(t).

After noting that

N(t) = N(0)− (Cy(t) + Co(t)) + R(t)

we fit the model to the real data by minimizing the squared relative error between the
measured data of the detected cases and the ones predicted from the model. More precisely,
starting from the time windows that identify scenario a, i.e., t ∈ [ti

0, ti
e], i = a, we compute

the trajectory of the model

Si
y(t + 1) = Si

y(t)− Si
y(t)(v

i
11 Ii

y(t) + vi
12 Ii

o(t))/N(t)

Si
o(t + 1) = Si

o(t)− Si
o(t)(v

i
21 Ii

y(t) + vi
22 Ii

o(t))/N(t)

Ii
y(t + 1) = (1− τi

1 − γ)Ii
y(t) + Si

y(t)(v
i
11 Ii

y(t) + vi
12 Ii

o(t))/N(t)

Ii
o(t + 1) = (1− τi

2 − γ)Ii
o(t) + Si

o(t)(v
i
21 Ii

y(t) + vi
22 Ii

o(t))/N(t) (2)

that starts from the initial condition

Ii
y(ti

0) = Ii
t0y, Si

y(ti
0) = Ny(0)− Cy(ti

0)− Ii
t0y,

Ii
o(ti

0) = Ii
t0o, Si

o(ti
0) = No(0)− Co(ti

0)− Ii
t0o

for a particular set of the parameters that we are identifying, which are

• vi
11, characterizing the intra-juvenile virulence;

• vi
12, characterizing the juvenile-elder virulence;

• vi
21, characterizing the elder-juvenile virulence;

• vi
22, characterizing the intra-elder virulence;

• 1/τi
1, denoting the average time for disease identification in young subjects;

• 1/τi
2, denoting the average time for disease identification in old subjects;

• Ii
t0y, representing the young subjects infected at the beginning of the scenario time window;

• Ii
t0o, representing the old subjects infected at the beginning of the scenario time window.

We then compute as cost the relative error between the predicted and the real new
daily cases, i.e.,

Ji =
ti
e

∑
t=ti

0

Cy(t + 1)−
(

Cy(t) + τi
1 Ii

y(t)
)

Cy(t)

2

+

(
Co(t + 1)−

(
Co(t) + τi

2 Ii
o(t)

)
Co(t)

)2

.

We repeat the same procedure for the following scenarios, i.e., i = b, . . . , f , but, this time,
to guarantee the continuity of the identified solution, we impose that the initial condition
of the current scenario (parameters Ii

t0y and Ii
t0o) is different from the final condition of the

previous one of at most 10%. We then tune the 48 parameters (10 of them are constrained)
in order to minimize the sum of the six cost functions:

J = ∑
i∈{a,..., f }

Ji

through the fmincon routine in Matlab©. The total number of data we use for our fitting
procedure over the considered six scenarios is 128 [22, 10, 26, 14, 18, 38, respectively], with
the problem of estimation needing at least 48 data points (one for each of the parameter
we are estimating, eight per scenario). A practical identifiability analysis [25–27] of the
parameters around the estimation point confirms that the values we obtained with this
procedure can be locally determined from the data we used (the local minimum we have
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found has no directions on which the cost function does not significantly increase with
respect to the parameter variations). This allows us to provide the picture of the age-
dependent patterns of social contacts and the spread of COVID-19 disease in the Italian
context, which is depicted in Figure 1.
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Figure 1. Data fitting for the compartmental model: actual and estimated cumulative profiles for young subjects infected
and old subjects infected (logarithmic scale).

The estimated parameters (in the different scenarios i ∈ {a, . . . , f }) vi
kl , k, l ∈ {1, 2}

are reported in Table 1, while the estimated parameters τi
l , l ∈ {1, 2}, and Ii

t0y, Ii
t0o appear

in Table 2. The modulus and phase of the complex numbers

λi
1 = vi

11 + ivi
12

λi
2 = vi

22 + ivi
21 (3)

are reported in Table 3 (in the different scenarios a – f ), with i here representing the
imaginary unit satisfying i2 = −1. Notice that a non-zero real number λi

1 or λi
2 thus

represents the case in which only intra-group virulences appear. Conversely, a purely
imaginary number λi

1 or λi
2 represents the case in which only cross-group virulences

appear. On the other hand, the alternative option for coordinates in the complex plane
constituted by the polar coordinate system—which uses the distance of a point from
the origin and the angle subtended between the positive real axis and the line segment
connecting the origin and the point in a counterclockwise way—allows us to directly
visualize the complex number λi

1 or λi
2 through modulus and phase. Zero phase therefore

means a real number, whereas π/2 phase means a purely imaginary number (according

to the previously reported interpretation), with the modulus |λi
1| =

√
vi2

11 + vi2
12 or |λi

2| =√
vi2

22 + vi2
21 constituting a measure of both the contributions coming from the involved

virulence parameters.



Mathematics 2021, 9, 2414 7 of 12

Table 1. Estimated parameters vi
kl , k, l ∈ {1, 2}, in the different scenarios i ∈ {a, . . . , f } [vi

11 for
intra-juvenile virulence; vi

12 for juvenile–elder virulence; vi
21 for elder–juvenile virulence; vi

22 for
intra-elder virulence].

Scenario a

va
11 va

12 va
21 va

22

0.7456 0.0000 1.3642 0.0001

Scenario b

vb
11 vb

12 vb
21 vb

22

0.0266 0.5243 0.0356 0.3912

Scenario c

vc
11 vc

12 vc
21 vc

22

0.4183 0.1728 0.0302 0.9567

Scenario d

vd
11 vd

12 vd
21 vd

22

0.0582 4.1363 0.0001 1.2367

Scenario e

ve
11 ve

12 ve
21 ve

22

0.3914 1.3690 0.1562 0.7877

Scenario f

v f
11 v f

12 v f
21 v f

22

0.4583 2.1428 0.1856 0.7119

Table 2. Estimated parameters τi
l , l ∈ {1, 2}, and Ii

t0y, Ii
t0o in the different scenarios i ∈ {a, . . . , f }

[1/τi
1 as average time for disease identification in young subjects; 1/τi

2 as average time for disease
identification in old subjects; Ii

t0y for the initial young subjects infected; Ii
t0o for the initial old subjects

infected].

Scenario a

τa
1 τa

2 Ia
t0y Ia

t0o

0.3448 0.2303 5.5966× 103 0.7804× 103

Scenario b

τb
1 τb

2 Ib
t0y Ib

t0o

0.1311 0.1944 4.9146× 103 3.2516× 103

Scenario c

τc
1 τc

2 Ic
t0y Ic

t0o

0.1319 0.7070 3.3592× 102 6.5398× 102

Scenario d

τd
1 τd

2 Id
t0y Id

t0o

0.1917 0.3867 8.7358× 103 0.3079× 103
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Table 2. Cont.

Scenario e

τe
1 τe

2 Ie
t0y Ie

t0o

0.3360 0.6050 9.4860× 104 1.3570× 104

Scenario f

τ
f

1 τ
f

2 I f
t0y I f

t0o

0.3474 0.7364 2.2351× 104 0.5169× 104

4. Discussion

The following comments are in order. They provide a meaningful interpretation of
the estimation results in accordance with Tables 1–3.

• All the estimates corresponding to the different scenarios, including the estimated Ii
t0y,

Ii
t0o (initial young subjects infected; initial old subjects infected), allow the estimated

profile to satisfactorily reproduce the actual one along the different scenarios, as
shown by Figure 1.

• Comments for estimated 1/τi
1 (average time for disease identification in young sub-

jects). This average time takes homogeneous values: it varies from 3 to 7 days weeks
over all the scenarios, with about 7 days passing for scenarios b and c. Actually,
after the lockdown period and the related concerns, young subjects paid much less
attention to their symptoms (recall that scenarios b and c cover a period starting from
7 May 2020 up to 8 September 2020). In addition, recall that young subjects have a
higher probability of being asymptomatic (or even weakly symptomatic), while old
subjects have a lower probability of being asymptomatic. Asymptomatic subjects
usually continue their social interactions, infecting many people before recognizing
that they are sick, and are then isolated.

• Comments for estimated 1/τi
2 (average time for disease identification in old subjects).

This average time varies from 1 to 5 days, with less than 3 days occurring in scenarios c–
f in which the elderly paid a higher level of attention to symptoms, as a psychological
toll due to the suffered isolation in scenarios a–b.

• Comments for estimated vi
kl , k, l ∈ {1, 2}, (intra-juvenile virulence; juvenile–elder

virulence; elder–juvenile virulence; intra-elder virulence) and related measures.

– During scenario a, a very small intra-elder virulence appears due to the strict
national lockdown rule, with an increase during scenario b, due to the weakened
feedback social distancing and contact reduction intervention.

– During scenarios c and d, a larger increase in the intra-elder virulence occurs,
during summer holidays (as a consequence of the juvenile-elder virulence of
scenario b) and owing to the re-activation of contacts in workplaces and schools.
Recall that school closures during epidemics and pandemics aim to decrease
transmission among children. They seemingly have whole-population effects,
whenever children are major contributors to community transmission rates.

– During scenarios e and f, a decrease in the intra-elder virulence is exhibited
(when compared to scenarios c and d), as a consequence of an imposed decrease
in social contacts in schools and in the direct mRNA vaccination of subjects
(the elderly) at highest risk for severe outcomes, in spite of a re-activation of
social contacts in schools and in Christmas-related activities. Notice that the
intermittent intervention of scenarios e and f, in which each of the twenty regions
strengthens or weakens local mitigating actions as a function of the saturation of
their hospital capacity, has been largely lighter than the lockdown intervention of
scenario a, leading to the possibility of reinvigorating economy and mitigating
costs due to the epidemic’s spread.
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– Large intra-juvenile virulence (>0.39) is exhibited in scenarios a, c, e and f, i.e.,
during the strict lockdown (with the virus circulating within families), as well
as during summer holidays and after the first days of November, whereas small
values accordingly appear in scenarios b and d, in which more attention was paid
by young subjects after the perceived social alarms coming after the end of the
strict lockdown and the end of summer vacations.

– Large juvenile–elder virulence (>1.36) is exhibited in scenarios d–f, after 15
September 2020, owing to the (typically Italian) juvenile–elder contacts coming
from school re-activation, with the smallest value actually occurring in scenario
e, in which social contacts in schools are decreased at national level and social
distancing measures are put in place or relaxed independently by each region
according to the ratio between hospitalized individuals and the total capacity of
the health system in that region. Nevertheless, a large phase of λb

1 (with a rather
small modulus of λb

1) is exhibited in scenario b, owing to a weakened feedback
social distancing and contact reduction intervention after the strict lockdown.

– The elder–juvenile virulence appears to be relatively small (about zero) in all the
scenarios, except for scenario a, in which the virus circulated within families (see
also the phase of λa

2).
– The sum of the two λ1 and λ2 phases is small only in scenario c, i.e., dur-

ing holiday vacations, in which a sort of decoupling between the two age
classes appeared.

On the other hand, once the estimates of the model parameters have been obtained
(Tables 1 and 2), the values of the reproduction number Ri

t[m] associated with model (1)
in each scenario i [m stands for model-based computation], as average number of new
infections caused by an infected person, can be computed through the formula (adapted
from [24])

Ri
t[m] =

1
N(t)

σ1

([
Si

y(t) 0
0 Si

o(t)

](
1

τi
1 + γ

[
vi

11 vi
12

vi
11 vi

12

]
+

1
τi

2 + γ

[
vi

21 vi
22

vi
21 vi

22

]))

where σ1(·) denotes the biggest among the moduli of the eigenvalues of the matrix argu-
ment. The resulting mean reproduction numbers Ri

i [m] over the scenarios i ∈ {a, . . . , f }
read: 1.2, 0.7, 0.7, 2.8, 0.9, 1.1. They are compatible – excepting for a relatively slight overes-
timate of scenarios f – with the maximum likelihood values of the national reproduction
number in Figure 2, computed from raw data through the EpiEstim toolbox [28] (a gamma
distribution is used as prior distribution, with shape α = 1.87, rate β = 0.28, whereas the
Rt-maximum likelihood value is taken as (α− 1)/β regarding the analytically expressed
posterior distributions), showing that model (1) – though relying on just two age-based
subgroups and neglecting, for instance, gender-based different behaviours – is able to catch
the main epidemic features along the considered scenarios.

Finally, estimating τ1 and τ2 in the six scenarios leads to the possibility of identifying
the number of infected cases, in accordance to

τ−1
1 (Cy(t + 1)− Cy(t)) = Iy(t)

τ−1
2 (Co(t + 1)− Co(t)) = Io(t)

coming from the last two equations in (1). This is an advantageous feature of our approach.
Looking at Table 2: τ−1

1 (young age class) is close to 3 in scenarios a, e, f, whereas it is larger
than 5 in the least juvenile-action-restrictive scenarios b-d; τ−1

2 (old age class) is close to
1.5 in the most-decoupled or vaccine-characterized scenarios c, e, f, whereas it is close to
5 in the scenarios a-b in the middle of the pandemic wave.
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Figure 2. National reproduction number Rt within the considered time windows. Each shaded portion of the plane
corresponds to a specific scenario. The mean value R̄i

t (among the values corresponding to our sampling) within each time
window i ∈ {a, . . . , f } is reported at the bottom of each shaded region.

Table 3. Modulus and phase of the complex numbers λi
1 = vi

11 + ivi
12 and λ2 = vi

22 + ivi
21 in the

different scenarios i ∈ {a, . . . , f }.

Scenario a

|λa
1| ∠(λa

1) |λa
2| ∠(λa

2)

0.7456 0.0000 1.3642 1.5707

Scenario b

|λb
1| ∠(λb

1) |λb
2| ∠(λb

2)

0.5250 1.5201 0.3928 0.0908

Scenario c

|λc
1| ∠(λc

1) |λc
2| ∠(λc

2)

0.4256 0.3917 0.9572 0.0316

Scenario d

|λd
1| ∠(λd

1) |λd
2| ∠(λd

2)

4.1367 1.5567 1.2367 0.0001

Scenario e

|λe
1| ∠(λe

1) |λe
2| ∠(λe

2)

1.4239 1.2923 0.8030 0.1958

Scenario f

|λ f
1 | ∠(λ f

1) |λ f
2 | ∠(λ f

2)

2.1913 1.3601 0.7357 0.2550

5. Conclusions

Starting from the available age-structured real data at national level (from 9 March
2020 up to 12 May 2021), the parameters of a two-age-structured COVID-19 epidemic com-
partmental model—with the same two-age-classes definition adopted in the implemented
vaccination strategy and more or less coinciding with a division of active and retired popu-
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lations, as well as with a division characterized by relatively large differences in fatality
rates and by uniformity in subgroups cardinality—have been identified in the different
scenarios reported in Section 3: the ways in which external scenarios have modified the
age-dependent patterns of social contacts and the spread of COVID-19 disease has been
assessed. In particular, an epidemiological model for Covid-19 has been developed, which
considers the epidemic within the younger age group and older age group separately. Such
a model provides insight, at national level, in the different evolution of the epidemic within
these two interacting age groups, while simultaneously evaluating, through the estimation
of model parameters along time, the impact of changes in social distancing measures and
vaccination due to varying external strategies. The results of the present study exhibit some
specific limits at their root, such as the inclusion of just two age-dependent subgroups or
the absence of gender differences in the subgroups, which might be further investigated in
future studies (see [29] for related results). In this respect, it is worth noticing that such
a modeling choice is, however, motivated by the fact that adopting more complex SIR
variants may fall into unidentifiability problems owing to insufficient data in the details
of the many involved compartments, or because of their overly complex structure whose
different features cannot be caught in the initial fast-increasing phases. Nevertheless, our
study also possesses points of strength. It certainly gives a deep interpretative insight
into the time-varying action of parameters within a well-defined COVID epidemics model
structure, while providing useful information regarding not only the number of undetected
infected cases but also the effects of strategic actions and behaviours. This is rather mean-
ingful, especially on the eve of possible occurrences of variant-based epidemic waves in
response to an exact duration of the immunity for the vaccines that is, at this moment,
uncertain. The exact structure of the contact patterns in the general population is, in
fact, still unknown to a large extent and merits specific research efforts, especially when
model-based prediction has to be performed in the presence of political choices that change
rules governing social distancing. Such political choices, when they vary along time and
affect interactions between subgroups, influence variations of the internal parameters of
deterministic models that should be suitably taken into consideration in the related context.
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