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Abstract: In this paper, we propose an approach to inverse spectral problems for the n-th order
(n ≥ 2) ordinary differential operators with distribution coefficients. The inverse problems which
consist in the reconstruction of the differential expression coefficients by the Weyl matrix and by
several spectra are studied. We prove the uniqueness of solution for these inverse problems, by
developing the method of spectral mappings. The results of this paper generalize the previously
known results for the second-order differential operators with singular potentials and for the higher-
order differential operators with regular coefficients. In the future, the approach of this paper can be
used for constructive solution and for investigation of solvability of the considered inverse problems.
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1. Introduction

In this paper, we study inverse spectral problems for the n-th order ordinary differen-
tial operators with distribution coefficients for n ≥ 2. We consider the operators generated
by the following differential expressions for n = 2m:

`2m(y) := y(2m) +
m

∑
k=1

(−1)k(τ
(k)
k (x)y(m−k))(m−k)

+ i
m−1

∑
k=1

(−1)k+1
(
(σ

(k)
k (x)y(m−k−1))(m−k) + (σ

(k)
k (x)y(m−k))(m−k−1)

)
, (1)

where
τ1, . . . , τm, σ1, . . . , σm−1 ∈ L2(0, 1),

and for n = 2m + 1:

`2m+1(y) := y(2m+1) + i
m

∑
k=1

(−1)k+1(τ
(k)
k (x)y(m−k))(m−k)

+
m−1

∑
k=0

(−1)k
(
(σ

(k)
k (x)y(m−k−1))(m−k) + (σ

(k)
k (x)y(m−k))(m−k−1)

)
, (2)

where
τ1, . . . , τm, σ0, . . . , σm−1 ∈ L1(0, 1).

The derivatives in (1) and (2) are understood in the sense of distributions.
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Note that, if the coefficients τk and σk are sufficiently smooth, then the differential
Expressions (1) and (2) can be easily reduced to the form

y(n) +
n−2

∑
k=0

pk(x)y(k), n ≥ 2, (3)

with some new coefficients pk(x), k = 0, n− 2. However, in the case of distribution
coefficients, it is more natural to consider the higher-order differential expressions in the
canonical forms (1) and (2), following Mirzoev and Shkalikov [1,2], who have developed a
regularization approach to these operators. We also observe that, due to the well-known
results (see, e.g., the book of Naimark [3]), every self-adjoint linear differential expression
consists of the terms

(p(x)y(ν))(ν), i[(p(x)y(ν−1))(ν) + (p(x)y(ν))(ν−1)],

with real-valued coefficients p(x). Anyway, in this paper, we study the general non-self-
adjoint case, so the functions τk and σk may be complex-valued.

Differential operators `n(y) of forms (1), (2) for certain values of n arise in various
applications. In particular, for n = 2, operator (1) is equivalent (up to the sign) to the
Sturm–Liouville operator

− `2(y) = −y′′ + q(x)y, (4)

which is used in classical mechanics for modeling string vibrations, in quantum mechanics
for describing electron motion, and has other numerous applications.

For n = 3, Expression (2) takes the form

i`3(y) = iy′′′ + i(p(x)y)′ + q(x)y. (5)

The third-order operator (5) in the both self-adjoint and non-self-adjoint cases arises in
the inverse problem method for integration of the nonlinear Boussinesq equation (see [4,5]).
The spectral properties of the third-order differential operator have been studied in relation
with mechanical problems of modeling thin membrane flow of viscous liquid and elastic
beam vibrations (see [6] and references therein). In recent years, decreasing the smoothness
of the differential operator coefficients causes interest of scholars. Spectral problems for the
third-order operators (5) with non-smooth coefficients were investigated, e.g., in [6–8].

The fourth-order operator

y(4) + (p(x)y)′ + q(x)y,

which is the special case of (1), is equivalent to the Euler–Bernoulli operator 1
b(x) (a(x)u′′)′′

used for describing the beam vibrations (see [9,10]). Information about other applications
of the fourth-order linear differential operators in mechanics, optics, and acoustics can be
found in [11–13].

This paper is concerned with inverse spectral problems, which consist in the recovery
of the differential operator coefficients from spectral characteristics. Such problems arise
in quantum and classical mechanics, geophysics, meteorology, electronics, and other
applications (see, e.g., [14] and references therein). The most complete results in the theory
of inverse spectral problems have been obtained for the second-order Sturm–Liouville
operator (4) with regular (integrable) potential q(x) (see the monographs [14–17]).

In the last twenty years, spectral problems for the Sturm–Liouville operators with
singular potentials q ∈ W−1

2 (0, 1) have been intensively studied. The class W−1
2 (0, 1)

consists of functions q = σ′, where σ ∈ L2(0, 1) and the derivative is understood in
the sense of distributions. This class contains, in particular, the Dirac δ-function and
the Coulumb potential 1

x , which are used for modeling particle interactions in quantum
mechanics [18].
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Various approaches to the definition of the Sturm–Liouville operator with potential from
W−1

2 (0, 1) were described by Savchuk and Shkalikov [19]. Hryniv and Mykytyuk [20–23]
extended the transformation operator method to the inverse problems for the Sturm–
Liouville operators with singular potentials and so generalized a number of classical results
to this class of operators. Afterwards, the theory of inverse spectral problems for the
second-order differential operators with singular potentials was developed in the studies
of Savchuk and Shkalikov [24,25], Freiling et al. [26], Mykytyuk and Trush [27], Hryniv
and Pronska [28,29], Eckhardt et al. [30], Guliyev [31], Bondarenko [32–34], etc.

Comparing with the second-order differential operators, the spectral theory of the
higher-order differential operators of form (3) for n > 2 is significantly more difficult
for investigation. The classical transformation operator method, which was developed
by Levitan [16] and Marchenko [15] and played an important role in the theory of the
inverse Sturm–Liouville problems, appears to be ineffective for the higher-order operators.
Consequently, relying on some ideas of Leibenson [35,36], Yurko [37,38] has created the
method of spectral mappings. This method is based on the theory of analytic functions and,
in particular, on the contour integration in the complex plane of the spectral parameter.
By using the method of spectral mappings, Yurko [37,38] has constructed the inverse
problem theory for the higher-order operators (3) with regular coefficients on the half-line
and on a finite interval and, later on, for many other classes of differential operators and
pencils. Beals and his followers [39] developed another approach to the higher-order
inverse scattering problems on the line.

In recent years, spectral theory of the higher-order differential operators with distribu-
tion coefficients is started to be investigated. Mirzoev and Shkalikov [1,2] have proposed
an approach to the regularization of such operators. Savchuk and Shkalikov [40] have
constructed the Birkhoff solutions with the certain asymptotic behavior as the spectral
parameter tends to infinity for the differential equation of arbitrary even order with singu-
lar coefficients. However, as far as the author knows, there are still no results on inverse
spectral problems for this class of operators. This paper aims to fill this gap and to start the
investigation of the recovery of the higher-order differential operators with distribution
coefficients from their spectral characteristics.

In this paper, we state the inverse spectral problem of recovering the coefficients {τk}
and {σk} of the differential equation `n(y) = λy, where `n(y) is defined by (1) or (2). As
the initial data of the inverse problem, we use the Weyl matrix, which generalizes the Weyl
functions for the second-order operators (see [14,15]). Weyl functions and their generalizations
are natural spectral characteristics of inverse problem theory for various types of differential
operators and pencils. It is worth mentioning that the Weyl matrix was first used by Yurko for
the recovery of the regular higher-order differential operators (see [37,38]). Our main result is
the uniqueness of the inverse problem solution (Theorem 2). As a corollary, we obtain the
uniqueness of the reconstruction of the operator coefficients from several spectra of the
equation `n(y) = λy equipped with different boundary conditions. The proofs of the main
results are based on the regularization of the differential expressions (1) and (2), on the use
of the Birkhoff solutions, and on the development of the method of spectral mappings. In
the future, our approach can be used for reduction of the nonlinear inverse problems to
linear equations and for investigation of solvability for the studied inverse problems.

The paper is organized as follows: Sections 2 and 3 are preliminary. In Section 2, we
describe the regularization of the differential expressions (1) and (2) from [1,2] and prove
an auxiliary lemma related with this construction. In Section 3, the equation `n(y) = λy
is reduced to the first-order system and the Birkhoff solutions are constructed. Section 3
is based on the results of [40,41]. In Section 4, the equation `n(y) = λy is equipped with
the appropriate boundary conditions, the Weyl matrix is defined, and the inverse problem
statements are provided. Furthermore, we investigate the relationship of the Weyl matrix with
the several spectra. In Section 5, auxiliary asymptotic formulas are derived. In Section 6, we
formulate and prove the main result, that is, the uniqueness theorem (Theorem 2) for the
studied inverse problem. In Section 7, we consider the examples of n = 2, 3, and compare
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the results of this paper with the previously known results for the second-order operators
with singular potentials.

2. Regularization

In this section, we describe the regularization of the differential expression `n(y)
obtained by Mirzoev and Shkalikov [1,2]. Furthermore, we prove an auxiliary lemma
(Lemma 1), which will be important for the proofs of our main results.

Denote by Ξ the collection of the coefficients Ξ := {τ1, . . . , τm, σin , . . . , σm−1} of the
expression `n(y) defined by (1) or (2), where in = 1 if n is even and in = 0 if n is odd. Given
the coefficients Ξ, we define the matrix function F(x) = [ fk,j(x)]nk,j=1 constructed by the
certain rule F = F (Ξ), which is described below.

Denote

ϕj := τj + iσj−1, ψj := τj − iσj−1, j = 1, m, (σ0 = 0 for even n).

For n = 2m, the matrix F = F (Ξ) has been constructed in [1] and has the form

F =



0 1 0 0 . . . 0 0 . . . 0 0
0 0 1 0 . . . 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
fm,1 fm,2 . . fm,m 1 0 . . . 0 0

fm+1,1 fm+1,2 . . . . . . fm+1,m+1 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn−1,1 fn−1,2 . . . . . . fn−1,m+1 0 . . . 0 1
fn,1 fn,2 . . . . . . fn,m+1 0 . . . 0 0


, (6)

where

fk,j = 0,
[

k = 1, m− 1, j = 1, n,
k = m, n, j = m + 2, n,

j 6= k + 1,

fk,k+1 = 1, k = 1, n− 1,

fm,m−j+1 = (−1)j+1 ϕj, fm+j,m+1 = −ψj, j = 1, m, (7)

fm+k,m−j = (−1)j+1 ϕj+1ψk + χj+k<m(−1)jCk
j+k+1

(
τj+k+1 + i

j− k + 1
j + k + 1

σj+k

)
, (8)

k = 1, m, j = 0, m− 1,

χj+k<m =

{
1, if j + k < m,
0, otherwise,

Ck
n =

n!
k!(n− k)!

are the binomial coefficients.

For n = 2m + 1, the matrix F = F (Ξ) has the form (see [2]):

F =



0 1 . . . 0 0 0 0 . . . 0
0 0 . . . 0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0 0 . . . 0
0 0 . . . 0 1 0 0 . . . 0

fm+1,1 fm+1,2 . . . fm+1,m 0 1 0 . . . 0
0 fm+2,2 . . . fm+2,m fm+2,m+1 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . fn−1,m fn−1,m+1 0 0 . . . 1
0 0 . . . 0 fm,m+1 0 0 . . . 0


, (9)
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where

fk,j = 0,
[

k = 1, m, j = 1, n,
k = m + 1, n, j = m + 2, n,

j 6= k + 1,

fk,k+1 = 1, k = 1, n− 1, fm+1,m+1 = 0,

fm+1,m+1−j = (−1)jiψj, fm+j+1,m+1 = iϕj, j = 1, m,

fm+k+1,m+k−j = (−1)j+k+1Ck
j+1

(
iτj+1 +

(
1− 2k

j + 1

)
σj

)
, k = 1, m− 1, j = k, m− 1.

Using the elements of the matrix function F(x) defined by (6) or (9), introduce the
quasi-derivatives

y[0] := y, y[k] = (y[k−1])′ −
k

∑
j=1

fk,jy[j−1], k = 1, n.

Consider the operator Fy := y[n] with the domain

D(F ) = {y : y[k] ∈ AC[0, 1], k = 0, n− 1}.

Obviously, the operator F is correctly defined in L1(0, 1). Moreover, it has been shown
in [1,2] that, for y ∈ D(F ), the relation `n(y) = Fy holds in the distribution space D′(0, 1).
(D′(0, 1) is the space of continuous linear functionals on D(0, 1) = C∞

0 (0, 1)).
Note that, in [1,2], the construction of the matrix F(x) was given for differential

expressions of a more general form than ln(y). In this paper, we confine ourselves to the
case with the coefficient 1 at y(n) and the coefficient 0 at y(n−1). This case is natural for
investigation of inverse spectral problems.

For study of inverse problems, we need the following lemma.

Lemma 1. Suppose that F = F (Ξ), F̃ = F (Ξ̃) and a unit lower-triangular matrix function
P(x) = [pk,j(x)]nk,j=1 satisfies

P′(x) + P(x)F̃(x) = F(x)P(x), x ∈ (0, 1), P(0) = I. (10)

Then, P(x) ≡ I and F(x) = F̃(x) a.e. on (0, 1).

Proof. For brevity, we omit the argument (x) of pk,j(x) and fk,j(x) in this proof. It is given
that pk,j = 0 for k < j and pk,k = 1 for k = 1, n.

Case 1: n = 2m. Let us show that pk,j = 0 for all k = 1, m and j < k by induction.
For k = 1, the assertion is trivial. For k < m and j ≤ k, relation (10) in the element-wise
form yields

p′k,j + pk,j−1 = pk+1,j. (11)

Here, and below, we assume that pk,j = 0 if j < 1 or k > n. If we have already proved
the assertion pk,j = 0 for j < k in the k-th row, then the left-hand side of (11) equals zero,
so we immediately get the assertion for the (k + 1)-th row. Using the m-th row of (10),
we obtain

pm+1,j = f̃m,j − fm,j, j = 1, m. (12)

Similarly, considering the j-th column of (10) for j = n, n− 1, . . . , m+ 1, we get pk,j = 0
for all k > j, j = m + 1, n, and

pk,m = fk,m+1 − f̃k,m+1, k = m + 1, n. (13)

Note that there is no contradiction between (12) and (13), since
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pm+1,m = ϕ̃1 − ϕ1 = ψ̃1 − ψ1

and ϕ1 = ψ1 = τ1 for even n.
Let us prove that pk,j = 0 for k = m + 1, n, j = 1, m. We will prove this assertion

for all such k, j that k − j = d by iterating over the values of d in the following order:
d = n− 1, n− 2, . . . , 2, 1. Consider some fixed d. Suppose that, for all the larger values of d,
the assertion is already proved. Using (10) and taking the obtained relations into account,
we derive

p′k,j + pk,j−1 + pk,m f̃m,j + f̃k,j = fk,j + fk,m+1 pm+1,j + pk+1,j, k = m + 1, n, j = 1, m. (14)

We have already proved that pk,j−1 = pk+1,j = 0. Consequently, using (12) and (13),
we simplify (14):

p′k,j + f̃k,j − f̃k,m+1 f̃m,j = fk,j − fk,m+1 fm,j. (15)

It follows from (7) and (8) that

fk,j − fk,m+1 fm,j = χd<mCk−m
k−j+1

(
τd+1 + i

2m− j− k
k− j + 1

σd

)
, k = m + 1, n, j = 1, m. (16)

If d ≥ m, then (15) and (16) readily imply p′k,j = 0. Consider the case d < m. In this
case, we have already proved that pm+1,m−d = 0 and pm+d+1,m = 0. By virtue of (7), (12)
and (13), this yields τd+1 = τ̃d+1, σd = σ̃d. Hence, we have

fk,j − fk,m+1 fm,j = f̃k,j − f̃k,m+1 f̃m,j,

so (15) implies p′k,j = 0. Taking the initial condition P(0) = I into account, we conclude
that pk,j = 0. Thus, the assertion is proved for k− j = d. By induction, it is valid for all
k = m + 1, n, j = 1, n. This concludes the proof for even n.

Case 2: n = 2m + 1. Similarly to the case of even n, one can easily show that pk,j = 0
for k < j and (k = 1, m or j = m, n). It remains to prove that pk,j = 0 for k = m + 1, n,
j = 1, m− 1. Consider the rows in the order k = n, n− 1, . . . , m + 1. For each fixed row,
consider the columns in the order j = 1, 2, . . . , m− 1. Using (10) in the element-wise form
and taking the special structure of the matrix (9) into account, we obtain

p′k,j + pk,j−1 = pk+1,j.

If the assertion is supposed to be proved for all the previous values of (k, j), then
pk,j−1 = pk+1,j = 0. Hence, p′k,j = 0, which implies pk,j = 0. This yields the claim of the
lemma.

3. Birkhoff Solutions

In this section, we briefly describe the construction of the Birkhoff solutions with the
certain behavior as |ρ| → ∞ for the higher-order differential equation `n(y) = ρny with
distribution coefficients. This construction is based on the reduction of the considered
equation to a first-order system of form (20). For even order n, the Birkhoff solution have
been obtained in [40]. For odd n, the reduction is similar. For obtaining the Birkhoff
solutions of the first-order system, the results of either [40] or [41] can be applied.

Let ln(y) be the differential expression defined by (1) or (2) with the coefficients Ξ,
and let F = F (Ξ). For a function y ∈ D(F ), denote the column vector of its quasi-
derivatives by

~y(x) = col(y[0](x), y[1](x), . . . , y[n−1](x)).

We say that y is a solution of the equation

`ny = ρny, x ∈ (0, 1), (17)
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if y ∈ D(F ) and
~y ′ = (F(x) + Λ)~y, x ∈ (0, 1), (18)

where ρ ∈ C, Λ := ρnEn,1. Here, and below, Ek,j is the (n× n) matrix whose element at
the position (k, j) equals 1 and all the other elements equal zero. It can be shown that, if
y ∈ D(F ) and ~y satisfies (18), then (17) holds in D′(0, 1).

In view of (6) and (9), the change of variables ~y(x) = diag{1, ρ, . . . , ρn−1}u(x) trans-
forms the system (18) into

u′(x) = F(x, ρ)u, (19)

where

F(x, ρ) = ρF1 + F0(x) +
n−1

∑
k=1

ρ−kF−k(x),

F1 =



0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 0 . . . 0 0

,

F0(x) =
{

τ1(x)(Em,m − Em+1,m+1), n = 2m,
0, n = 2m + 1,

and F−k ∈ L1(0, 1), k = 1, n− 1.
Denote by {ωj}n

j=1 the roots of the equation ωn = 1 numbered in some fixed order.

Put B := diag{ω1, ω2, . . . , ωn}, Ω := [ω
j−1
k ]nj,k=1. Obviously, Ω−1F1Ω = B. Consequently,

the system (19) can be reduced to the form

v′ = ρBv + A(x)v + C(x, ρ)v, (20)

v(x) = Ω−1u(x), A(x) = Ω−1F0(x)Ω, C(x, ρ) =
n−1

∑
k=1

ρ−kΩ−1F−k(x, ρ)Ω.

Observe that the elements of A(x) belong to L2(0, 1) for even n and A(x) ≡ 0 for
odd n.

The Birkhoff solutions for systems of more general forms than (20) have been con-
structed in [40,41]. Those results readily imply the Birkhoff solutions of Equation (17).

Consider the partition of the ρ-plane into the sectors

Γk =

{
ρ :

π(k− 1)
n

< arg ρ <
πk
n

}
, k = 1, 2n. (21)

Below, we assume that, if ρ lies in a fixed sector Γ = Γk, then the roots of the equation
ωn = 1 are numbered so that

Re (ρω1) < Re (ρω2) < · · · < Re (ρωn), ρ ∈ Γ. (22)

Proposition 1. For each fixed sector Γ and some ρ∗ > 0, Equation (17) has a fundamental system
of solutions (FSS) {yk(x, ρ)}n

k=1 such that the quasi-derivatives y[j]k (x, ρ) are analytic in ρ for each
fixed x ∈ [0, 1], ρ ∈ Γ, |ρ| ≥ ρ∗, and

y[j]k (x, ρ) = (ρωk)
j exp(ρωkx)(1 + o(1)), |ρ| → ∞, ρ ∈ Γ, (23)

uniformly with respect to x ∈ [0, 1], j = 0, n− 1, k = 1, n.
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In [40], the Birkhoff solutions {yk(x, ρ)}n
k=1 have been constructed for even n, and their

properties have been studied in more detail. In particular, the behavior of the remainder
term in (23) was studied in various spaces. The case of the odd n can be analyzed similarly.
It can be shown that, since A(x) ≡ 0 for odd n, then the remainder term is O(ρ−1) in this
case. However, the estimate o(1) is sufficient for the purposes of the present paper, so we
do not elaborate into details.

4. Inverse Problems

The goals of this section are to define the spectral characteristics of the operators
induced by the differential equation `n(y) = λy and to formulate the inverse spectral
problems. First, we introduce the boundary conditions by using the quasi-derivatives.
Second, the special FSS of Equation (17) generated by certain boundary conditions are
defined. We also define the Weyl matrix, which is used as the main spectral characteristics.
Further in this section, we establish the connection between the Weyl matrix and the several
spectra. Finally, the inverse problems are formulated.

For y ∈ D(F ), define the linear forms

Uξa(y) = Uξa~y(a), ξ = 1, n, a = 0, 1,

where Uξa are row vectors of length n. For a = 0, 1, denote by Ua the matrix whose ξ-th
row is Uξa, ξ = 1, n. Assume that Ua = PaLa, where Pa is a permutation matrix and La
is a unit lower triangular matrix. This means that the matrix Pa has the elements equal
to 1 at the positions (k, pk,a + 1), k = 1, n, where {(pk,a + 1)}n

k=1 is the permutation of the
numbers {1, 2, . . . , n}, and all the other elements are zero. The elements of La satisfy ljj = 1,
ljk = 0 for j < k. In other words,

Uξa(y) = y[pξ,a ](a) +
pξ,a−1

∑
ν=0

uξνay[ν](a), ξ = 1, n, a = 0, 1,

so these linear forms are analogous to the ones considered in ([38], Section 2).
Put λ = ρn. Denote by {Ck(x, λ)}n

k=1 the solutions of Equation (17) satisfying the
initial conditions

Uξ0(Ck) = δξk, ξ = 1, n, (24)

where δξk is the Kronecker delta. Equivalently, the matrix function C(x, λ) = [~Ck(x, λ)]nk=1
satisfies Equation (18) and the initial condition

C(0, λ) = U−1
0 . (25)

Note that, since U0 = P0L0, then det U0 = ±1. Clearly, the quasi-derivatives C[j]
k (x, λ),

k = 1, n, j = 0, n− 1, are absolutely continuous on [0, 1] for each fixed λ and entire in λ for
each fixed x ∈ [0, 1].

Denote by {Φk(x, λ)}n
k=1 the solutions of Equation (17) satisfying the boundary conditions

Uξ0(Φk) = δξk, ξ = 1, k, Uη1(Φk) = 0, η = k + 1, n. (26)

Equivalently, the vector functions {~Φk(x, λ)}n
k=1 satisfy Equation (18) and the bound-

ary conditions

Uξ0~Φk(0, λ) = δξk, ξ = 1, k, Uη1~Φk(1, λ) = 0, η = k + 1, n. (27)

The existence of such solutions {Φk(x, λ)}n
k=1 follows from the arguments below.
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Consider the matrix function Φ(x, λ) = [~Φk(x, λ)]nk=1. Since the columns of the matrix
C(x, λ) form a FSS of the system (18), then

Φ(x, λ) = C(x, λ)M(λ), (28)

where M(λ) = [Mjk(λ)]
n
j,k=1 is called the Weyl matrix. The first row of the matrix relation (28)

has the form

Φk(x, λ) =
n

∑
j=1

Mjk(λ)Cj(x, λ), k = 1, n. (29)

Using (24), (26) and (29), we show that

Mξk(λ) = δξk, ξ = 1, k, (30)

Uη1(Ck) +
n

∑
j=k+1

Mjk(λ)Uη1(Cj) = 0, η = k + 1, n. (31)

By virtue of (30), the Weyl matrix has the lower-triangular form

M(λ) =


1 0 0 . . . 0

M21(λ) 1 0 . . . 0
M31(λ) M32(λ) 1 . . . 0

. . . . . . . . . . . . . . . . . . .
Mn1(λ) Mn2(λ) Mn3(λ) . . . 1

.

For each fixed k = 1, n− 1, relations (31) can be treated as the system of linear
equations with respect to [Mjk(λ)]

n
j=k+1. Solving this system by Cramer’s rule, we find

Mjk(λ) = −
∆jk(λ)

∆kk(λ)
, k = 1, n− 1, j = k + 1, n, (32)

where

∆kk(λ) :=

∣∣∣∣∣∣
Uk+1,1(Ck+1) . . . Uk+1,1(Cn)

. . . . . . . . . . . . . . . .
Un1(Ck+1) . . . Un1(Cn)

∣∣∣∣∣∣,
and ∆jk(λ) is obtained from ∆kk(λ) by the replacement of Cj by Ck. Equivalently,

∆kk(λ) = det(Tk + T⊥k U1C(1, λ)), ∆jk(λ) = det(Tk + T⊥k U1C(1, λ)Pjk), (33)

where

Tk = [Tk,ls]
n
l,s=1, Tk,ls =

{
1, l = s ≤ k,
0, otherwise,

T⊥k = I − Tk,

and the matrix Pjk is obtained from the unit matrix by permutation of the j-th and the k-th
columns.

Thus, one can construct the elements of the Weyl matrix M(λ) by formulas (30), (32)
and (33) and then find the matrix function Φ(x, λ) by (28). The elements {Φk(x, λ)}n

k=1 of
the first row will satisfy Equation (17) and the boundary conditions (26). Therefore, the
solutions {Φk(x, λ)}n

k=1 are correctly defined for such λ that ∆kk(λ) 6= 0, k = 1, n− 1.
It follows (33) that the functions ∆jk(λ) are entire in λ. It will be shown in the next

section that, for k = 1, n− 1, j = k, n, we have ∆jk(λ) 6≡ 0 and the set of zeros of ∆jk(λ) is
countable. Consequently, the matrix functions M(λ) and Φ(x, λ) for each fixed x ∈ [0, 1]
are meromorphic in λ.

Remark 1. Note that the row vector U11 does not participate in the definitions of the Weyl solution
and the Weyl matrix. This row is added to the coefficient matrix U1 only for convenience and can
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be arbitrary. Furthermore, in view of (27), the vector Uη1 can be replaced by Uη1 − cUθ1 with
arbitrary c ∈ C if η < θ and pη,1 > pθ,1. This replacement does not change the Weyl solution
Φ(x, λ). Therefore, the matrix U1 is not uniquely determined by Φ(x, λ).

Theorem 1. For each fixed pair (j, k) such that 1 ≤ k ≤ j ≤ n, the zeros {λs,jk}s≥1 of the function
∆jk(λ) coincide with the eigenvalues of the boundary value problem

Ljk : `n(y) = λy, Uξ0(y) = 0, ξ = 1, k− 1, j, Uη1(y) = 0, η = k + 1, m.

Proof. Let λ0 be an eigenvalue of Ljk and y(x) be the corresponding eigenfunction. Then,

y(x) =
n

∑
l=1

αlCl(x, λ0).

Substituting this expansion into the boundary conditions ofLjk, we obtain the linear system

n

∑
l=1

αl Uξ0(Cl(x, λ0)) = 0, ξ = 1, k− 1, j, (34)

n

∑
l=1

αl Uη1(Cl(x, λ0)) = 0, η = k + 1, n,

with respect to {αl}n
l=1. In view of (24), the determinant of the obtained system equals

∆jk(λ0) (up to the sign). Hence, a non-trivial solution y(x) of Ljk exists if and only if
∆jk(λ0) = 0. This yields the claim.

Consider the following inverse problems:

Inverse Problem 4.1. Given the Weyl matrix M(λ), find Ξ.

Inverse Problem 4.2. Given the eigenvalues {λs,jk}s≥1, k = 1, n− 1, j = k, n, find Ξ.

It is shown below (see Remark 2) that the entire functions ∆jk(λ) have the order 1
n .

Therefore, by Hadamard’s factorization theorem, these functions can be constructed by
their zeros as infinite products:

∆jk(λ) = Cjk

∞

∏
s=1

(
1− λ

λs,jk

)
, 1 ≤ k ≤ j ≤ n, (35)

if λs,jk 6= 0. The case λs,jk = 0 requires minor technical changes. The constants Cjk 6= 0
can be easily found by using the asymptotics of Lemma 2. Thus, given the eigenvalues
{λs,jk}s≥1, one can find the characteristic functions ∆jk(λ) and then construct all the non-
trivial elements of the Weyl matrix by (32). In this way, Inverse Problem 4.2 is reduced to
Inverse Problem 4.1. Therefore, we further focus on Inverse Problem 4.1.

Note that it is possible to determine the functions τk and σk (not only their derivatives
τ
(k)
k and σ

(k)
k ) because the boundary conditions contain the quasi-derivatives. We assume

that the matrices U0 and U1, defining the boundary conditions, are known a priori. Other-
wise, it may be impossible to determine U0 and U1 from the Weyl matrix (see Remark 1
and Example 1).

5. Asymptotics

In this section, we obtain auxiliary results concerning the asymptotic behavior of the
characteristic functions ∆jk(λ) and of the solutions of Equation (17). For this purpose,
the solutions {Ck}n

k=1 and {Φk}n
k=1 are expanded over the Birkhoff FSS {yk}n

k=1 from
Proposition 1.
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Denote

rk :=
k

∑
j=1

pj,0 +
n

∑
j=k+1

pj,1, mk := rk −
n(n− 1)

2
, sk =

n

∑
j=k+1

ωj,

Θ(ρ) := diag{1, ρ, . . . , ρn−1}, E(x, ρ) := diag{exp(ρωkx)}n
k=1,

[1] = 1 + o(1), [I] = I + o(1), |ρ| → ∞.

In Lemmas 2 and 3, we suppose that Γ is a fixed sector of form (21), the roots {ωj}n
j=1

of the equation ωn = 1 are numbered according to (22), and {ρ : arg ρ = ϕ} ⊂ Γ is a
fixed ray. For a fixed sector Γ, we define the matrix function Y(x, ρ) = [~yk(x, ρ)]nk=1, where
{yk(x, ρ)}n

k=1 is the Birkhoff FSS described in Proposition 1. The asymptotics (23) imply

Y(x, ρ) = Θ(ρ)Ω[I]E(x, ρ), |ρ| → ∞, ρ ∈ Γ. (36)

Lemma 2. The following asymptotic relation holds as |ρ| → ∞, arg ρ = ϕ:

∆jk(λ) = cjkρmk−pk,0+pj,0 exp(ρsk)[1], cjk 6= 0, 1 ≤ k ≤ j ≤ n, (37)

Proof. The matrix function C(x, λ) can be represented as

C(x, λ) = Y(x, ρ)A(ρ), (38)

where λ = ρn, ρ ∈ Γ, |ρ| ≥ ρ∗, A(ρ) is an (n × n) matrix. Using (25), (36) and (38),
we obtain

A(ρ) = [I]Ω−1(Θ(ρ))−1U−1
0 , |ρ| → ∞, ρ ∈ Γ.

Hence,

detA(ρ) = cAρ−n(n−1)/2[1], |ρ| → ∞, ρ ∈ Γ, cA 6= 0. (39)

Relations (25) and (33) imply

∆kk(λ) = det(TkU0C(0, λ) + T⊥k U1C(1, λ)), k = 1, n− 1. (40)

Substitution of (38) into (40) yields

∆kk(λ) = dk(ρ)detA(ρ), (41)

where
dk(ρ) := det(TkU0Y(0, ρ) + T⊥k U1Y(1, ρ)).

Recall that Ua = PaLa, a = 0, 1. For the unit lower triangular matrix La, we have

LaΘ(ρ) = Θ(ρ)(I + O(ρ−1)).

Consequently, taking (36) into account, we obtain

TkU0Y(0, ρ) + T⊥k U1Y(1, ρ) = TkP0Θ(ρ)Ω[I] + T⊥k P1Θ(ρ)Ω[I]E(1, ρ),

dk(ρ) = ρrk

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω
p1,0
1 [1] ω

p1,0
2 [1] . . . ω

p1,0
n [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω

pk,0
1 [1] ω

pk,0
2 [1] . . . ω

pk,0
n [1]

ω
pk+1,1
1 exp(ρω1)[1] ω

pk+1,1
2 exp(ρω2)[1] . . . ω

pk+1,1
n exp(ρωn)[1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω

pn,1
1 exp(ρω1)[1] ω

pn,1
2 exp(ρω2)[1] . . . ω

pn,1
n exp(ρωn)[1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
as |ρ| → ∞, ρ ∈ Γ. In view of (22), we arrive at the asymptotics
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dk(ρ) = ρrk det(TkP0Ω + T⊥k )det(Tk + T⊥k P1Ω) exp(ρsk)[1], (42)

as |ρ| → ∞, arg ρ = ϕ. It can be shown that the determinants in (42) are non-zero. Therefore,
substituting (39) and (42) into (41), we arrive at (37) for j = k.

According to the definition of ∆jk(λ) and Theorem 1, if we replace the row Uk0 by Uj0,
we obtain ∆jk(λ) instead of ∆kk(λ) for k < j. Therefore, the asymptotic formulas for ∆jk(λ),
k < j can be derived similarly to the ones for ∆kk(λ) and have the form (37).

Remark 2. The asymptotics (37) implies ∆jk(λ) 6≡ 0. It follows from the proof of Lemma 2 that, for
each fixed x ∈ [0, 1], the entire matrix function C(x, λ) has the order 1

n and so do the functions
∆jk(λ).

Lemma 3. The following asymptotic relation holds as |ρ| → ∞, arg ρ = ϕ:

Φ(x, λ) = Θ(ρ)Ω[I]E(x, ρ)diag{ρ−pk,0 b0
kk}

n
k=1, (43)

where x ∈ [0, 1) is fixed, λ = ρn, b0
kk are non-zero constants.

Proof. Fix a sector Γ and expand the columns ~Φk(x, λ) with respect to the columns of the
matrix Y(x, ρ) = [~yk(x, ρ)]nk=1:

~Φk(x, λ) = Y(x, ρ)Bk(ρ), k = 1, n, (44)

where λ = ρn, ρ ∈ Γ, |ρ| ≥ ρ∗, Bk(ρ) = col(b1k(ρ), b2k(ρ), . . . , bnk(ρ)). Clearly, the bound-
ary conditions (27) can be rewritten in the form

TkU0~Φk(0, λ) + T⊥k U1~Φk(1, λ) = ek, k = 1, n,

where ek is the k-th column of the unit matrix I. Consequently, we obtain the linear system
with respect to the vector Bk(ρ) for each fixed k:

(TkU0Y(0, ρ) + T⊥k U1Y(1, ρ))Bk(ρ) = ek.

Obviously, the determinant of this system equals dk(ρ) from the proof of Lemma 2. By
Cramer’s rule,

bjk(ρ) =
djk(ρ)

dk(ρ)
, j = 1, n,

where the determinant djk(ρ) is obtained from dk(ρ) by the replacement of the j-th column
by ek. Analogously to (42), we derive

djk(ρ) = −ρrk−pk,0 det(Tk−1P0ΩPjk + T⊥k−1)det(Tk + T⊥k P1Ω) exp(ρsk)[1], j < k,

dkk(ρ) = ρrk−pk,0 det(Tk−1P0Ω + T⊥k−1)det(Tk + T⊥k P1Ω) exp(ρsk)[1],

djk(ρ) = −ρrk−pk,0 det(Tk−1P0Ω + T⊥k−1)det(Tk + T⊥k P1ΩPjk) exp(ρ(sk + ωk −ωj))[1], j > k,

as |ρ| → ∞, arg ρ = ϕ. Hence,

bjk(ρ) = ρ−pk,0 b0
jk[1], j ≤ k,

bjk(ρ) = O(ρ−pk,0 exp(ρ(ωk −ωj))), j > k,

where

b0
jk = −

det(Tk−1P0ΩPjk + T⊥k−1)

det(TkP0Ω + T⊥k )
, j < k, b0

kk =
det(Tk−1P0Ω + T⊥k−1)

det(TkP0Ω + T⊥k )
6= 0.
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The asymptotics for bjk(ρ) together with (23) and (44) yield

Φ[j]
k (x, λ) = ρ−pk,0(ρωk)

jb0
kk exp(ρωkx)[1],

as |ρ| → ∞, arg ρ = ϕ, for each fixed x ∈ [0, 1), j = 0, n− 1, k = 1, n. In the matrix form,
we obtain (43).

6. Uniqueness Theorem

In this section, we formulate and prove the uniqueness theorem for solution of Inverse
Problem 4.1. First, we need an auxiliary lemma.

Lemma 4. Let {yk(x)}n
k=1 be arbitrary solutions of the equation `n(y) = λy for a fixed λ ∈ C,

and let Y(x) be the matrix function [~yk(x)]nk=1. Then, det Y(x) is constant.

Proof. Clearly, the matrix function Y(x) satisfies the Equation (18):

Y′(x) = (F(x) + Λ)Y(x).

The standard relation yields

(det Y(x))′ = trace (F(x) + Λ)det Y(x).

Obviously, trace (F(x) + Λ) = trace F(x). Formulas (6) and (7) for even n and (9) for
odd n imply that trace (F(x)) = 0. Hence, (det Y(x))′ = 0, which yields the claim.

Along with Ξ, consider another collection Ξ̃ = {τ̃1, . . . , τ̃m, σ̃in , . . . , σ̃m−1} of the same
class. We agree that, if a symbol γ denotes an object related to Ξ, then the symbol γ̃ with
tilde denotes the similar object related to Ξ̃. The coefficients U0 and U1 of the boundary
conditions are supposed to be the same for Ξ and Ξ̃. However, the quasi-derivatives
of solutions y and ỹ of the equations `n(y) = λy and ˜̀n(ỹ) = λỹ, respectively, differ if
F(x) 6= F̃(x).

Theorem 2. If M(λ) ≡ M̃(λ), then Ξ = Ξ̃, that is, τk(x) = τ̃k(x), σk(x) = σ̃k(x) a.e. on (0, 1).
Thus, the solution of Inverse Problem 4.1 is unique.

Proof. Define the (n× n) matrix of spectral mappings P(x, λ) = [Pjk(x, λ)]nj,k=1 as follows:

P(x, λ) = Φ(x, λ)(Φ̃(x, λ))−1.

Using the relations

Φ(x, λ) = C(x, λ)M(λ), Φ̃(x, λ) = C̃(x, λ)M̃(λ),

and M(λ) ≡ M̃(λ), we obtain

P(x, λ) = C(x, λ)(C̃(x, λ))−1. (45)

It follows from the initial condition U0C̃(0, λ) = I and Lemma 4 that det C̃(0, λ) = ±
1. Hence, the matrix function (C̃(x, λ))−1 is entire in λ for each fixed x ∈ [0, 1], similarly to
C(x, λ). Thus, P(x, λ) is also entire in λ.

On the other hand, using the asymptotics of Lemma 3 for Φ(x, λ) and Φ̃(x, λ), we de-
rive

P(x, λ) = Θ(ρ)[I](Θ(ρ))−1,

as |ρ| → ∞, arg ρ = ϕ, ϕ 6= πk
n , λ = ρn, x ∈ [0, 1). Hence,
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Pjk(x, λ) =


o(1), j < k,
1 + o(1), j = k,
o(λ), j > k,

as |λ| → ∞ along any ray arg λ = β, β 6∈ {0, π}, for each fixed x ∈ [0, 1). One can use
Phragmen–Lindelöf’s theorem (see [42]) and Liouville’s theorem to show that P(x, λ) is a
constant unit lower triangular matrix P(x) for each fixed x ∈ [0, 1).

Differentiating the relation

P(x)Φ̃(x, λ) = Φ(x, λ)

and using (18) for Φ(x, λ) and Φ̃(x, λ):

Φ′(x, λ) = (F(x) + Λ)Φ(x, λ), Φ̃′(x, λ) = (F̃(x) + Λ)Φ̃(x, λ),

we obtain
P ′(x) + P(x)F̃(x) = F(x)P(x).

In view of (45) and the initial conditions

C(0, λ) = C̃(0, λ) = U−1
0 ,

we have P(0) = I. Applying Lemma 1, we conclude that F(x) = F̃(x) a.e. on (0, 1). This
readily yields Ξ = Ξ̃.

Recall that, by using the spectra {λs,jk}s≥1, 1 ≤ k ≤ j ≤ n, one can uniquely con-
struct the Weyl matrix M(λ) by formulas (35) and (32). Therefore, Theorem 2 implies the
following corollary.

Corollary 1. If λs,jk = λ̃s,jk, s ≥ 1, 1 ≤ k ≤ j ≤ n, then Ξ = Ξ̃. Thus, the solution of Inverse
Problem 4.2 is unique.

7. Examples

In this section, we provide the examples illustrating the main results of this paper for
n = 2 and n = 3. Note that the considered operators are equivalent to the operators (4)
and (5), arising in applications.

Example 1. n = 2. In this case, m = 1 and the differential expression (1) takes the form
l2(y) = y′′ − τ′1(x)y. Thus, Ξ = {τ1}, τ1 ∈ L2(0, 1). The matrix F = F (Ξ) defined by (6) has
the form

F =

[
τ1 1
−τ2

1 −τ1

]
.

The quasi-derivative is defined as y[1] = y′ − τ1y, so Equation (17) takes the form

`2(y) = (y[1])′ + τ1y[1] + τ2
1 y = λy, x ∈ (0, 1). (46)

For each a = 0, 1, we have the two linear forms

U1a(y) = y(a), U2a = y[1](a) + hay(a) (ha ∈ C)

or vice versa. The Weyl matrix has the form

M(λ) =

[
1 0

M21(λ) 1

]
.
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That is, it has the only non-trivial element M21(λ) = −
∆21(λ)

∆11(λ)
, which generalizes the Weyl

function for the classical Sturm–Liouville operators (see [14,15]). By virtue of Theorem 1, ∆11(λ)
and ∆21(λ) are the characteristic functions of the eigenvalue problems for Equation (46) with the
boundary conditions

L11 : U10(y) = U21(y) = 0, L21 : U20(y) = U21(y) = 0,

respectively. Denote by {λDD
n }, {λRD

n }, {λRD
n }, {λRR

n } the eigenvalues of the boundary value
problems for Equation (46) with the following boundary conditions:

{λDD
n } ∼ y(0) = y(1) = 0, (Dirichlet-Dirichlet)

{λRD
n } ∼ y[1](0) + h0y(0) = y(1) = 0, (Robin-Dirichlet)

{λDR
n } ∼ y(0) = y[1](1) + h1y(1) = 0, (Dirichlet-Robin)

{λRR
n } ∼ y[1](0) + h0y(0) = y[1](1) + h1y(1) = 0. (Robin-Robin)

By virtue of Theorem 2, the Weyl function M21(λ) uniquely specifies the coefficient τ1.
Depending on whether the boundary condition U21(y) = 0 is the Dirichlet or the Robin one, the
Weyl function M21(λ) is uniquely specified by the two spectra: either {λDD

n }, {λRD
n } or {λDR

n },
{λRR

n }. Hence, our results imply the following corollary.

Corollary 2. The coefficient τ1 of `2(y) is uniquely determined by either {λDD
n }, {λRD

n } or
{λDR

n }, {λRR
n }.

Note that the coefficients h0 and h1 are assumed to be known a priori, since they are not
uniquely specified by the two spectra. This happens because the shift τ1 → τ1 + c, hj → hj + c,
j = 0, 1, does not change the spectra. However, if hj is fixed for either j = 0 or 1, then one can
uniquely recover h1−j together with τ1 from {λDR

n }, {λRR
n }. These results coincide with the results

of Hryniv and Mykytyuk [21].

Example 2. n = 3. In this case, m = 1 and

`3(y) = y(3) + (σ0(x)y)′ + σ0(x)y + iτ′1(x)y.

Thus, Ξ = {τ1, σ0}, τ1, σ0 ∈ L1(0, 1). The matrix F = F (Ξ) has the form

F =

 0 1 0
−(σ0 + iτ1) 0 1

0 −(σ0 − iτ1) 0

.

The quasi-derivatives equal

y[1] = y′, y[2] = y′′ + (σ0 + iτ1)y, y[3] = (y[2])′ + (σ0 − iτ1)y′,

and `3(y) = y[3]. There are multiple possible choices of the linear forms Uξa(y). For instance,
consider the following ones:

Uξa(y) = y[ξ−1](a), ξ = 1, 3, a = 0, 1.

The Weyl matrix has the form

M(λ) =

 1 0 0
M21(λ) 1 0
M31(λ) M32(λ) 1

.
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Our results imply that the coefficients τ1 and σ0 are uniquely specified by the eigenvalues of
five boundary value problems for equation `3(y) = λy with the boundary conditions

L11 : y(0) = 0, y[1](1) = y[2](1) = 0,

L21 : y[1](0) = 0, y[1](1) = y[2](1) = 0,

L31 : y[2](0) = 0, y[1](1) = y[2](1) = 0,

L22 : y(0) = y[1](0) = 0, y[2](1) = 0,

L32 : y(0) = y[2](0) = 0, y[2](1) = 0.
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