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Abstract: COVID-19 (otherwise known as coronavirus disease 2019) is a life-threatening pandemic
that has been combatted in various ways by the government, public health officials, and health
care providers. These interventions have been met with varying levels of success. Ultimately, we
question if the preventive efforts have reduced COVID-19 deaths in the United States. To address
this question, we analyze data pertaining to COVID-19 deaths drawn from the Centers for Disease
Control and Prevention (CDC). For this purpose, we employ incidence rate restricted Poisson (IRRP)
as an underlying analysis methodology and evaluate all preventive efforts utilized to attempt to
reduce COVID-19 deaths. Interpretations of analytic results and graphical visualizations are used
to emphasize our various findings. Much needed modifications of the public health policies with
respect to dealing with any future pandemics are compiled, critically assessed, and discussed.

Keywords: modeling; data analysis; assessment; effectiveness; incidence rate; restriction

1. Introduction

The worldwide spread of the novel severe acute respiratory syndrome coronavirus
2 (SARS-Cov-2), which causes the infectious coronavirus disease 2019 (COVID-19), has
resulted in millions of deaths around the world since the detection of the first COVID-19
case in Wuhan, China in December 2019 [1–4]. As of 22 July 2021, the Center for Sys-
tems Science and Engineering [2] at Johns Hopkins University reported over 192 million
COVID-19 confirmed cases and over 4.1 million deaths worldwide [2]. The United States
has been greatly affected by this pandemic with over 34.2 million infected individuals and
over 610,000 deaths [2]. Nationwide, a number of recommended efforts have been imple-
mented to contain the spread of the virus, such as frequent and thorough handwashing, no
face-touching, wearing of masks, home confinement, social distancing, local attitudes of
individuals, routine behaviors of those visiting bars to drink as a social interaction, staying
at home in times of delta variants, bans on social gatherings, thorough disinfection of
households and other facilities, testing, social distancing, contact tracing, and quarantining
those exposed to the virus.

This paper aims to assess how the state-level deaths due to COVID-19 correlate with
medical interventions and social distancing as restrictions by the states in the US, and how
important and timely are they. For this purpose, we select an appropriate underlying model
for the data. The selected model is the incidence rate restricted Poisson (IRRP) because the
death incidences are Poisson type but with constraints on them due to medical interventions
and social distancing factors. The strengths of these restrictive factors, in a collective sense,
can be associated with a reduction of the possible death rate range. Otherwise (that is
when the factors are weaker or non-existent), the possible domain death rate expands,
according to our selected model. More details follow after Equation (1) in the article. To use
simpler regression techniques, one needs pertinent data on potential covariates/predictors
related to COVID-19. Unfortunately, the COVID-19 database does not have information
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on covariates/predictors. Data for the United States about the number of people who
practice frequent and thorough handwashing, avoid face-touching, wear masks, comply
with home confinement, respect social distancing, as well as the data on individuals who
do not comply with Center for Disease Control (CDC) guidelines, especially for those who
contracted the virus are not available. The data collection is costly, time-consuming, and
in fact not advisable during the pandemic. Searching and selecting an appropriate model,
as done in this study is the only viable alternative to achieve our aim. The components
of the selected model are explained after Equation (1), later in the article. Furthermore,
the death rate due to COVID-19, the restriction level due to medical intervention, and the
social or preventive constraints are inter-relative with co-movement in a chain relationship
over the months, the Bayesian concept and its tools are quite fitting to extract and interpret
evidence from the data to capture the health dynamics in the United States. The prior
conjugate plays a vital role in the application of the Bayesian approach, as this is explained
with reasons and details later in the article centering on the methodology section.

Data have shown some variations in SARS-Cov-2 infection and death-related rates
across all affected 188 countries [2]. With respect to the United States, data have indicated
some variations across states as well as across counties within each state. The purpose
of this study is to assess the factors associated with virus containment (lower infection
rate) and lower COVID-19 death rate among counties in the United States. A recent study
concluded that “at a state level, in the US, the “Stay in Place” (SIP) order is effective at
decreasing the compound growth rate of COVID-19. The U.S. counties that have the largest
impact from a SIP order are ones with a large population or a high population/density” [5].
This study intends to compare the efforts taken by neighboring counties and assess if those
efforts significantly reduce the SARS-Cov-2 infection rate and COVID-19 death rate [5].
There is a need for a capability to aggregate state-level COVID-19 data into metropolitan
areas and display these data in an interactive dashboard that updates in real-time. The
purpose of this website https://coronavirus.jhu.edu/map.html (accessed on 1 July 2021)
should be to make this information more accessible to the public and to allow for a more
granular assessment of infection spread and impact [6].

2. Background Knowledge of COVID-19

SARS-Cov-2 spread was believed to have originated from animal-to-human transmis-
sion via bats, and then from human-to-human [7]. The virus spreads from human-to-human
via the saliva, nose secretion, or breath of the contaminated person. When the contami-
nated person talks, sings, coughs, or sneezes, the virus is expelled, spreads in the air, and
enters the mouth, eyes, or nose of other people, and/or land on objects and surfaces. Also,
the hands of the contaminated person may spread the virus if that person touches some
objects. Both symptomatic and asymptomatic individuals who are infected can spread
the virus [8]. COVID-19 symptoms include fever, dry cough, fatigue, nasal congestion,
headache, conjunctivitis, sore throat, diarrhea, loss of taste or smell, skin rash, and fingers
or toes discoloration. About 80% of infected individuals have mild symptoms and recover
without hospitalization. Those who become seriously ill develop respiratory distress and
require hospitalization [9].

Factors such as poverty, unemployment (socioeconomic status domain), crowded
housing, and vehicle access (housing and transportation domain) were associated with
increased COVID-19 diagnoses and deaths in urban areas [10,11]. About 33% of rural
counties are highly susceptible to COVID-19, driven by older and health-compromised
populations, and scarcity of health care facilities for the elderly. More precisely, the major
vulnerabilities of rural counties are associated with a physician shortage, a higher propor-
tion of individuals with a disability, and a larger uninsured population, compared with
urban counties. Although lack of a data network limits broadband services, the existence of
a cellular network still enables mobile health (mHealth, part of telemedicine) interventions
for preventive and other health services that exchange health information for improving
health outcomes through simple message service (SMS) [12,13]. Health enables communi-
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cation activities such as data storage, retrieval, and communication pertaining to patients’
healthy behaviors, choices, and medical diagnoses [12]. In addition, lack of social capital
and social services may also hinder recovery from the pandemic [13]. Data also indicated
some health disparities with regards to COVID-19 diagnoses and deaths. For instance,
nearly 20% of U.S. counties are disproportionately black, and yet, they accounted for 52%
of COVID-19 diagnoses and 58% of COVID-19 deaths nationally. State-level comparisons
can both inform COVID-19 responses and identify epidemic hot spots. Social conditions,
structural racism, and other factors may elevate the risk for COVID-19 diagnoses and
deaths in black communities [14].

Ongoing challenges to protect youth and family well-being and address workforce
needs following the pandemic include (a) addressing digital disparities and lack of ac-
cess to computer technology among families and providers; (b) addressing the need for
trauma-informed care and mental health services for youth and families; (c) providing
ongoing specialized well-being services to frontline providers and their families; (d) ad-
dressing the structural determinants of health among highly vulnerable families through
employment and eviction protections, housing provisions, healthcare access, and strength-
ening the safety net; and (e) ensuring that highly vulnerable youth do not fall through the
cracks given disruptions to services that many children in state systems disproportion-
ately rely upon. Despite these challenges, opportunities exist to harness the coordinated
efforts of state departments, agencies, community providers, and academic centers to
narrow—instead of widening—the equity gap so that children and families can emerge
from this pandemic stronger [15].

3. Methods
3.1. Data & Sample

Data for analysis and discussion in this article were collected from: https://data.cdc.
gov/NCHS/Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy website
(accessed on 1 July 2021). There is a total of 3195 counties in the United States. Among the
variables that exist in the database, we consider the state, the monthly number of deaths
from COVID-19 from March 2020 till June 2021. We computed the average, y and variance,
s2

y for of the number deaths due to COVID-19 in the state. The large variance is indicative
of the existence of heterogeneity of the pandemic in the state, we noticed that in every state,
the variance is higher than the mean as it is a requirement for the selected incidence rate
restricted Poisson (IRRP) as an underlying model for data analysis.

3.2. Efforts
3.2.1. Probability Model Justification

Let Y be an uncertain number of deaths due to COVID-19 in a month in a state with
its deaths rate 0 < θ < 1

γ , in which the restriction parameter γ ≥ 0 portrays the collective
impact of various preventive efforts on the death rate θ. Preventive efforts consist of
social distancing, face masking, hand-washing, and total lock-down, among others. In
other words, the odds (that is, the ratio of the chance of having one or more deaths over
the chance of no death) due to COVID-19 in a state is θe−γθ , which is smaller under the
existence (that is, γ > 0) of preventive efforts than otherwise (that is, γ = 0). The research
goal of this article is to extract the data evidence to statistically check whether γ = 0 or
γ > 0. Naturally, an underlying probability model [16] (connecting the death rate, θ and
the restriction level, γ) for the chance-oriented mechanism of the COVID-19 pattern in a
state is a necessity. For this purpose, we consider the incidence rate restricted Poisson (IRRP)
distribution in Equation (1). That is,

Pr(Y
∣∣∣∣θ, γ) = (θe−γθ)

y−1
(1 + γy)y−1e−θ/y!; y = 0, 1, 2, . . . ; 0 < θ <

1
γ

(1)

https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-in-the-United-St/kn79-hsxy
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The expected number of deaths due to COVID-19 from (1) is E(Y|θ, γ) = θ
(1−γθ)

(that
is, the expected deaths is a ratio of death rate over a function of both the death rate and
restriction) and the variance is Var(Y|θ, γ) = 1

(1−γθ)2 E(Y|θ, γ) (that is, the fluctuation in

the number of deaths is proportionally inflated by the square of a function of both the death
rate and the restriction level). The relationship between the variance and the expected
number of deaths suggests that the variance is larger than the expected deaths (because
γθ < 1) in a COVID-19 scenario. Until then, why not model and learn from the state data
in which the variance is larger than the expected number of deaths? Data indicated that
the variance is larger than the mean in every state. It is worth pointing out in this context
that the variance is a measure of heterogeneity. The number of COVID-19 deaths is volatile
in every state, and it is interesting to realize that no state in the US is safe with respect to
this pandemic.

There are two alternative ways to estimate the death parameter θ and the restric-
tion parameter γ from the data. One method is the moment estimator, and it yields

θ̂moment = y3/2

sy
and γ̂moment =

(1−
√

y
s2
y
)

θ̂
. A virtuous (because of its invariance property)

method is the maximum likelihood estimator (MLE) and it is the simultaneous solution

of
n
∑

i=1

yi(yi−1)
|θ̂mle(yi−y)|+yiy

= n and γ̂mle =
∣∣∣ 1

θ̂mle
− 1

y

∣∣∣. The invariance property indicates that an

MLE of a function of the parameters is simply the function of the MLE for the parameters.
In the COVID-19 data (due to their largeness), the MLEs and the moment estimators are
almost the same.

Of main interest is whether the estimate, γ̂ is statistically significant. If so, it is an
attestation that all preventive efforts had been effective in placing a cap on the COVID-19′s
death rate. Otherwise, there is a need to refine the existing and/or introduce better new
preventive efforts to control COVID-19′s death rate according to the data. To perform this,
we resort to a hypothesis testing procedure as devised [16]. The p-value of rejecting the
null hypothesis Ho : γ = 0 is

Pr[−2{θ̂γ̂y + n(θ̂ − y)− ny ln(
θ̂

y
)} − γ̂{(n− 1)s2

y + ny(y− 1)} > χ2
1d f ,pvalue] = p− value (2)

The (statistical) power of accepting a specific alternative hypothesis H1 : γ = γ1 is

Power ≈ Pr[χ2
δγ1 d f >

χ2
1d f ,α

{1 + δγ1
1+δγ1

}
] (3)

where α is the significance level at which the null hypothesis is rejected and

δγ1 = 2γ2
1(

nθ̂2
1

1+2γ1
) is the non-centrality parameter.

3.2.2. Bayesian Fabric and Second Layer of Data Analysis for Each State

Bayesian analysis is catching the attention of epidemiologists, public health researchers,
and policymakers (O’Hagan [16]). It is more prevalent in COVID-19 discussions because
the death rate and its restriction level are y changing on a daily basis. That is exactly a
reason to utilize a Bayesian approach. In our scenario, the death rate, θ, is fluctuating daily,
qualifying to hold a probability pattern. The Bayesian concept involves the likelihood
L(y1, y2, . . . , yn|θ, γ ) for collecting data y1, y2, . . . , yn at a specified death rate in a day at
a location, a compatible prior probability density function, π(θ) of the randomly fluctu-
ating daily death rate, and a posterior probability density function, π(θ|y1, y2, . . . , yn ) as
updated information on the death rate in the aftermath of the collected data. We arbitrarily
select a compatible prior π(θ) = ( φ

θ )(γθ)φ; 0 < θ < 1
γ ; γ ≥ 0, where φ > 0 is pronounced

as a hyperparameter in the Bayesian approach. It is clear that the prior π(θ) is a bona fide
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probability density function (pdf) because π(θ) > 0 and
1/γ∫
0

( φ
θ )(γθ)φdθ = 1. For example,

when the restriction level parameter, γ = 1, the prior pdf π(θ) looks like in Figure 1.
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Figure 1. The graph of the probability density function of the COVID-19 deaths in US.

In a Bayesian approach, even if the prior pdf is selected to non-match, the likeli-
hood does more often moderate any incorrect prior estimate at the time of posterior-
ity. The prior expected value and prior variance are respectively E(θ) = φ

γ(φ+1) and

Var(θ) = { 1
γ(1+φ)(2+φ)

}E(θ), where the balancing factor { 1
γ(1+φ)(2+φ)

} illustrates the rela-
tionship between the variance and the mean. Their relationship is sketched in Figure 2.
The posterior pdf is proportional to

π(θ|y1, y2, . . . , yn; γ, φ ) = N(y1, y2, . . . , yn; φ, γ)π(θ)L(y1, y2, . . . , yn|θ, γ )

where the normalizer N(y1, y2, . . . , yn; φ, γ) is chosen to make the function
π(θ|y1, y2, . . . , yn; γ ) of the death rate is a bonafide posterior pdf function. That is,

N(y1, y2, . . . , yn; φ, γ) =
{n(1 + γy)}ny+φ

Γ(ny + φ)Φχ2
(ny+φ)d f

(2n{ 1
γ + y})

(4)

where Φχ2
(ny+φ)d f

(2n{ 1
γ + y}) is the cumulative chi-squared distribution function up to

the argument 2n{ 1
γ + y} with degrees of freedom (df)(ny + φ). Hence, the posterior pdf

is therefore

π(θ|y1, y2, . . . , yn; γ, φ ) =
{n(1 + γy)}ny+φ

Γ(ny + φ)Φχ2
(ny+φ)d f

(2n{ 1
γ + y})

e−n(1+γy)θθ(ny+φ)−1; 0 < θ <
1
γ



Healthcare 2021, 9, 1175 6 of 13

Healthcare 2021, 9, x FOR PEER REVIEW 6 of 15 
 

 

1( ) { } ( )
(1 )(2 )

Var Eθ θ
γ φ φ

=
+ +

, where the balancing factor 1{ }
(1 )(2 )γ φ φ+ +

 illus-

trates the relationship between the variance and the mean. Their relationship is sketched 
in Figure 2. The posterior pdf is proportional to 

1 2 1 2 1 2( , ,..., ; , ) ( , ,..., ; , ) ( ) ( , ,..., , )n n ny y y N y y y L y y yπ θ γ φ φ γ π θ θ γ=
 

where the normalizer 1 2( , ,..., ; , )nN y y y φ γ  is chosen to make the function 

1 2( , ,..., ; )ny y yπ θ γ  of the death rate is a bonafide posterior pdf function. That is, 

2
( )

1 2
{ (1 )}( , ,..., ; , ) 1( ) (2 { })

ny df

ny

n
n yN y y y

ny n y
φ

φ

χ

γφ γ
φ

γ+

++=
Γ + Φ +

 

(4)

where 2
( )

1(2 { })
ny df

n y
φχ γ+

Φ +  is the cumulative chi-squared distribution function up to 

the argument 12 { }n y
γ

+  with degrees of freedom (df) ( )ny φ+ . Hence, the posterior 

pdf is therefore 

2
( )

(1 ) ( ) 1
1 2

{ (1 )} 1( , ,..., ; , ) ;01( ) (2 { })
ny df

ny
n y ny

n
n yy y y e

ny n y
φ

φ
γ θ φ

χ

γπ θ γ φ θ θ
γφ

γ+

+
− + + −+= < <

Γ + Φ +
 

 
Figure 2. The graph of balancing factor Figure 2. The graph of balancing factor.

The posterior expected death rate is

E(θ|y1, y2, . . . , yn; γ, φ ) = { ny + φ

n(1 + γy)
}{

Φχ2
(ny+φ+1)d f

(2n{ 1
γ + y})

Φχ2
(ny+φ)d f

(2n{ 1
γ + y})

} ≈ { ny + φ

n(1 + γy)
} (5)

and posterior variance

Var(θ|y1, y2, . . . , yn; γ, φ) = { ny+φ
n(1+γy)}{

ny+φ+1
n(1+γy)}

Φ
χ2
(ny+φ+2)d f

(2n{ 1
γ +y})

Φ
χ2
(ny+φ)d f

(2n{ 1
γ +y}) }

−{ ny+φ
n(1+γy)}

2{
Φ

χ2
(ny+φ+1)d f

(2n{ 1
γ +y})

Φ
χ2
(ny+φ)d f

(2n{ 1
γ +y}) }

2

≈ { 1
n(1+γy)}E(θ|y1, y2, . . . , yn; γ, φ)

(6)

We define the vulnerability index of the COVID-19 in a month at a state as a ratio

Vu ln erability =
Var(θ|y1, y2, . . . , yn; γ, φ )

Var(θ|y1, y2, . . . , yn; γ, φ ) + E(θ|y1, y2, . . . , yn; γ, φ ) + 2{E(θ|y1, y2, . . . , yn; γ, φ )}2 (7)

This vulnerability (7) is computed for each month since March 2020 till June 2021 and
compared with each other below.

3.3. Learning and Warning from COVID-19 Data Evidence

We could learn from the data analytic results and graphical visuals that are displayed
below. Figure 3 (the displayed and not displayed alphabetical states) provides an overall
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impression of the COVID-19 death pattern since March 2020. Recall that there was no
reported COVID-19 death in January and February 2020. However, in March 2020, there
was a spike in COVID-19 deaths in California, New Jersey, Texas, New York City, and
New York. Table 1 displays the estimate of the death rate θ̂, restriction rate γ̂, hyper
parameter φ̂, balance factor, the number of days n, average # deaths y, posterior mean,
E(θ|y1, y2, . . . , yn; γ, φ ), posterior variance, Var(θ|y1, y2, . . . , yn; γ, φ ) and vulnerability in
Equation (7) to COVID-19 deaths. The p-values of the data-based estimate γ̂ are less than
0.0001 meaning that the imposed restriction levels since March 2020 had been significant
to reduce the COVID-19 death rate. The statistical power values to accept the hypothesis
H1 : γ = γ̂ are more than 0.99 meaning that the methodology works well for judging
COVID-19 deaths since March 2020. Figures 4 and 5 indicate that the months June 2020
through June 2021 formulate Cluster 1 and March, April, May 2020 formulate Cluster 2
with 81% of total variation explained by the two principal components.
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Figure 3. Pandemic waves of COVID-19 deaths in US.

Table 1. Estimate of the death rate θ̂, restriction rate γ̂, hyper parameter φ̂, balance factor, # days n, average # deaths y,
posterior mean, posterior variance, and vulnerability to death. For readability, note that 2/1/2020 refers 1 February 2020.

Scheme ^
θ

^
γ

^
φ

Balance
Factor N (# Days) ¯

y
Posterior

Mean
Posterior
Variance

Vulnerability to
Death

1/1/2020 No data 31
2/1/2020 No data 29
3/1/2020 6.4112 0.15 26.637 0.008 31 177.175 6.443 0.008 8.6852 × 10−5

4/1/2020 17.945 0.055 71.942 0.003 30 1308.96 17.98 0.008 1.23654 × 10−5

5/1/2020 23.98 0.04 32.262 0.022 31 797.542 24.01 0.024 2.04433 × 10−5

6/1/2020 18.02 0.053 20.237 0.04 30 382.745 18.05 0.028 4.22952 × 10−5

7/1/2020 12.32 0.08 50.52 0.005 31 634.551 12.35 0.008 2.51761 × 10−5

8/1/2020 13.177 0.074 43.448 0.007 31 585.706 13.21 0.01 2.73495 × 10−5

9/1/2020 14.36 0.067 25.115 0.021 30 375.039 14.39 0.018 4.28503 × 10−5

10/1/2020 20.965 0.046 21.837 0.04 31 478.846 21 0.031 3.39436 × 10−5

11/1/2020 32.672 0.03 30.309 0.033 30 1023.13 32.7 0.035 1.60284 × 10−5

12/1/2020 36.245 0.027 51.061 0.013 31 1885.27 36.28 0.023 8.71234 × 10−6

1/1/2021 28.586 0.034 69.174 0.006 31 2004.06 28.62 0.014 8.1642 × 10−6

2/1/2021 19.72 0.05 44.59 0.009 28 899.385 19.75 0.014 1.80436 × 10−5

3/1/2021 16.174 0.06 25.94 0.022 31 435.788 16.21 0.02 3.70254 × 10−5

4/1/2021 15.92 0.06 21.478 0.032 30 357.922 15.95 0.024 4.50578 × 10−5

5/1/2021 15.191 0.062 17.782 0.043 31 285.28 15.22 0.027 5.64437 × 10−5

6/1/2021 10.043 0.092 11.648 0.063 30 127.02 10.07 0.027 0.000124612
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Figures 6–13 point out that the death rates θ̂, restriction levels γ̂, hyperparameter φ̂,
balancing factor, average number of deaths y, posterior mean, variance, and vulnerability
in US are progressively upward since March 2020 June 2021.
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April 2020.
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3.4. Limitations, Criticism, and Recommendations of Our Finding

All the above interpretations are as good as the authenticity of the COVID-19 data.
There is a suspicion among the public that some of the deaths due to other confounding
causes (recognized as co-morbidity in the medical literature) with COVID virus are incor-
rectly placed under the column for COVID-19 deaths. This suspicion is not verifiable for
obvious reasons of impracticality. Hence, what we learned above is subject to limitations
of data collection and authenticity The above learning is not wrong either. Some level of
learning is more helpful than total ignorance of the COVID-19 pandemics.

4. Conclusions

Using appropriate data and a correct methodology to analyze and extract the evidence
about what has gone correctly and what could have been done differently is the essence of
this article. As we witnessed in the contents of this article, there had been an increasing
death rate due to the COVID-19 pandemic and equally compatible stronger impact of
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medical and social interventions on the death rate. The performances in some states are
similar while others differed significantly. However, the deaths in March, April, May
2020 clustered together, while all other months deviated into another cluster. This pattern
becomes visible due to our data analysis. The death rates and the impact of medical
and social interventions had consistently increased together over the months. Such a co-
movement complicates our comprehension. There ought to have been a chain adjustment
in their relationship and it was captured by the balancing factor. The chain relationship is
the underlying reason for considering the aptness of the Bayesian concept and tools as they
are used in the article. Interestingly, the balancing factor itself, as expected, consistently
increased and it attested to the fact that the health system had been trying to control the
pandemics effectively. In spite of the efforts to contain the pandemic, the vulnerability to
death due to COVID-19 has been increasing over the months in a volatile manner because
of the heterogenous nature of the US states.

A natural question to pose is that whether a pandemic like COVID-19 might recur.
A reply probably depends on the philosophical orientation of the respondent. When the
respondent feels that COVID-19 during years 2020–2021 is an anomaly, the reply might
lead to a statement that no pandemic is likely in the future. On the contrary, when a
respondent is a conspirator feeling that someone intentionally or by mistake leaked out the
deadly virus from an experimental biologic research lab, the reply is likely to warn that a
pandemic like COVID-19 would recur. However, every pandemic would alter the human
lifestyle. Different types of vaccination would emerge. Virologists, pathologists, and public
health professionals are going to be too busy. Preventive medicine would receive priority
in public health. The general public might become too uncomfortable with free movements
in society. Medical professionals could overutilize the resources to prepare vaccinations
which could expire in time as they are not used. A disparity in the community might
widen as the affordability to being healthy fluctuates more in favor of the rich than the
middle or poor classes. A constant feeling of undergoing fear sabotages mental health and
comfort living. The natural way of living takes up a backseat in comparison to subjecting
to technology-oriented priority living.
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