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Abstract: We research a control problem for an ecological model given by a reaction–diffusion
system. The ecological model is given by a nonlinear parabolic PDE system of three equations
modelling the interaction of three species by considering the standard Lotka-Volterra assumptions.
The optimal control problem consists of the determination of a coefficient such that the population
density of predator decreases. We reformulate the control problem as an optimal control problem
by introducing an appropriate cost function. Then, we introduce and prove three types of results.
A first contribution of the paper is the well-posedness framework of the mathematical model by
considering that the interaction of the species is given by a general functional responses. Second, we
study the differentiability properties of a cost function. The third result is the existence of optimal
solutions, the existence of an adjoint state, and a characterization of the control function. The first
result is proved by the application of semigroup theory and the second and third result are proved
by the application of Dubovitskii and Milyutin formalism.

Keywords: differential equations; teaching; mathematical modelling; solving problem

1. Introduction

In recent decades, there has been an increasing interest in the mathematical modelling
of several biological phenomena: pattern formation, epidemic disease transmission, blood
circulation, atherosclerosis, species competency, migration of species, and so on, see for
instance [1–6]. In particular, in this paper we are interested in a reaction-diffusion system
with initial and boundary value conditions of the following type

∂tu− d1∆u = α1u− β1 f (u, v) + γ1g(u, w), in QT = (0, T)×Ω, (1a)

∂tv− d2∆v = −α2v + β2 f (u, v), in QT , (1b)

∂tw = α3w− γ3g(u, w), in QT , (1c)

∇u · ν = ∇v · ν = 0, on ΣT = (0, T)× ∂Ω, (1d)

(u, v, w)(0, x) = (u0, v0, w0)(x), in Ω, (1e)

where Ω ⊂ Rd (d = 1, 2, 3) is a bounded set with boundary ∂Ω; T > 0 is a fixed time
denoting the total time of the process; the coefficients d1, d2, γ1, γ3, αi, bi (i = 1, 2, 3) are
all positive constants; f , g : R2 → R are some given functions modelling the functional
responses or interactions; ν is the outward unit normal to ∂Ω, the boundary of Ω; and
u0, v0, w0 are some given functions from Ω to R+

0 modelling the initial conditions. The
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system (1) arose in the mathematical model of an ecological system under the considerations
of Lotka-Volterra competence assumptions for three species, for instance u, v and w denotes
the population densities of herbivorous, carnivorous and plants or pest, predator and plants,
respectively. The boundary conditions (1d) are considered to model the case of an isolated
environment, i.e., there is neither immigration nor emigration of species during the process.

The maintenance of an adequate number of individuals of each species in the ecosys-
tem is crucial to preserve the harmony and stability between living beings and the envi-
ronment in which they inhabit. Therefore, understanding the mechanism of control of
species is necessary to maintain the equilibrium of the ecosystem. For instance in the case
of agriculture, the control of density for pest individuals can be done by incorporation of a
predator and by using a chemical pesticide. Now, the usage of pesticides can dangerous
for some species in the environment and should be optimized. In particular, considering
mainly the following two assumptions: the density of eradicated pests is proportional to the
density of living pests and the pesticide is uniformly distributed in the ecosystem, and to
the determination of the proportional factor introducing the following control problem

∂tu− d1∆u = α1u− β1 f (u, v) + γ1g(u, w)− ζu, in QT , (2a)

∂tv− d2∆v = −α2v + β2 f (u, v), in QT , (2b)

∂tw = α3w− γ3g(u, w), in QT , (2c)

∇u · ν = ∇v · ν = 0, on ΣT , (2d)

(u, v, w)(0, x) = (u0, v0, w0)(x), in Ω, (2e)

where ζ from [0, T] to [0, 1] is the control function.
The control problem (2) can be recast as an optimal control problem. Let us consider

the notations: H = L2(Ω)3; H′ the topological dual of H; and W1,2(0, T; H) the set of
functions such that f ∈ L2(0, T; H) and ft ∈ L2(0, T; H′), which is a Banach space with the
norm ‖ f ‖W1,2(0,T;H) = ‖ f ‖L2(H) + ‖ ft‖L2(H). Moreover, we consider the notation

E = W1,2(0, T; H)3 × L2(0, T), Ẽ = L2(Q)
3 × L∞(Q)3. (3)

For a major details on Sobolev space we refer to [7]. We define the cost functional
J : E→ R as follows

J(u, v, w, ζ) =
∫∫

QT

u(t, x)dtdx−
∫∫

QT

w(t, x)dtdx +
∫ T

0
ζ(t)dt. (4)

We notice that the cost function J is constructed in a appropriate sense, for instance
in the case of pest-predator-plants ecosystem, we have that the first term minimizes the
total density of pests and maximizes the total density of plants, and the second term is
introduced to reduce the exposition to pesticides. Thus, we observe that (2) can be rewritten
as the optimal control problem

Find the control function ζ and the state variables of the
ecosystem (u, v, w), such that the cost functional J given
on (4), subject to (u, v, w, ζ) ∈ E solution of (2), is minimized,

 (5)

or equivalently, in the context of Dubovitskii and Milyutin formalism, as the generic
optimization problem

min
(u,v,w,ζ)∈D

J(u, v, w, ζ), D =
{
(u, v, w, ζ) ∈ E : M(u, v, w, ζ) = 0

}
, (6)

where the operator M : E→ Ẽ is defined by

M(u, v, w, ζ) = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) (7)
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if and only if

∂tu− d1∆u + α1u + β1 f (u, v)− γ1g(u, w) + ζu = ψ1, in QT , (8a)

∂tv− d2∆v + α2v− β2 f (u, v) = ψ2, in QT , (8b)

∂tw− α3w + γ3g(u, w) = ψ3, in QT , (8c)

∇u · ν = ∇v · ν = 0, on ΣT , (8d)

(u, v, w)(0, x)− (u0, v0, w0)(x) = (ψ4, ψ5, ψ6), in Ω. (8e)

We observe that the system (2) is a particular case of the system (8) when ψi = 0 for
i = 1, . . . , 6.

The main contributions of this paper are the introduction of appropriate assumption
and a functional framework such that we can prove three kinds of results: (i) the existence
and uniqueness of a positive solution of system (2) (see Theorem 1); (ii) the explicit calculus
of descent and dual cones of J and other differentiability properties of the operators
M defined on (7) and (8) (see Lemma 1); and (iii) the existence of solutions for (5), the
existence of solutions for the adjoint system for system (2), and the characterization of
control function (see Theorem 2).

We remark that there are several optimal control problems for reaction-diffusion
equations in the recent literature, for instance [8–28]. Some relevant results for semilinear
parabolic differential equations are presented in [26]. In [14,15,22] the authors study the
solution of inverse problems related with the reconstruction of coefficients in reaction-
diffusion systems arising in epidemiology, from observations of the state solution in a fixed
time, by application of some results of standard optimal control theory. A closer study
of the problem (5) is the analysis introduced by [10] for the particular case of functional
responses given by f (u, v) = uv and g(u, w) = uw. In a broad sense, the author of [10]
assume the dependence of the state variables on a given ζ and instead of (5) she study the
optimization problem

min
ζ∈Uad

J (ζ), J (ζ) = J(uζ , vζ , wζ , ζ), Uad =
{

f ∈ L2(0, T) : 0 ≤ f (t) ≤ 1, t ∈ [0, T]
}

,

where the notation (uζ , vζ , wζ) to emphasize the dependence of the state variables on ζ.
The cost functional J is called the reduced cost functional [26]. Other relevant works for
optimal control problems for Lotka-Volterra-like systems using the reduced form are [20,28].
Moreover, the application of Dubovitskii and Milyutin formalism to control problems aris-
ing in heat and solidification phenomena was conducted in [13,21], respectively. However,
to the best of our knowledge, there is not yet in the literature an application of Dubovitskii
and Milyutin to study optimal control problems in reaction-diffusion systems arising in
the competition of organisms or species in an ecosystem.

The article is organized as follows. In Section 2 we introduce some additional notation;
we precise the mathematical assumptions used on the paper for the physical domain, the
coefficients, the functional responses, the control function and the initial conditions; and
we introduce the statements of main results. In Section 3 we recall some useful results
related with differential equations on Banach spaces and the Dubovitskii and Milyutin
formalism. In Section 4 we introduce the proofs of main results. Finally, in Section 5 we
give the conclusions and the guidance for future work.

2. Assumptions and Statements of Main Results
2.1. Assumptions

Hereinafter, we consider the following assumptions:

Assumption 1. The set Ω ⊂ Rd (d ≤ 3) is a bounded domain with a boundary of class C2+α

with α > 0.
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Assumption 2. The coefficients d1, d2, α1, α2, α3, γ1, and γ3 are strictly positive.

Assumption 3. The initial condition (u0, v0, w0) is belong the set U0 defined as follows

U0 =
{
(u, v, w) ∈ H2(Ω)2 × L∞(Ω) : ∇u · ν = ∇v · ν = 0 on ∂Ω

}
and also the functions u0, v0 and w0 are strictly positive on Ω.

Assumption 4. The functions f , g : R2 → R are assumed satisfying the properties: f , g ∈
C1(R2,R); both functions are locally Lipschitz, bounded and positive on R2

+; and also f (0, 0) =
g(0, 0) = 0.

Assumption 5. The function ζ ∈ Z =
{

f ∈ L2(0, T) : 0 ≤ f (t) ≤ 1, t ∈ [0, T]
}

2.2. Statements of Main Results

Theorem 1. Consider that the Assumptions 1–5 are satisfied, then there is at most one strictly
positive global strong solution of the system (2) belong to W1,2(0, T; L2(Ω)3) such that

(u, v, w) ∈
[

L2(0, T; H2(Ω)) ∩ L∞(0, T; H1(Ω))
]2
× L∞(0, T; H1(Ω)) (9)

‖∂tu‖L2(QT)
+ ‖u‖L2(0,T;H2(Ω)) + ‖u(t, ·)‖H1(Ω) + ‖u‖L∞(QT)

≤ C, (10)

‖∂tv‖L2(QT)
+ ‖v‖L2(0,T;H2(Ω)) + ‖v(t, ·)‖H1(Ω) + ‖v‖L∞(QT)

≤ C, (11)

‖∂tw‖L2(QT)
+ ‖w‖L∞(QT)

+ ‖w(t, ·)‖L2(Ω) ≤ C (12)

for a. a. t ∈ [0, T] and for some generic positive constant C (independent of (u, v, w) and ζ).

Lemma 1. Consider that the hypotheses of Theorem 1 are satisfied, and the operators J and M
defined on (4), (7) and (8), respectively. Then the following assertions are satisfied

(a) The sets

K0 =
{
(û, v̂, ŵ, ζ̂) ∈ E :

∫∫
Q

û(t, x)dtdx−
∫

Q
ŵ(t, x)dtdx +

∫ T

0
ζ̂(t)dt < 0

}
,

K∗0 = {−λJ′ : λ ≥ 0},

defines the descent and dual cones of J.
(b) The application M is Gâteaux differentiable and the derivative of M in (u, v, w, ζ) is defined

by M′G(u, v, w, f )(û, v̂, ŵ, ζ̂) = (ψ̃1, ψ̃2, ψ̃3, ψ̃4, ψ̃5, ψ̃6) if and only if

∂tû− d1∆û− α1û + β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
− γ1

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
+ ζû + ζ̂u = ψ̂1, in QT , (13a)

∂tv̂− d2∆v̂ + α2v̂− β2

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
= ψ̂2, in QT , (13b)

∂tŵ− α3ŵ + γ3

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
= ψ̂3, in QT , (13c)

∇û · ν = ∇v̂ · ν = 0, on ΣT , (13d)

(û, v̂, ŵ)(0, x) = (ψ̂4, ψ̂5, ψ̂6), in Ω. (13e)

(c) The application M is strictly differentiable and M′(u, v, w, ζ) = M′G(u, v, w, ζ) is a surjec-
tive operator.
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(d) The following sets

TC(D, (u, v, w, ζ)) =
{
(û, v̂, ŵ, ζ̂) ∈ E : M′(u, v, w, ζ)(û, v̂, ŵ, f̂ ) = 0

}
, (14)

[TC(D)]∗ =
{

g ∈ E′ : g(û, v̂, ŵ, ζ̂) = 0, ∀(û, v̂, ŵ, ζ̂) ∈ TC(D, (u, v, w, ζ))
}

, (15)

are the tangent and dual cones to the set D at (u, v, w, ζ), respectively. Moreover,
TC(D(u, v, w, ζ)) is a vector space.

Theorem 2. Consider that the Assumptions 1–4 are satisfied. Then, the following assertions
are satisfied

(a) The optimization problem (6) has at least one solution.
(b) If (ū, v̄, w̄, ζ̄) ∈ D is a solution of (6), then the adjoint system

∂t p + d1∆p = −
[
α1 − β1∂1 f (ū, v̄) + γ1∂1g(ū, w̄)− ζ̄

]
p

− β2∂1 f (ū, v̄)q + γ3∂1g(ū, w̄)r + 1, in QT , (16a)

∂tq + d2∆q = β1∂2 f (ū, v̄)p +
(

α2 − β2∂2 f (ū, v̄)
)

q, in QT , (16b)

∂tr = −γ1∂2g(ū, w̄)p−
(

α3 − γ3∂2g(ū, w̄)
)

r− 1, in QT , (16c)

∇p · ν = ∇q · ν = 0, on ΣT , (16d)

(p, q, r)(T, x) = 0, in Ω, (16e)

has at least one solution such that (p, q, r) ∈W1,2(0, T; H).
(c) Let (ū, v̄, w̄, ζ̄) ∈ D a solution of (6) and (p, q, r) a solution the adjoint system (16). Then,

the relation

ζ̄(t) =
{

1, if
∫

Ω(ūp)(t, x)dx + 1 < 0,
0, if

∫
Ω(ūp)(t, x)dx + 1 > 0,

(17)

is a characterization of the control function ζ̄ on [0, T].

Remark 1. The switching function
∫

Ω(ūp)(t, x)dx + 1 considered in (17) depends of the optimal
control solution. However, we observe that it can rewritten in a more simply sense by getting precise
bounds of the controlled and adjoint systems. For instance, one way to get that is detailed below.
From Theorem 1, we have that ū is strictly positive and bounded on QT . To fix ideas, let us consider
the positive constants ūm and ūM such that 0 < um ≤ ū(x, t) ≤ uM on QT , i.e., we have the
bounds of

1 + ūm

∫
Ω

p(t, x)dx ≤ 1 +
∫

Ω
(ūp)(t, x)dx ≤ 1 + ūM

∫
Ω

p(t, x)dx on QT .

Then, if we were able to deduce upper and lower bounds for
∫

Ω p(t, x)dx, we would
rewrite (17).

3. Preliminaries

For completeness of the presentation, we recall some results related with the theory
of differential equations on Banach spaces, the Dubovitskii and Milyutin formalism and
differential calculus on Banach spaces.

Theorem 3 ([10], Theorem 2.1). Let X a Banach space; the linear operator A : D(A) ⊂ X be
the infinitesimal generator of a C0-semigroup of contractions on X; and F : [0, T]× X → X be
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a measurable function in t and Lipschitz in x ∈ X, uniformly with in t ∈ [0, T]. Then, for any
y0 ∈ X, the following Cauchy problem

y′(t) = Ay(t) + F(t, y(t)), t ∈ [0, T], (18a)

y(0) = y0, (18b)

has a unique mild solution belong C([0, T]; X). Moreover, if X is a Hilbert space, A is a self-
adjoint dissipative operator on X, y0 ∈ D(A), the mild solution is a strong solution and is belong
W1,2([0, T]; X).

To introduce the results of the differential calculus on Banach Spaces, we consider
the normed vector spaces X and Y, U a neighborhood of x0 ∈ X, and F : U ⊂ X → Y an
application, for more details we refer to the book of Brezis [29].

Definition 1. We say that F has a derivative in the direction h ∈ X at x0 if there exists the Y-limit

lim
ε→0+

F(x0 + εh)− F(x0)

ε
:= F′(x0, h) ∈ Y.

Definition 2. The first variation of the application F at x0 is the application δF(x0, ·) : X → Y
defined by δF(x0, h) = F′(x0, h) when F′(x0, h) exists for all h ∈ X.

Definition 3. Let us denote by Λ ∈ L(X, Y) the space of linear continuous operators from X to Y.
Consider that there exists Λ ∈ L(X, Y) satisfying the relation δF(x0, h) = Λh. We call to Λ the
Gâteaux derivative of F at x0 and is appropriately denoted by F′G(x0). Then, F′G(x0) ∈ L(X, Y)
satisfies the relation F(x0 + εh) = F(x0) + εF′G(x0)h + o(ε) when ε ↓ 0 for each h ∈ X.

Definition 4. Consider that F satisfy the following relation

F(x0 + h) = F(x0) + Λh + α(h)‖h‖X , for Λ ∈ L(X, Y) and lim‖h‖X→0 ‖α(h)‖Y = ‖α(0)‖Y = 0

at some neighborhood of x0. Then the application F is called Fréchet differentiable at x0 and Λ,
usually denoted by F′(x0), is called the Fréchet derivative (or only the derivative) of the application
F in x0.

Definition 5. The application F is called strictly differentiable at x0 if there exists the operator
Λ ∈ L(X, Y) such that

∀ε > 0, ∃δ > 0 : ‖F(x1)− F(x2)−Λ(x1 − x2)‖ ≤ ε‖x1 − x2‖,

for all x1, x2 ∈ X satisfying the restrictions ‖x1 − x0‖ ≤ δ and ‖x2 − x0‖ ≤ δ.

Remark 2. If F is an application which is Gâteaux differentiable for each x ∈ U and also x ∈
U 7→ F′G(x) ∈ L(X, Y) is a continuous application in x0, then F is strictly differentiable in U.

The terminology and results related with the Dubovitskii and Milyutin formalism
are presented below, for major details consult [30,31]. Firstly, we consider the generic
optimization problem

min
x∈Q

J(x), Q =
n+1⋂
i=1

Qi,

int(Qi) 6= ∅, i = 1, . . . , n, (inequality restrictions)
Qn+1 = {x ∈ X : M(x) = 0}, (equality restriction)

 (19)

where J from X to R is a functional and M from X to Y is an operator, with X and Y
Banach spaces.
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Definition 6. The vector h belong the Banach space X is said a descent direction of the functional
J : X → R at x0 ∈ X if there is a neighborhood U of h and α = α(J, x0, h) > 0 such that the
inequality J(x0 + εh) ≤ J(x0)− εα is satisfied for all ε ∈ (0, ε0) and for any h ∈ U. Additionally,
we said that the functional J is regularly decreasing at x0 ∈ X if the set of all descent directions at
x0 is a convex set.

Definition 7. Let h belong the Banach space X and Qi with int(Qi) 6= ∅ the set defining the i-th
inequality restriction. The vector h is said a feasible direction at x0 ∈ X if x0 + εh ∈ Qi for all
ε ∈ (0, ε0) and for any h ∈ U with U of a neighborhood of h. Additionally, the inequality restriction
set Qi is called regular at x0 ∈ X if the set of all feasible directions on Qi at x0 is a convex set.

Definition 8. Let h belong the Banach space X and Qi with int(Qi) 6= ∅ the set defining the i-th
inequality restriction. The vector h is said a tangent direction at x0 for Qi if for each ε ∈ (0, ε0)
there is x(ε) ∈ Qi such that x(ε) = x0 + εh + r(ε), r(ε) ∈ X for some neighborhood U of zero,
[r(ε)]−1 ∈ U for any ε > 0 small enough, or equivalently ‖r(ε)‖ = o(ε). Additionally, if the the
set of all possible tangent directions is a vectorial subspace it is said a tangent space, and also the
inequality restriction Qi is called regular at x0 if the set of all possible tangent directions for Qi at
x0 define a convex set.

Definition 9. A set K ⊂ X, with X a real Banach space, is said a cone with vertex at zero if
λx ∈ K for all λ > 0 and x ∈ K. Moreover, we call the dual cone for K to the set denoted by K∗

and defined as follows K∗ =
{

ϕ ∈ X∗ ; ϕ(x) ≥ 0, ∀x ∈ K
}

.

Proposition 1. The descent, feasible and tangent directions generate cones with vertex at zero.
Moreover, the cones generated by the descent and feasible directions are open sets.

Theorem 4 (Dubovitskii and Milyutin theorem). Consider the optimization problem (19).
Assume that J has a local minimum at x0 ∈ Q =

⋂n+1
i=1 Qi, J is regularly decreasing at x0,

with descent directions cone K0, Qi, i = 1, ..., n, are regular at x0, with feasible directions cone Ki,
and Qn+1 is regular at x0, with tangent directions cone Kn+1. Then, there exist n + 1 continuous
linear functionals Gi ∈ K∗i , not all identically zero, such that

n+1

∑
i=1

Gi = 0.

Theorem 5 ([32]). (Lyuternik theorem) Let X and Z be real Banach spaces with norms ‖ · ‖X and
‖ · ‖Z, respectively; H : X → Z a given mapping; and S := {x ∈ X : H(x) = 0}. If H satisfy
the following assumptions: h is Fréchet differentiable on a neighborhood of x, H′(·) be continuous
on x, and H′(x) be surjective, then {x ∈ X : H′(x)(x) = 0} ⊂ T(S , x).

4. Proofs of Main Results
4.1. Proof of Theorem 1

We observe that we can rewrite the system (2) as the Cauchy problem (18) in the the
Hilbert space X = L2(Ω)3 by introducing the notation

y = (u, v, w); D(A) = U0; the linear operator A : D(A) ⊂ X → X is defined by
Ay = (d1∆u, d2∆v, 0); the components of F := F(t, y(t)) from [0, T]× X to X are
f1 = α1u− β1 f (u, v) + γ1g(u, w)− ζu, f2 = −α2u + β2 f (u, v), f3 = α3w− γ3g(u, w);

D(F) =
{

y ∈ X : F(t, y(t)) ∈ X, ∀t ∈ [0, T]
}

; y0 = (u0, v0, w0).

 (20)

However, we cannot directly apply the Theorem 1 since F does not satisfies the
Lipschitz condition. Then, to study the existence and uniqueness for (18) for the particular
case of functions and spaces given in (20), we proceed in three steps: we prove the existence
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and uniqueness of a positive local solution, we prove that the local solution is a global
solution, and we deduce the estimates (10)–(12).

Step 1: Local solutions via a truncated problem. Let us consider the truncated Cauchy
problem

y′N(t) = AyN(t) + FN(t, yN(t)), t ∈ [0, T], (21a)

yN(0) = y0, (21b)

where N > 0 and

FN(t, yN(t)) =


F(t, y(t)), y(t) ∈ [−N, N]3,
F(t, N), y(t) ∈ [N, ∞]3,
F(t,−N), y(t) ∈ [−∞,−N]3,

with N = (N, N, N).

We observe that the Assumption 4 implies that FN satisfies the Lipschitz hypothesis
required by Theorem 3. Then we can deduce that the Cauchy problem (21) has a unique
strong solution belong W1,2([0, T]; X).

We prove that the solution of (21) is bounded as follows. Let us consider the uncoupled
Cauchy problems

Y±′N(t) = AY±N(t) + FN(t, yN(t))±M, t ∈ [0, T], (22a)

Y±N(0) = y0 ± ŷ0, (22b)

where

ŷ0 =
(
‖u0‖L∞(Ω), ‖v0‖L∞(Ω), ‖w0‖L∞(Ω)

)
, M = (M, M, M) with M = max{‖FN‖L∞(R2), ‖y0‖L∞(QT)

}.

The strong solution of (22) satisfy the relation

Y±N(t) = eAt(y0 ± ŷ0) +
∫ t

0

[
eA(t−s)

(
FN(s, yN(s))±M

)]
ds. (23)

Using the definition of M and ŷ0, we deduce that each component of y0 − ŷ0 and
FN(s, yN(s)) −M for any s ∈ [0, T] are negative. Then, from (23) we have that each
component of Y−N(t) is negative on [0, T]. Analogously, we can prove that each component
of Y+

N(t) is positive on [0, T] as consequence of the facts that each components of y0 + ŷ0
and FN(s, yN(s)) + M are positive for any s ∈ [0, T]. Thus, noticing that Y±N(t, x) =
yN(t, x)±Mt± ŷ0 are solutions of (22), we can deduce the bound

‖yN(t, ·)‖L∞(Ω) ≤ Mt + ‖u0‖L∞(Ω), t ∈ [0, T]. (24)

Then, yN ∈ L∞(QT) and the upper bound is MT + ‖u0‖L∞(Ω) which clearly does not
depends of N.

On the other hand, we observe that yN satisfy the system

∂tyN(t, x) = diag(d1, d2, 0)∆yN(t, x) + FN(t, yN(t, x)), in QT , (25a)

∇yN,1 · ν = ∇yN,2 · ν = 0, on Σ, (25b)

yN(0, x) = y0(x), in Ω. (25c)

Let us consider y>N and y⊥N defined by y>N,i(t, x) = sup{yN,i(t, x), 0} and y⊥N,i(t, x) =
− inf{yN,i(t, x), 0} for i = 1, 2, 3, such that yN = y>N − y⊥N . Testing (25a) by y⊥N , integrating
by parts on [0, t]×Ω, and using the boundary conditions (25b), we have that
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∫
Ω
|y⊥N,i(s, x)|2

∣∣∣s=t

s=0
dx = −di

∫ t

0

∫
Ω
|∇y⊥N,i(s, x)|2dxds +

∫ t

0

∫
Ω

FN,i(s, yN(s, x))y⊥N,i(s, x)dxds, i = 1, 2∫
Ω
|y⊥N,3(s, x)|2

∣∣∣s=t

s=0
dx =

∫ t

0

∫
Ω

FN,3(t, yN(s, x))y⊥N,3(t, x)dxds.

Now, using the Hypotheses (A2), (A3) and (A4), we deduce the following bounds∫
Ω
|y⊥N,i(x, t)|2dx ≤ Ci

∫ t

0

∫
Ω
|y⊥N,i(x, t)|2dx, i = 1, 2, 3,

for some positive constants Ci, i = 1, 2, 3. Then, by application of the integral form of
Gronwall’s inequality, we have that

∫
Ω |y

⊥
N,i(x, t)|2dx ≤ 0 for i = 1, 2, 3, i.e., y⊥N(x, t) = 0

on [0, t] × Ω or yN,i = y>N,i ≥ 0, i = 1, 2, 3 on [0, t] × Ω. Thus, from the arbitrariness
of t ∈ [0, T] and the fact that the components of y0 are positive on Ω, we get that the
components of yN are strictly positive on QT .

To conclude the step 1, we deduce the existence and uniqueness of a positive local
solution of (2) as follows. We observe that, if we select N > 2‖y0‖L∞(Ω), we get that
Mθ + ‖y0‖L∞(Ω) ≤ N/2 for some θ ∈ [0, T]. Now, from the estimate (24) we deduce that
|yN,i(x, t)| ≤ N on [0, θ]×Ω for i = 1, 2, 3. Then, from the definition of FN we have that
FN = F for t ∈]0, θ[ and yN is a solution of (2) on [0, θ]×Ω.

Step 2: The local solution is a global solution. To prove that the local solution yN on [0, θ]×Ω
is a global solution it suffices to prove that yN is bounded on [0, θ]×Ω. Indeed,
from (2c), the positivity of u, v on QT deduced on Step 1 together with the pos-
itivity of g on R2

+ given by Assumption 4, the strictly positivity of α3 assumed
in Assumption 2, and the fact that and w0 is strictly positive on Ω (considered on
Assumption 3), we deduce that 0 < w(t, x) ≤ w0(x) exp(α3t) for (x, t) ∈ QT . Then,
w ∈ L∞((0, θ)×Ω).

On the other hand, from (2a) and (2b) and Assumption 4, we have that 0 < u(t, x) <
û(t, x) and 0 < v(t, x) < v̂(t, x) on [0, θ]×Ω with (û, v̂) solution of the following uncou-
pled system

∂tû− d1∆û = α1û, in (0, θ)×Ω, (26)

∂tv̂− d2∆v̂ = −α2v̂, in (0, θ)×Ω, (27)

∇û · ν = ∇v̂ · ν = 0, on (0, θ)× ∂Ω, (28)

(û, v̂)(0, x) = (u0, v0)(x), in Ω. (29)

Then, we deduce that u, v ∈ L∞((0, θ) × Ω) since û, v̂ ∈ L∞((0, θ) × Ω). We fol-
low that u, v, w are defined on QT and are such that u, v, and w are positive on QT ,
(u, v, w) ∈ L∞(QT)

3 ∩W1,2(0, T; L2(Ω))3. and (u, v) is belong L2(0, T; H2(Ω))2. Thus, we
can deduce (9).

Step 3: Estimates (10)–(12). Squaring both sides of (2a) and applying an integration by
parts on (0, t)×Ω, we get∫ t

0

∫
Ω

(
α1u− β1 f (u, v) + γ1g(u, w)− ζu

)2
dxds =

∫ t

0

∫
Ω

(
∂tu− d1∆u

)2
dxds

=
∫ t

0

∫
Ω
|∂tu|2dxds + d2

1

∫ t

0

∫
Ω
|∆u|2dxds− 2d1

∫ t

0

∫
Ω

∂tu∆udxds

=
∫ t

0

∫
Ω
|∂tu|2dxds + d2

1

∫ t

0

∫
Ω
|∆u|2dxds + d1

∫ t

0

∫
Ω

∂t

(
|∆u|2

)
dxds

=
∫ t

0

∫
Ω
|∂tu|2dxds + d2

1

∫ t

0

∫
Ω
|∆u|2dxds + d1

∫
Ω
|∆u|2dx− d1

∫
Ω
|∆u0|2dx.
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Then using the fact that u, v are bounded and positive and the Assumptions 3–5, we
follow the estimate (10). The estimates (11) and (12) can be proved by similar arguments,
starting from (2b) and (2c), respectively.

4.2. Proof of Lemma 1

Proof of item (a). From definition of J given in (4), we deduce that J is linear and conse-
quently we get

J′(u, v, w, ζ)(û, v̂, ŵ, ζ̂) =
∫

QT

û(t, x)dtdx−
∫

QT

ŵ(t, x)dtdx +
∫ T

0
ζ̂(t)dt.

We notice that J′ is a convex and continuous operator. Then from ([30], Theorem 7.3),
we get that J is regularly decreasing for all (û, v̂, ŵ, ζ̂) ∈ E and the set

K0 =
{
(û, v̂, ŵ, ζ̂) ∈ E : J′(u, v, w, ζ)(û, v̂, ŵ, ζ̂) < 0

}
=
{
(û, v̂, ŵ, ζ̂) ∈ E :

∫
QT

û(t, x)dtdx−
∫

QT

ŵ(t, x)dtdx +
∫ T

0
ζ̂(t)dt

}
is the descent cone for J. Moreover, from result of ([30], pp. 69) we obtain that the set

K∗0 = {−λJ′(u, v, w, ζ) : λ ≥ 0}

is the dual dual cone of K0.

Proof of item (b). Using the definition of M given on (7) and (8), the system (13), and
simplifying, we deduce the following relation

1
k

[
M(u + kû, v + kv̂, w + kŵ, ζ + kζ̂)−M(u, v, w, ζ)

]
− (ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5, ψ̂6)

=

(
∂tû− d1∆û− α1û +

β1

k

[
f (u + kû, v + kv̂)− f (u, v)

]
− γ1

k

[
g(u + kû, w + kŵ)− g(u, w)

]
− ζû− ζ̂u− kζ̂û, ∂tv̂− d2∆v̂ + α2v̂− β2

k

[
f (u + kû, v + kv̂)− f (u, v)

]
,

∂tŵ− α3ŵ +
γ3

k

[
g(u + kû, w + kŵ)− g(u, w)

]
, û(0, ·), v̂(0, ·), ŵ(0, ·)

)
−
(

∂tû− d1∆û− α1û + β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
− γ1

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
− ζû− ζ̂u, ∂tv̂− d2∆v̂ + α2v̂− β2

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
,

∂tŵ− α3ŵ + γ3

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
, û(0, ·), v̂(0, ·), ŵ(0, ·)

)
=

(
β1

k

[
f (u + kû, v + kv̂)− f (u, v)

]
− γ1

k

[
g(u + kû, w + kŵ)− g(u, w)

]
− β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
+ γ1

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
+ kζ̂û,

β1

k

[
f (u + kû, v + kv̂)− f (u, v)

]
− β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
,

γ1

k

[
g(u + kû, w + kŵ)− g(u, w)

]
− γ1

[
∂1g(u, w)û + ∂2 f (u, w)ŵ

]
, 0, 0, 0

)
.

Here, we notice that

β1

k

[
f (u + kû, v + kv̂)− f (u, v)

]
− β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
= β1

{[
f (u + kû, v + kv̂)− f (u, v + kv̂)

u + kû− u

][
u + kû− u

k

]
− ∂1 f (u, v)û

}
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+ β1

{[
f (u, v + kv̂)− f (u, v)

v + kv̂− v

][
v + kv̂− v

k

]
− ∂2 f (u, v)v̂

}
= β1

{[
f (u + kû, v + kv̂)− f (u, v + kv̂)

u + kû− u

]
− ∂1 f (u, v)

}
û

+ β1

{[
f (u, v + kv̂)− f (u, v)

v + kv̂− v

]
− ∂2 f (u, v)

}
v̂

and similarly

γ1

k

[
g(u + kû, v + kŵ)− g(u, w)

]
− γ1

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
= γ1

{[
g(u + kû, w + kŵ)− g(u, w + kŵ)

u + kû− u

]
− ∂1g(u, w)

}
û

+ γ1

{[
g(u, w + kŵ)− g(u, w)

w + kŵ− w

]
− ∂2g(u, w)

}
ŵ.

Consequently, we can deduce that

lim
k→0+

∥∥∥∥∥M(u + kû, v + kv̂, w + kŵ, ζ + kζ̂)−M(u, v, w, ζ)

k
− (ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5, ψ̂6)

∥∥∥∥∥
Ẽ

= 0,

and conclude the proof of item (b).

Proof of item (c). To prove that the operator M′(u, v, w, ζ) is surjective, we notice that the
system (13) can rewritten as an abstract Cauchy problem of the form (18) with X = L2(Ω)3

and

y = (û, v̂, ŵ); D(A) = U0; the linear operator A : D(A) ⊂ X → X is defined by
Ay = (d1∆û, d2∆v̂, 0); the components of F := F(t, y(t)) from [0, T]× X to X are

f1 = α1û− β1

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
+ γ1

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
− ζû− ζ̂u + ψ̂1,

f2 = −α2v̂ + β2

[
∂1 f (u, v)û + ∂2 f (u, v)v̂

]
+ ψ̂2,

f3 = α3ŵ− γ3

[
∂1g(u, w)û + ∂2g(u, w)ŵ

]
+ ψ̂3;

D(F) =
{

y ∈ X : F(t, y(t)) ∈ X, ∀t ∈ [0, T]
}

; y0 = (ψ̂4, ψ̂5, ψ̂6).


(30)

We notice that the relations ∇ψ̃4 · ν = ∇z1 · ν = 0, ∇ψ̃5 · ν = ∇z2 · ν = 0, and
the inclusion L∞(Ω) ⊂ L2(Ω), imply that (ψ̃4, ψ̃5, ψ̃6) ∈ (L∞(Q))3 and consequently we
get that y0 ∈ D(A); ζ ∈ L2(0, t) implies that ζ ∈ Z ; and also A and F satisfy that the
hypotheses of Theorem 1. Then, we can deduce that the system (13) has a unique (global)
strong solution belong to W1,2(0, T; L2(Ω)3) such that

(û, v̂, ŵ) ∈
[

L2(0, T; H2(Ω)) ∩ L∞(0, T; H1(Ω))
]2
× L∞(0, T; H1(Ω)) (31)

‖∂tû‖L2(QT)
+ ‖û‖L2(0,T;H2(Ω)) + ‖u(t, ·)‖H1(Ω) + ‖û‖L∞(QT)

≤ C, (32)

‖∂tv̂‖L2(Q) + ‖v̂‖L2(0,T;H2(Ω)) + ‖v̂(t, ·)‖H1(Ω) + ‖v̂‖L∞(QT)
≤ C, (33)

‖∂tŵ‖L2(QT)
+ ‖ŵ(t, ·)‖L2(Ω) + ‖ŵ‖L∞(QT)

≤ C, (34)

for a. a. t ∈ [0, T] and for some generic positive constant C (independent of (û, v̂, ŵ),
(u, v, w), ζ̂ and ζ). Hence M′(u, v, w, ζ) is surjective.

To prove that the application M(·, ·, ·, ·) is strictly differentiable is sufficient to verify
that the function (u, v, w, ζ) 7→ M′(u, v, w, ζ) is continuous or equivalently that it will
suffice to prove that M′(u, v, w, ζ) is bounded in E?, since M′(u, v, w, ζ) is linear. From (13),
we get
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‖ψ̃1‖L2(QT)
≤‖∂tû‖L2(QT)

+ d1‖∆û‖L2(QT)
+ α1‖û‖L2(QT)

+ β1

[
‖∂1 f (u, v)

∥∥∥
L∞(QT)

‖û
∥∥∥

L2(QT)

+‖∂2 f (u, v)
∥∥∥

L∞(QT)
‖v̂
∥∥∥

L2(QT)

]
+ γ1

[
‖∂1g(u, w)

∥∥∥
L∞(QT)

‖û
∥∥∥

L2(QT)

+‖∂2 f (u, w)
∥∥∥

L∞(QT)
‖ŵ
∥∥∥

L2(QT)

]
+ ‖ζ‖L2(QT)

‖û‖L∞(QT)
+ ‖ζ̂‖L∞(QT)

‖u‖L2(QT)
,

‖ψ̃2‖L2(QT)
≤‖∂tv̂‖L2(QT)

+ d2‖∆v̂‖L2(QT)
+ α2‖v̂‖L2(QT)

+ β2

[
‖∂1 f (u, v)

∥∥∥
L∞(QT)

‖û
∥∥∥

L2(QT)
+ ‖∂2 f (u, v)

∥∥∥
L∞(QT)

‖v̂
∥∥∥

L2(QT)

]
,

‖ψ̃3‖L2(QT)
≤‖∂tŵ‖L2(QT)

+ γ3

[
‖∂1g(u, w)

∥∥∥
L∞(QT)

‖û
∥∥∥

L2(QT)
+ ‖∂2g(u, w)

∥∥∥
L∞(QT)

‖ŵ
∥∥∥

L2(QT)

]
,

which implies that ‖ψ̃i‖L2(QT)
for i = 1, 2, 3 are bounded by application of estimates

(10)–(12) and (32)–(34). Then, by using the norm of E? we have that

∥∥∥M′(u, v, w, ζ)(û, v̂, ŵ, ζ̂)
∥∥∥

E?
= ‖(ψ̃1, · · ·, ψ̃6)‖E? =

3

∑
i=1
‖ψ̃i‖L2(Q) +

6

∑
i=4
‖ψ̃i‖L∞(Q) ≤ C.

Therefore M′(u, v, w, ζ) is bounded in E? and thus the proof is complete.

Proof of item (d). From Lemma 1-(b), we have that the application M is is Gâteaux differen-
tiable and in a neighborhood of (û, v̂, ŵ, ζ̂) and by Lemma 1-(c) we have that M′(û, v̂, ŵ, ζ̂)
is continuous in a neighborhood of (û, v̂, ŵ, f̂ ) and surjective. Consequently, the hypothesis
of Theorem 5 are satisfied and the tangent cone to D at (u, v, w, ζ) is the kernel of the
differential operator M′(u, v, w, ζ) given on (14). Moreover, by linear algebra result we
deduce that TC(D, u, v, w, ζ) is a vector space, since the kernel of a linear operator is a
vector space. Now, the proof of (15) is deduced by the definition.

4.3. Proof of Theorem 2

Proof of item (a). We can develop the proof of existence of at least one solution (u, v, w, ζ)
for the optimization problem (6) via the standard method of minimizing sequences. Let us
consider that {(un, vn, wn, ζn)}n∈N a sequence in D, such that

∂tun − d1∆un = α1un − β1 f (un, vn) + γ1g(un, wn)− ζnun, in QT , (35a)

∂tvn − d2∆vn = −α2vn + β2 f (un, vn), in QT , (35b)

∂twn = α3wn − γ3g(un, wn), in QT , (35c)

∇un · ν = ∇vn · ν = 0, on ΣT , (35d)

(un, vn, wn)(0, x) = (u0, v0, w0)(x), in Ω. (35e)

From application of Theorem 1 we deduce the following bounds

‖∂tun‖L2(QT)
≤ C, ‖∂tvn‖L2(QT)

≤ C, ‖∂twn‖L2(QT)
≤ C,

‖u(t, ·)‖H1(Ω) ≤ C, ‖v(t, ·)‖H1(Ω) ≤ C, ‖w(t, ·)‖L2(Ω) ≤ C
‖v‖L2(0,T;H2(Ω)) ≤ C ‖v‖L2(0,T;H2(Ω)) ≤ C ‖w‖L2(0,T;H2(Ω)) ≤ C

 (36)

for a. a. t ∈ [0, T] and for some generic positive constant C (independent of un, vn, wn, ζn

and n). We observe that the sequence {(un, vn, wn)}n∈N is uniformly bounded in W1,2(0, T;
L2(Ω)3)3 and in C([0, T]; L2(Ω))3.

The compactness of {(un, vn, wn)(t, ·)}n∈N in L2(Ω) for any t ∈ [0, T] is proved as
follows. From (35c) we deduce that
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∫
Ω
|wn(t, x)|2dx =

∫
Ω
|w0(x)|2dx + 2

∫ t

0

∫
Ω

[
α3wn(τ, x)− γ3g(un(τ, x), wn(t, x))

]
wn(τ, x)dxdτ,

for any t ∈ [0, T], which implies that there is C > 0 such that∣∣∣∣∫Ω
|wn(t, x)|2dx−

∫
Ω
|wn(s, x)|2dx

∣∣∣∣ ≤ C|t− s|, ∀t, s ∈ [0, T].

Then by the Ascoli-Arzela Theorem there is at least one subsequence of wn (also
labeled by n) and there are w such that wn → w in L2(Ω) uniformly in t ∈ [0, T]. Now,
from the compact embedding of H1(Ω) in L2(Ω), we deduce that {(un, vn)(t, ·)}n∈N is
compact in L2(Ω)2 for any t ∈ [0, T]. Then by the Ascoli-Arzela Theorem {(un, vn)}n∈N is
compact in C([0, T]; L2(Ω)) and there is at least one subsequence of (un, vn) (also labeled
by n) and there are (u, v) such that (un, vn) → (u, v) in L2(Ω) uniformly in t ∈ [0, T].
Hence, we have that there is subsequence {(un, vn, wn, ζn)}n∈N ⊂ D (also labeled by n)
and there is (u, v, w, ζ) ∈ D, such that

ζn ⇀ ζ weakly in L2([0, T]),

(un, vn, wn) ⇀ (u, v, w) weakly in W1,2(0, T; L2(Ω)3)3,

(un, vn, wn)→ (u, v, w) strongly in L2(Ω)3 uniformly in t ∈ [0, T].

We notice that ζ ∈ Z and by the convergence properties of the sequence (un, vn, wn),
we can take the limits in the system (35) and deduce that (u, v, w, ζ) satisfy a system
associated with ζ̂. Using the lower semi-continuity of cost functional we deduce that

J(u, v, w, f̂ ) ≤ lim
n→∞

inf J(un, vn, wn, f n).

Thus, (u, v, w, f̂ ) ∈ D is a solution of the problem (6).

Proof of item (b). Let us consider the change of variable s = T− t and `∗(x, s) = `(x, T− s)
for (x, s) ∈ Q and ` ∈ p, q, r, ū, v̄, w̄. Then, we have that (p, q, r) is solution of (16) if and
only if (p∗, q∗, r∗) is solution of the following system

∂t p∗ − d1∆p∗ =
[
α1 − β1∂1 f (ū∗, v̄∗) + γ1∂1g(ū∗, w̄∗)− ζ̄

]
p∗

+ β2∂1 f (ū∗, v̄∗)q∗ − γ3∂1g(ū∗, w̄∗)r∗ + 1, in QT , (37a)

∂tq∗ − d2∆q∗ = −β1∂2 f (ū∗, v̄∗)p∗ −
(

α2 − β2∂2 f (ū∗, v̄∗)
)

q∗, in QT , (37b)

∂tr∗ = γ1∂2g(ū∗, w̄∗)p∗ +
(

α3 − γ3∂2g(ū∗, w̄∗)
)

r∗ − 1, in QT , (37c)

∇p∗ · ν = ∇q∗ · ν = 0, on ΣT , (37d)

(p∗, q∗, r∗)(0, x) = 0, in Ω. (37e)

We observe that the system (37) as the Cauchy problem (18) with X = L2(Ω)3 and by
considering that

y = (p∗, q∗, r∗); D(A) = U0; the linear operator A : D(A) ⊂ X → X is defined by
Ay = (d1∆p∗, d2∆q∗, 0); the components of F := F(t, y(t)) from [0, T]× X to X are

f1 =
[
α1 − β1∂1 f (ū∗, v̄∗) + γ1∂1g(ū∗, w̄∗)− ζ̄

]
p∗ + β2∂1 f (ū∗, v̄∗)q∗ − γ3∂1g(ū∗, w̄∗)r∗ + 1,

f2 = −β1∂2 f (ū∗, v̄∗)p∗ −
(

α2 − β2∂2 f (ū∗, v̄∗)
)

q∗,

f3 = γ1∂2g(ū∗, w̄∗)p∗ +
(

α3 − γ3∂2g(ū∗, w̄∗)
)

r∗ − 1,

D(F) =
{

y ∈ X : F(t, y(t)) ∈ X, ∀t ∈ [0, T]
}

; y0 = (0, 0, 0).
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Thus, we conclude the proof by application of Theorem 1.

Proof of item (c). If (ū, v̄, w̄, ζ̄) is a solution of problem (6), we deduce that

DC(J, (ū, v̄, w̄, ζ̄)) ∩ TC(D, (ū, v̄, w̄, ζ̄)) = ∅.

Then by Theorem 4, we have follow the existence of two continuous functionals G1 ∈
[DC(J)]∗ and G2 ∈ [TC(D)]∗, not both identically zero, satisfying the Euler–Lagrange equation

G1 + G2 = 0. (38)

Now, in order to prove the relation (17) we consider arbitrarily ζ ′ ∈ Z and assume
that (u′, v′, w′, ζ ′) is a solution of the following system

∂tu′ − d1∆u′ =
[
α1 − β1∂1 f (ū, v̄) + γ1∂1g(ū, w̄)− ζ̄

]
u′

− β2∂2 f (ū, v̄)v′ + γ1∂2g(ū, w̄)w′ − ζ ′ū, in QT , (39a)

∂tv′ − d2∆v′ =β2∂1 f (ū, v̄)u′ −
[
α2 − ∂2 f (ū, v̄)

]
v′, in QT , (39b)

∂tw′ =− γ3∂1g(ū, w̄)u′ +
[
α3 − γ3∂2g(ū, w̄)

]
w′, in QT , (39c)

∇u′ · ν =∇v′ · ν = 0, on ΣT , (39d)

(u′, v′, w′)(0, x) =(0, 0, 0), in Ω. (39e)

The existence of solutions of (39) can be developed similarly to the system (37). From
Lemma 1, we follow that (u′, v′, w′, ζ ′) ∈ TC(D, (ū, v̄, w̄, ζ̄))) and consequently G2(u′, v′, w′,
ζ ′) = 0. Now, from (38) and some λ ≥ 0, we follow that

0 = G1(u′, v′, w′, ζ ′) = λ
∫∫

QT

u′(t, x)dtdx− λ
∫∫

QT

w′(t, x)dtdx + λ
∫∫ T

0
ζ ′(t)dt. (40)

We note that λ 6= 0, since if we assume that λ = 0, we have that G1 = 0 and from (38)
we deduce that G2 = 0, which is a contradiction with the fact deduced by Theorem 4: there
exist continuous functionals G1 ∈ [DC(J)]∗ and G2 ∈ [TC(D)]∗, not both identically zero.
Then, from (40) we get∫∫

QT

u′(t, x)dtdx−
∫∫

QT

w′(t, x)dtdx +
∫ T

0
ζ ′(t)dt = 0, (41)

by dividing by λ and also without loss of generality we can fix λ = 1.
On the other hand, by multiplying the first, second, and third equations of system (16)

by u′, v′ and w′ respectively and integrating by parts over QT , we obtain∫∫
QT

{[
∂tu′ − d1∆u′ −

[
α1 − β1∂1 f (ū, v̄) + γ1∂1g(ū, w̄)− ζ̄

]
u′
]

p

− β2∂1 f (ū, v̄)qu′ + γ3∂1g(ū, w̄)ru′ + u′
}

dxdt = 0, (42)∫∫
QT

{[
∂tv′ − d2∆v′ +

(
α2 − β2∂2 f (ū, v̄)

)
v′
]
q + β1∂2 f (ū, v̄)pv′

}
dxdt = 0, (43)∫∫

QT

{[
∂tw′ −

(
α3 − γ3∂2g(ū, w̄)

)
w′
]
r− γ1∂2g(ū, w̄)pw′ − w′

}
dxdt = 0. (44)

Now, adding (42)–(44) and rearranging terms, we obtain∫∫
QT

{[
∂tu′ − d1∆u′ −

[
α1 − β1∂1 f (ū, v̄) + γ1∂1g(ū, w̄)− ζ̄

]
u′ + β1∂2 f (ū, v̄)v′ − γ1∂2g(ū, w̄)w′

]
p

+
[
∂tv′ − d2∆v′ +

(
α2 − β2∂2 f (ū, v̄)

)
v′ − β2∂1 f (ū, v̄)u′

]
q
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+
[
∂tw′ −

(
α3 − γ3∂2g(ū, w̄)

)
w′ + γ3∂1g(ū, w̄)u′

]
r + u′ − w′

}
dxdt = 0. (45)

Using (39) in (45),we obtain

−
∫∫

QT

(ζ ′ūp)(t, x)dxdt +
∫∫

QT

(u′ − w′)(t, x)dxdt = 0 (46)

Comparing (46) with (41) we deduce that∫ T

0
ζ ′(t)

[
1 +

∫
Ω
(ūp)(t, x)dx

]
dt ≥ 0. (47)

Since ζ ′ is arbitrary, we can chose ζ ′ = ζ − ζ̄ with ζ ∈ Z . Then (47) becomes∫ T

0

[
ζ(t)− ζ̄(t)

][
1 +

∫
Ω
(ūp)(t, x)dx

]
dt ≥ 0, ∀ζ ∈ Z . (48)

If we assume that 1+
∫

Ω(ūp)(t, x)dx > 0, the inequality (48) implies the relation ζ(t) ≥
ζ̄(t) on [0, T] for all ζ ∈ Z . Similarly, starting by considering that 1 +

∫
Ω(ūp)(t, x)dx < 0,

from (48) we deduce that ζ(t) ≤ ζ̄(t) on [0, T] for all ζ ∈ Z . Thus, from a definition of
the set Z , we deduce that ζ̄(t) = 0 on [0, T] when 1 +

∫
Ω(ūp)(t, x)dx > 0 and ζ̄(t) = 1 on

[0, T] when 1 +
∫

Ω(ūp)(t, x)dx > 0. Hence, the optimal control ζ̄ can be expressed by the
expression on (17). This completes the proof.

5. Conclusions and Future Work

This paper presents a the application of Dubovitskii and Milyutin formalism to study a
control problem for a reaction-diffusion system arising in the competency of three species in
a bounded ecosystem. The control problem is reformulated as an optimal control problem
by incorporating a cost functional which maximizes the total density of beneficial species
to the ecosystem and minimizes the pests and the exposition to the human intervention by
incorporation of some substances to control pests. The main assumptions considered in
order to deduce the results are the following: the ecosystem is modeled by a set which is
bounded and has sufficiently smooth boundaries, the coefficients and initial conditions are
strictly positive, the initial conditions satisfies a consistent relationship with the boundary
conditions, the functions modelling the interaction of species are assumed positive and
locally Lipschitz, and the admissible control set is assumed to be the square integrable
functions. The main results obtained in the paper are: (i) the existence of a strictly positive
global solution for controlled system which is deduced by using the theory of differential
equations on Banach spaces; (ii) the construction of descent and dual cones of cost function
and the differentiability of the operator defining the restriction set of the optimization
problem is based on the application of differential calculus on Banach spaces; (iii) the
existence of of at least one optimal control solution; (iv) the existence of solutions for the
adjoint system; and (v) a characterization of control function by a function of “bang-bang”
type with the switching function depending of the controlled and adjoint systems.

In our future work, we plan to extend the present research in at least three ways as
follows. First, we plan to study other cost functions, for instance the incorporation of obser-
vations and/or attainable states in the L2-norm. Second, we will study the construction
of some explicit bounds for the controlled and adjoint systems, such that the switching
function can be determined only in terms of coefficients, initial conditions and the geometry
of the ecosystem (see Remark 1). This is an important issue to be researched in order to
develop numerical simulations of the control problem without solving the optimization
problem. Thus, an another idea to study the switching function by follow similar ideas to
those given in [33]. Third, we plan to develop a numerical study of the optimal control
problem by applying a finite volume method and make some simulations of published
experimental results.
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