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Abstract: 17β-estradiol (E2), a vital female sex hormone, plays a crucial role in female reproduc-
tive cycles and secondary sexual characteristics. The quantification of E2 concentration in human
blood and urine samples is essential because a deviation from physiological levels of E2 indicates
the development of diseases and abnormalities such as precocious puberty, breast cancer, weight
gain, abnormal menstruation, osteoporosis, and infertility. In addition, the detection of E2 in food
and the environment has gained widespread interest because of its role as an endocrine disruptor
(environmental hormone) that can perturb physiological processes. E2 is used as a drug for hormone
therapy. Various E2 detection technologies for diagnosing relevant human diseases, drug screening,
and environmental monitoring have been demonstrated in studies. In this article, we have reviewed
technological strategies developed for E2 detection with ultrahigh sensitivity, with a limit of detection
comparable to several pg/mL or lower. We observed that gold nanoparticles (AuNPs) were used as
nanoplatforms for signal amplification, which enabled ultrahigh sensitivity in most studies. Signal
amplification was facilitated by AuNP characteristics such as the versatility of surface biochemistry,
exceedingly large surface-to-volume ratio, surface plasmonic activity, luminescence quenching ability,
and biocompatibility. These techniques have been used to detect E2 in food, water, human serum,
and urine with ultrahigh sensitivity. We summarize the working principles of E2 detection strategies
that allow ultrahigh sensitivity and provide an approach for future work required for the elucidation
of practical applications of these technologies.

Keywords: 17β-estradiol; E2; biosensor; ultrahigh sensitivity; precocious puberty; urine; serum;
environmental hormone

1. Introduction

17β-estradiol (estradiol, E2) is a vital estrogen steroid female sex hormone. In humans,
E2 plays an important role in the development of female secondary sexual characteristics,
the maintenance of reproductive tissues, and pregnancy. Generally, levels of E2 higher
or lower than normal can cause various health problems, such as breast cancer, weight
gain, abnormal menstruation, osteoporosis, and infertility in females and males [1–4]. E2
levels can be affected by external factors such as food or the environment; therefore, many
researchers have investigated the presence of E2 in human-derived fluids such as serum and
urine, and in many external factors such as milk, river water, and meat. According to Rosner
et al. [1], detection methods for E2 have been developed since the 1930s, including liquid or
gas chromatography (LC or GC) bioassays, mass spectroscopy (MS), radioimmunoassays
(RIA), high-performance liquid chromatography (HPLC), ultraviolet–visible (UV) absorption
spectroscopy, direct RIA, and the combination of HPLC and MS (HPLC-MS) [5–9].

Requirements have been requested in analytical methods with sensors in clinical
settings such as the following: low concentrations of E2 have to be tested at lower than
1 pg/mL, measurement precision to characterize patient status, a wide concentration range
including in vitro fertilization programs that require measuring approximately 3000 pg/mL,
high specificity for E2, and comparable accurate results. In particular, the poor detection
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limits of E2 sensors were considered a limitation in investigating the status of men, post-
menopausal women, and young girls before sexual maturity [1].

For example, the capability of detecting extremely low concentrations of E2 in human
serum is substantially important for diagnosing precocious puberty, as seen in Table 1 [10].
Precocious puberty refers to the considerably early development of secondary sexual
characteristics occurring in girls under the age of 8 years and boys under the age of
9 years [11–16]. This may cause early skeletal maturation, resulting in the loss of potential
stature, obesity, an increasing risk of breast cancer, and even social/emotional problems
such as depression. Recently, the human-urine-based detection of E2 for its early diagnosis
is gaining more popularity due to its patient-friendly and comfortable assay in comparison
with serum-based assays [17–21], despite the fact that the E2 concentration present in
human urine is much smaller than that in human serum [22].

Table 1. Serum E2 levels in various Tanner stages [10].

Male Female
Tanner Stage E2 Levels

[pg/mL]
Average Age

[Years]
E2 Levels
[pg/mL]

Average Age
[Years]

1 Undetectable–13 7.1 Undetectable–20 7.1
2 Undetectable–16 12.1 Undetectable–24 10.5
3 Undetectable–26 13.6 Undetectable–60 11.6
4 Undetectable–38 15.1 15–85 12.3
5 10–40 18 15–350 14.5

As solutions to the aforementioned challenges associated with the limited sensitivity
available from existing sensor strategies, attempts have been made with various detec-
tion mechanisms, such as plasmonic-nanoparticle-based sensors [23–27], fluorescence
sensors [28–32], Raman-based sensors [33–38], electrochemical sensors [39–49], enzyme
immunosensors [50,51], and others [52–59]. To achieve a limit of detection (LOD) of E2 com-
parable or lower than 1 pg/mL, most of the ultrahigh-sensitivity E2 sensors have employed
signal amplification mechanisms that involve gold nanoparticles (AuNPs) in common as am-
plifying nanoplatforms. In this review, we categorize the E2 sensors into luminescence-based
sensors [29,30], electrochemical sensors [46–48], surface-enhanced Raman scattering (SERS)
sensors [35–37], and other sensors (miscellaneous) [56–59]. Prior to describing the working
principles of sensors in each category, the signal amplifying mechanism with AuNPs is sum-
marized to highlight their role for ultrahigh sensitivity for E2 detection. Lastly, we provide the
conclusion and outlook for future possible directions of E2-related research in need.

2. Nanoplatforms for Ultrahigh-Sensitivity E2 Sensors

Nanoparticles have been widely used in various types of highly sensitive sensor
systems for detecting biomolecules or chemicals due to their advantages including an
extremely large surface-to-volume ratio and the ability of modulating their physicochem-
ical properties. For instance, nanoparticles of metals such as gold (Au) [60,61], silver
(Ag) [60–62], palladium (Pd) [60,63], copper (Cu) [64], and platinum (Pt) [65,66] or nanopar-
ticles of oxide compounds such as TiO2 [67] and Fe3O4 [68] were used for biochemical
sensor systems. As non-metallic nanoparticles for E2 detection, magnetic nanoparticles
of Fe3O4 were used to achieve an LOD of 3.48 PM [68]. However, noble metals of gold
(Au) and silver (Ag) are mainly used as nanoplatforms for signal enhancement due to their
unique optoelectronic properties in visible wavelengths [69–79]. Among the two noble met-
als, gold nanoparticles (AuNPs) are more widely used [60–62] due to their biocompatibility,
chemical stability, and capability of versatile biochemical surface treatment.

This section outlines the key principles for signal amplification demonstrated for
the ultrahigh-sensitivity detection to date in various strategies with LODs comparable to
1 pg/mL or lower. In various detection strategies as shown in Figure 1, AuNPs played a
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key role for signal amplification due to their advantages such as an extremely large surface-
to-volume ratio, the availability of various biochemical surface treatments, localized surface
plasmon excitability at visible wavelengths, and biocompatibility [80–84]. AuNPs could
serve as metallic nanoplatforms where many types of fluorescent molecules could be
deployed through thiol-labeled nucleic acids or antibodies for fluorescence amplification in
a competitive immunoassay [29,56,58]. Moreover, AuNPs could be used as luminescence
quenchers via electron transfer [30,58,85–89]. When covered with polymer-based quenching
molecules, AuNPs could strongly quench electrochemiluminescence, the so-called dual
quenching, in a competitive immunoassay. AuNPs could also be used as carriers for
chemical reagents that act as molecular barcodes for mass spectrometry [56]. Meanwhile,
the nanotags that consisted of Raman-probe-labeled AuNPs, on the surface of which E2-
conjugated compounds were immobilized, were used in a competitive immunoassay to
produce amplified signals in surface-enhanced Raman spectroscopy (SERS) [35]. Silver
nanoparticles (AgNPs) conjugated with metal–organic frameworks (MOFs) were also used
for SERS sensors that detected E2 molecules [36].
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Figure 1. Various strategies of AuNP-based signal amplification for detecting low E2 concentrations.

3. Luminescence-Based Sensors

Sensors that use light-emitting materials as sensing probes are classified as luminescence-
based ones. Luminescence-active materials that are excited by electromagnetic radiation,
chemical interaction, mechanical bombardment, or electrical energy emit photons. Fluores-
cence is the luminescence that occurs when active materials are excited by electromagnetic
radiation pumps. Organic dyes and quantum dots are the representative probes in flu-
orescence being used for detecting toxic substances, pollutants, and nutrients and for
diagnosing diseases [71,72,90–94]. Measuring luminescence power as a function of analyte
(E2) injected is a basis of quantifying E2 concentration. Competitive immunoassays with flu-
orescence technology were reported for detecting E2 molecules. An antibody for capturing
E2 with high specificity was used as an E2 recognition element. As shown in Figure 2, ana-
lyte E2 molecules bonded with E2-specific antibodies on magnetic microparticles (MMPs).
For bonding with antibodies, E2 molecules competed with AuNPs conjugated with both
fluorescent probes and antibodies. This competitive assay led the smaller E2 molecules
(analyte) that were injected to detect higher fluorescence. Herewith, the inherently large
volume-to-surface ratio of AuNPs that hosted a large number of fluorescent molecules
on the surface amplified the luminescence, with a consequence of ultrahigh sensitivity in
E2 detection.
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Du et al. [29] used AuNPs to carry the fluorescent molecules, i.e., avidin–fluorescein
isothiocyanate (avidin-FITC), for a competitive immunoassay and demonstrated an E2
LOD of 6.37 fg/mL with a linear detection range from 10.0 fg/mL to 1.0 ng/mL. Anti-E2-
antibodies with a rabbit host were used as the E2 capture antibody while goat anti-rabbit
immunoglobulin G (IgG) was used as the detection antibodies that could react with the
rabbit host antibodies. The detection antibodies that were immobilized on fluorescently
labeled AuNPs (using thiol-functionalized double-stranded DNA covered with biotin
(ds-DNA-Bio)) allowed AuNPs to compete with E2 molecules for bonding with anti-E2
antibodies on the surface of magnetic microparticles (MMPs). After the immunoreaction,
the immune-complex MMPs were separated magnetically, and thiolate DNA strands were
removed using dithiothreitol (DTT). Thus, hundreds of fluorescently labeled DNA strands
were released. This prevented the fluorescence quenching effect of AuNPs from occurring,
producing fluorescence. A large number of fluorescent molecules labeled on the AuNP
surface enabled amplified luminescence to be detected.

This competitive immunoassay used a human urine specimen arranged to contain E2
concentrations of 0, 0.1, 0.5, and 0.8 ng/mL for detection. The detected E2 concentrations
were 0.106, 0.211, 0.643, and 0.878 ng/mL, respectively, with a relative standard deviation
(RSD) below 8.1% and a recovery range of 96.5–107.4%. This suggested high reproducibility
and an independence of matrix effects of the detection method. However, the E2 concen-
trations evaluated in urine specimens might differ from the original values present in real
urine which would later go through biochemical treatment into urine specimens for E2
detection. Further investigations are required to apply this strategy appropriately for the
clinical diagnosis of E2 with real urine specimens.

Dong et al. [30] reported the electrochemiluminescence (ECL) immunosensors for E2
detection using a compound quencher, i.e., polyaniline-conjugated AuNPs (PANI@AuNPs),
as shown in Figure 3A. An ECL reagent, polyoxomolybdate-zirconia (POM-ZrO2), was
synthesized via a solvothermal treatment for electrochemiluminescence. In this compound,
ZrO2 could act as both an oxidizable and reducible compound, while the phosphomolyb-
date assembly could be the catalytically active part of its hybrid structure. The mechanism
of this sensor was as follows (Figure 3B): POM-ZrO2 was dropped onto a polished glassy
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carbon electrode (GCE). Then, E2-specific antibodies (capture antibodies) were immobilized
on POM-ZrO2. This was followed by BSA immobilization on POM-ZrO2 to block non-
specific bonding. E2-containing specimens taken from lake water and milk were injected for
specific bonding between E2 and the capture antibodies. Then, PANI@AuNPs labeled with
BSA-E2, i.e., PANI@AuNPs-BSA-E2, were injected to bond with the remaining capture anti-
bodies on the electrode, resulting in competition with the injected E2 molecules (analytes)
for antibody bonding. PANI@AuNPs acted as luminescence quenchers via electron transfer
between PANI@AuNPs and POM-ZrO2. The luminescence quenching occurred due to the
polyaniline part and AuNPs that both interacted with POM-ZrO2, forming the so-called
dual quenching mechanism. This competitive immunoassay-based electrochemilumines-
cence yielded an LOD of 3.7 fg/mL and a sensing range from 0.01 pg/mL to 200 ng/mL
for E2 detection. The relative standard deviation (RSD) for E2 detection ranged from 2.1 to
4.5% for lake water samples, and from 2.2 to 4.6% for milk samples, demonstrating good
reproducibility. The signal recovery ranged from 98.3 to 102.0% for lake water samples,
and from 97.7 to 104.0% for milk samples, showing satisfactory accuracy in E2 detection.
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from Ref. [30]. Copyright 2022 American Chemical Society.
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4. Electrochemical Sensors

Electrochemical sensors are usually based on three electrodes, i.e., a working, counter-,
and reference electrode with a redox solution. The redox-coupled working electrode
generates electrical signals. We reviewed three papers that reported ultrahigh-sensitivity E2
detection via the electrochemical sensors that used the same type of redox solution, i.e., a
hexacyanoferrate(III)/hexacyanoferrate(II) (K3Fe(CN)6/K4Fe(CN)6) solution. The surfaces
of working electrodes were modified with the recognizing materials, such as molecularly
imprinted polymers (MIPs) [46,47], antibodies [48], aptamers [3], and enzymes [42,43].

Zhang et al. [46] were the first to introduce MIP-based electrochemical sensors for E2
detection. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were
used in a three-electrode system where platinum foil was used for the counter-electrode, a
Ag/AgCl-saturated-KCl electrode was used as the reference electrode, and a modified GCE
was used as a working electrode. As shown in Figure 4, AuNPs were electrodeposited onto
GCEs. A layer of p-aminothiophenol (ATP, a pink-colored layer in Figure 4) was deposited
on the AuNP-GCE by immersion in an ATP ethanol solution. The electrode was then
immersed in E2 molecules (solid green pentagons) containing acetone solution for E2-ATP
binding. Then, the electropolymerization of ATP was achieved using seven cycles of CVs
and the subsequent chemical elution that removed the inner E2 molecules produced the
hollow structure of polymers, i.e., MIP. The E2 molecules subsequently injected rebound
with the MIP to occupy its hollow chambers with excellent specificity. The use of AuNPs
exceedingly expanded the surface area on top of which the MIP was built, leading to the
rebinding of extremely large E2 molecules for ultrahigh sensitivity. Although specimens
for these sensors were directly taken from milk, the excellent specificity and ultrahigh
sensitivity for E2 detection were achieved with an LOD of 1.28 fg/mL and a linear detection
range from 1.0 fg/mL to 100 pg/mL. The signal recovery ranged from 84.7 to 102.9%, and
thus demonstrated the immutability of the sensors to external interfering effects such as
sample matrix effects, requiring no pretreatment of samples.
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Florea et al. [47] used the MIP-based assay in electrochemical sensors with three
electrodes for E2 detection in a similar manner to the abovementioned strategies [46]. It
showed an LOD of 1.09 fM (0.297 fg/mL) and a linear detection range from 3.6 fM to
3.6 nM (corresponding to 0.981 fg/mL to 0.981 ng/mL). The sensor system consisted of an
MIP-modified gold-based working electrode, a platinum-based counter-electrode, and a
saturated-calomel-based reference electrode. Similarly to [46], AuNPs were used to form
MIPs on the working electrode for signal amplifications. Specimens that were arranged by
adding different concentrations of E2 (3.6 fM, 3.6 pM, and 3.6 nM) to river water samples
were tested to assess the practical applicability of the sensor strategy. The results showed
102.1%, 95.6%, and 103.6% of signal recoveries and 23.2%, 7.8%, and 0.9% of RSD at
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the respective concentrations. This indicated that the sensor exhibited reasonably good
accuracy for E2 detection while showing, at lower concentrations, poorer reproducibility.

Dai et al. [48] reported a cost-effective biosensor based on differential pulse voltamme-
try (DPV) that utilized three electrodes for E2 detection. The working and counter-electrodes
were both Au-film-coated, while a printed-thick Ag/AgCl film was used as the reference
electrode. As shown in Figure 5, an α-estrogen antibody was immobilized on the gold
working electrode with self-assembled monolayers of 3-Mercaptopropionic acid (MPA). For
arranging specimens, E2 was dissolved in dimethyl sulfoxide (DMSO) and then further
diluted with PBS, tap water, and urine. After incubating E2 molecules on the sensor at room
temperature for 3 h, DPV measurement was performed using the redox solution, 5 mM
K3Fe(CN)6/K4Fe(CN)6, in 0.1 M PBS. The redox coupling caused the reaction between E2
molecules and the α-estrogen antibody, generating electrical signals. Tests were performed
using tap water and simulated urine samples under identical conditions. Both specimens
showed similar results of the sensors. The approximate linear range for E2 detection was
obtained from 2.25 pg/mL to 2250 pg/mL. An interference study was also performed with
testosterone, showing that testosterone did not interfere with this E2 sensor.
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Although this DPV-based sensor offered a somewhat higher LOD than the other two
abovementioned electrochemical sensors [46,47], the working electrode on which Au thin
films were deposited by sputter-aided roll-to-roll processes could be fabricated in a cost-
effective way. These DPV-based sensor results showed the applicability of this strategy
to the development of a single-use cost-effective E2 detection unit with reasonably good
sensitivity for both environmental and healthcare applications.

5. SERS-Based Sensors

SERS-based sensors use the Raman scattering signals greatly enhanced by using SERS
substrates involving metallic nanostructures. In these nanostructures, plasmonic hot spots
induce local electric field enhancement or effectively mediate the charge transfer between
Raman-active probe molecules and metals [95–97]. The SERS-induced amplification of
Raman scattering signals has been intensively studied using the substrates involving metal
nanoparticles [98–101], MOFs [102–105], and materials with large electron mobility [95–105].
Several works with SERS technologies for E2 detection have been attempted [33–37,106]
where a few studies reported ultrahigh sensitivity with an LOD smaller than pg/mL [35–37].
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Wang et al. [35] reported use of the SERS technologies to detect E2 in human serum for
the clinical diagnosis of precocious puberty. This work used malachite green isothiocyanate
(MGITC) as Raman probes for labeling AuNPs. SERS nanotags were constructed from the
Raman-probe-labeled AuNPs on the surface of which ovalbumin-conjugated E2 (E2-OVA)
compounds were immobilized by amine-carboxyl coupling. Meanwhile, goat anti-mouse
antibodies (secondary antibodies) were immobilized on magnetic bead particles, which
was followed by binding mouse anti-E2 antibodies (primary antibodies) with secondary
antibodies via antibody–antibody interaction, as shown in Figure 6a, after injecting E2
molecules (analyte). E2 and SERS nanotags that contained E2 competitively reacted with
primary antibodies on magnetic beads (Figure 6b). Then, the magnetic beads bound with
both E2 and SERS nanotags were isolated using a magnetic bar. The remaining SERS
nanotags unbound with magnetic beads were washed away. The immunocomplexes on
magnetic beads shown in Figure 6c were redispersed and transferred to a capillary tube
for Raman signal measurement. AuNPs of the SERS nanotags produced amplified Raman
signals of MGITC, and this signal increased for smaller E2 concentrations and vice versa,
due to the competitiveness of the immune reaction between E2 and SERS nanotags. This
strategy demonstrated an LOD of 0.65 pg/mL of E2 concentration and with 30 clinical
serum samples collected from patients aged 7 to 15 years old, with a range of E2 levels
from 2.22 pg/mL to 98.5 pg/mL being detected. This reflected that the sensitivity was
higher than a commercialized kit of an enzyme-linked immunosorbent assay (ELISA, LOD
of 5 pg/mL) for detecting E2 in human serum.
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Figure 6. Schematic showing the E2 detection with the SERS nanotags. (a) Binding a primary anti-
body (yellow) with a secondary antibody (red) pre-immobilized on a magnetic bead; (b) competitive
immunoreaction between E2 molecules and a AuNP-based SERS nanotag; (c) post-immunoreaction
step before SERS measurement. (E2, 17β-estradiol; OVA, ovalbumin; MGITC, malachite green isothio-
cyanate.) Reprinted with permission from Ref. [35]. Copyright 2016 American Chemical Society.
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Wang et al. [36] demonstrated the detection of E2 present in specimens taken from
food products (milk, fish, and duck meat) and wastewater samples, using a new SERS
analysis strategy called the peak-differentiation-imitating-assisted SERS (PDI-SERS). This
technique used the plasmonic MOF (MIL-101(Fe)) nanoparticles (PMNs) that involved
AgNPs as shown in Figure 7. A p-aminothiophenol (PATP) group was used to chemically
modify PMNs into a self-assembled form of PATP-modified PMNs. The Griess reaction
then allowed the PATP part of the modified PMNs to react with phenolic estrogens (PEs)
such as E1 (estrone), E2, and E3 (estriol), into the formation of azo-complexes [107,108].
Here, the Raman signals for the stretching vibration of N=N differed between cases of E1
(1431 cm−1), E2 (1435 cm−1), and E3 (1436 cm−1). For specimens involving a combination of
E1, E2, and E3, the net Raman signals detected were the multiplex Raman signals involving
individual effects. The modeling-aided analysis suggested from PDI-SERS performed
spectral deconvolution for discrimination into individual signals. This led to the estimation
of respective PE concentrations (E1, E2, and E3) using the standard curves achieved with
the known concentrations (from 10−14 to 10−7 M) of individual PEs.
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the synthesized PMNs. Red circles show AgNPs in PMNs. (D) Raman scattering spectra of PMNs
(black) and estrone (E1)-added PMNs (red) which resulted in azo-complexes (MOFs: MIL-101(Fe),
PATP: p-aminothiophenol, PE: phenolic estrogen (E1, E2, E3)). Used with permission of the Royal
Society of Chemistry, from Ref. [36]; permission conveyed through Copyright Clearance Center, Inc.

For a specimen involving a single type of PE, the PATP-modified PMN-based SERS
provided LODs of 2.0 fM (0.54 fg/mL) of E1, 4.0 fM (1.1 fg/mL) of E2, and 6.0 fM (1.7 fg/mL)
of E3, showing ultrahigh sensitivity. Meanwhile, for a specimen involving mixed PEs
(E1, E2, and E3), the PDI-SERS analysis method was utilized to estimate individual PE
concentrations. In these mixed cases, the LOD, however, became much higher (0.12 to
1.06 µg/kg) than those of the unmixed cases due to interference from the competitive
reaction of each PE. Nonetheless, the LOD was still much lower than the daily tolerable
level recommended by the U.S. Environmental Protection Agency [109].

Zhang et al. [37] reported ultrahigh-sensitivity E2 detection using the SERS technique
with PMNs, similar to Figure 7. The MOFs used for PMNs in this work were MIL-101(Fe)
and were embedded with AuNP@MIP-PDA. The AuNP@MIP-PDA was a AuNP of 50 nm
diameter coated with a polymerized layer of polydopamine (PDA) wherein E2 molecules
were imprinted, as shown in Figure 8. The AuNP@MIP-PDA was anchored in MIL-101(Fe),
into a torpedo-shaped compound (AuNP@MIP-PDA@MIL-101(Fe)). When specimens
were arranged from 30% ethanol-solvent-based E2 solutions which were further diluted
with Milli-Q water, an LOD of 0.195 fM (0.0531 fg/mL) was obtained, reflecting ultrahigh
sensitivity. When specimens were made from milk spiked with E2 of specific concentrations,
an LOD of about 10 fM (2.7 fg/mL) was obtained, still exhibiting ultrahigh sensitivity for
E2 detection.
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Figure 8. Schematic of torpedo-shaped MOFs wherein E2-molecule-imprinted polymer-coated
AuNPs are anchored (AuNP@MIP-PDA@MIL-101(Fe)) for SERS-based detection of E2. The MOF
is MIL-101. (MIP: molecularly imprinted polymer, PDA: polydopamine.) Used with permission of
the Royal Society of Chemistry, from Ref. [37]; permission conveyed through Copyright Clearance
Center, Inc.

6. Miscellaneous

In this section, we review four papers that reported ultrahigh-sensitivity E2 detection
and that fell outside of the categories covered by the previous sections. They are about
the molecular barcode assay [56], cantilever-based sensors [57], photoelectrochemical
immunoassay with DNA amplification and AuNPs [58], and liquid-crystal-aptamer-based
optical sensors [59].
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Lee et al. [56] reported a molecular barcode assay for E2 and testosterone for the
non-invasive early diagnosis of precocious puberty, as shown in Figure 9. For E2 (or
testosterone) detection, micro-magnetic particles (MMPs) were used as substrates on which
anti-E2 antibodies were immobilized. Upon E2 (or testosterone) injection, E2 molecules
(or testosterone) were specifically bound with antibodies on MMPs. Meanwhile, anti-E2
aptamers (or anti-testosterone antibody with DNA) were made to be immobilized on
AuNPs, making them DNA carriers. These DNA carriers were taken to interact with the
abovementioned E2 (or testosterone)-antibody-modified MMPs. Subsequent chemical
treatment enabled the DNAs to only be extracted from the carrier—MMP composite.
These DNAs were fed to an electrophoresis-based assay and fluorescence-based assay
(using the DNAs pre-attached with fluorophores). This allowed the E2 (or testosterone)
concentration to be estimated by quantifying the amounts of DNAs, making aptamers
called E2 (testosterone)-detection barcodes.
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In cases of using an LC-MS-based assay, AuNPs were additionally chemically coated
with molecules, i.e., 2-Thiazoline-2-Thiol and 1-[2-(dimethylamino)ethyl]-1H-tetazole-5-
thiol (MTDT), which was called the molecular barcodes for E2 (or testosterone) detection.
Aptamers on AuNPs only played a role of binding with E2 (analyte) molecules on MMPs.
After dissolving AuNPs out of AuNP-E2-MMP composites with KCN, the remaining
products were fed to LC-MS, which produced the signal associated with the barcode
molecules. This enabled the E2 (or testosterone) concentration to be estimated with the
highest sensitivity ever reported to date: the LOD was about 10 ag/mL for specimens taken
from hormone-free urine involving the analyte (E2 or testosterone), while it was 100 ag/mL
when the multiplexed assay was performed with specimens involving both hormones.

The cantilever nanobiosensors were used for detecting E2 with ultrahigh sensitivity as
reported by de Cezaro et al. [57]. This work used an AFM system which detected the change
in intensity of laser light reflected from a gold-coated cantilever tip which could physically
bend as a result of the change in E2-oxidation-induced surface stress. As shown in Figure 10,
a gold-coated cantilever tip was additionally coated with tyrosinase (enzymes) using a
1-Ethyl-3-diaminopropyl carbodiimide (EDC)-N-hydroxysuccinimide (NHS) reaction with
a thiolate carboxyl hydrocarbon chain. Tyrosinase could catalyze injected E2 molecules to
be oxidized into quinones [110]. The tyrosinase-boosted anchoring of E2 molecules on the
tip surface produced the change in tip surface stress, leading to a physical bending of the
cantilever, resulting in a change in reflected light intensity. This strategy for E2 detection
produced an LOD of 0.1 pg/mL with a detection range of 1 pg/mL to 10 ng/mL.
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reflected from a cantilever.

Photoelectrochemical (PEC) technologies for E2 detection with ultrahigh sensitivity
were developed by Hao et al. [58]. Quantum dots of cadmium telluride (CdTe) were
chemically conjugated with graphene oxide (GO) for photosensitive materials. CdTe
quantum dots were chosen for a narrow emission spectral band in the visible region, wide
absorption spectral band, and photochemical stability. GO conjugated with CdTe quantum
dots could improve the photocurrent generation efficiency by reducing the unwanted
recombination of photo-excited electron–hole pairs generated within quantum dots. As
shown in Figure 11, the synthesized CdTe-GO was dropped onto a screen-printed electrode
(SPE). Then, AuNPs were electrodeposited (EGNP) on its surface. Anti-E2 aptamers
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(35 mer) were immobilized on the EGNP surface, and bovine serum albumin (BSA) was
subsequently deposited on part of the EGNP surface where aptamers were not immobilized,
to avoid non-specific bonding. Then, E2 molecules were injected to specifically bind with
aptamers. E2 antibodies were introduced for the double-aptamer–E2-antibody structure.
The E2-containing electrodes and AuNPs (not the same as EGNP) were incubated with
fragments obtained from rolling cycle amplification (RCA) to produce the composite
electrode with AuNPs on which the number of hairpin DNA (hpDNA) and single-stranded
DNA (ssDNA) was amplified, as shown in Figure 11. Ruthenium (Ru) probe molecules
were labeled on the composite. The presence of AuNPs could increase the fluorescence
intensity by 104-fold when Ru was combined with hpDNA. Finally, Ru fluorescence energy
was converted to photocurrent by CdTe-GO material. When the specimen was taken from
E2 solution with a DI water solvent, the PEC sensor for detecting E2 had an LOD of 0.01 pM
(2.7 fg/mL) and a linear detection range from 0.04 to 10 pM (0.01–2.72 pg/mL). When
specimens were taken from royal jelly, milk powder, and urine, the PEC sensor offered a
minimum detectable concentration around 1 pM.
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cadmium telluride quantum dots; GO, graphene oxide; EGNP, electrodeposited gold nanoparticle;
BSA, bovine serum albumin; E2, 17β-estradiol; RCA, rolling circle amplification; hpDNA, hairpin
DNA; ssDNA, single-stranded DNA; Ab, antibody). Reprinted from Ref. [58], Copyright 2022, with
permission from Elsevier.

Ahn et al. [59] developed a liquid-crystal-based aptasensor for E2 detection. 4-cyano-
4′-pentylbiphenyl liquid crystals (5CBs) filled a cell with its boundaries set by copper
grids on an octyltrichlorosilane (OTS)-treated glass substrate. Cetyl trimethyl ammonium
bromide (CTAB) was added to form an interface with 5CBs in a cell. Through the interface,
5CBs would be vertically aligned with the aid of an OTS group on the bottom of a glass
substrate. Vertically aligned 5CBs formed a uniaxial crystal with its optic axis parallel to
the major axis of a 5CB ellipse. When linearly polarized light was incident on the glass
substrate along the optic axis, no change in polarization occurred during propagation
through the cell. In this case, the cross-polarized analyzer setting allowed no transmission
of light through it, making the corresponding image dark. However, if disturbing elements
such as aptamers that had a net negative charge were injected into the cell, CTAB that was
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positively charged was attracted by aptamers. This caused a disruption in the 5CB vertical
alignment and thus their uniaxial crystalline properties were broken, leading to a change
in optical birefringence [111,112]. Consequently, the intensity of transmitted light through
the analyzer would increase, making the corresponding image brighter. When injecting
E2 molecules, they were specifically bound with aptamers. This prevented aptamers from
disturbing the vertical alignment of 5CBs, eventually making the image darker. The gray-
scaled luminescence from images was finally integrated into quantifiable intensity, being
the foundation for the quantitative estimation of E2 molecules. This strategy obtained an
LOD of 3.1 pM (0.8 pg/mL) for E2 solution with TBS buffer and 6.8 pM (1.9 pg/mL) for E2
in human urine. The liquid crystal technologies also turned out to be cost-effective without
compromising the ultrahigh sensitivity.

7. Conclusions and Outlook

E2 detection at low concentrations is important in clinical practice and for the examina-
tion of environmental or food samples. The importance of detecting E2 with high accuracy
at low concentrations has rapidly increased as environmental hormone issues arise and
the early diagnosis of precocious puberty has continued to gain much attention. Given
the fact that human urine involved much lower concentrations of E2 than human serum, a
urine-based E2 test with ultrahigh sensitivity is becoming more important for children to
whom multiple serum-based tests are not friendly. Following this trend, we focused on
sensors capable of detecting E2 concentrations comparable to 1 pg/mL.

In this article, various strategies for detecting E2 with such ultrahigh sensitivity were
reviewed. The strategies included those based on luminescence, electrochemical reaction,
SERS, cantilever bending, photo-electrochemistry, electrophoresis, LC-MS, and liquid
crystals. Although a few sensing methods show adequate sensitivity independently, various
signal amplification techniques have been developed to achieve ultrahigh sensitivity in
sensor systems. The highest sensitivity was reported when employing the LC-MS sensor,
which used the molecular barcode assay for 10 ag/mL LOD. Nevertheless, AuNPs have
mostly been widely used for signal enhancement due to their exceedingly large surface-to-
volume ratio, chemical stability, capability of versatile biochemical treatment, and unique
plasmon properties at visible wavelengths, and they are also well known as bio-compatible
materials. The AuNPs reported in this review can function as nanoplatforms for preparing a
large number of fluorescence labels, aptamers, or molecular barcode materials. AuNPs have
also been used as fluorescence quenchers or SERS substrates. Table 2 shows a summary
of characteristics of the reviewed ultrahigh-sensitivity E2 sensor in various categories of
detection strategies such as detection mode, signal amplifying method, selectivity, LOD,
sensing range, specimen types, and signal recovery.

However, there has been a lack of investigations of clinical urine samples, although the
sensitivity of pre-developed sensors is adequate for quantifying serum E2 levels. Further
studies are necessary to elucidate their clinical applications and their related engineering
aspects. In this context, the biocompatibility of AuNPs can be utilized, along with their
role in signal amplification, for clinical applications of the ultrahigh-sensitivity detection
strategies reviewed in this article. Such ultrahigh-sensitivity strategies can be used for the
non-invasive early diagnosis of precocious puberty.

Future studies on the practical applications of such ultrahigh-sensitivity E2 detection
may be involved with increasing controllability of the size of the fabricated AuNPs and
the homogeneity of their distribution to reduce signal fluctuation for precision diagnosis
with a smaller standard deviation of sensing signals (a smaller coefficient of variation).
Optical waveguides such as optical fibers that have been exploited to demonstrate various
biochemical sensing platforms [113–115] can also be incorporated with AuNPs for ultrahigh-
sensitivity E2 detection in a compact module enabling remote sensing. Further efforts may
have to be exerted to enhance detection sensitivity in multiplexed assays involving E2 and
testosterone in the presence of other types of interfering elements such as in human serum
and urine.
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Table 2. Summary of characteristics of ultrahigh-sensitivity E2 sensors reviewed.

Selectivity
Category Detection Mode Signal Amplification Specific

Recognition Control LOD Sensing Range Specimen Recovery Ref.

Luminescence
Fluorescence Multiplying

fluorophore Antibody

E1, E3, EE,
E2-17-glucuronide,

E2-3-sulfate-17-glucuronide,
P4, Androstenedione, DES,

p-NP

6.37 fg/mL 10.0 fg/mL–1.0 ng/mL Human urine 96.5–107.4% [29]

Electrochemiluminescence PANI@AuNP dual
quenching Antibody DES, E1, E3, EE, BPA, DDT,

TCDD 3.7 fg/mL 0.01 pg/mL–200 ng/mL Lake water, milk 97.7–104.0% [30]

Electrochemical

CV, EIS AuNP-GCE MIP E3, DES, BPA, DPA 1.28 fg/mL 1.0 fg/mL–100 pg/mL Milk 84.7–102.9% [46]

LSV AuNP-Au electrode MIP Testosterone 1.09 fM 3.6 fM–3.6 nM River water 95.6–103.6% [47]

DPV - Antibody Testosterone - 2.25 pg/mL–2250 pg/mL Tap water,
simulated urine applicable [48]

SERS

Raman
spectroscopy MGITC-AuNPs Antibody 17α-estradiol, E1, E3, cortisol 0.65 pg/mL 0 pg/mL–1000 pg/mL Clinical serum

samples
95%

confidence
intervals

[35]

Raman
spectroscopy AgNPs@MIL-101(Fe) Spectral peak

difference

Quinestrol, Epimestrol,
Nilestriol, Estramustine,

Norgestrel, estradiol
benzoate, Histidine, estrone

acetate, estradiol
dipropionate

4.0 fM 100 fM–100 nM
Milk, fish, duck

meat,
wastewater

86.51–109.8% [36]

Raman
spectroscopy

AuNPs@MIP-
PDA@MIL-101(Fe) MIP DES, BPA, Chloramphenicol 0.195 fM 10 fM–1.0 µM Milk 90.56–109.40% [37]

Miscellaneous

Electrophoresis Multiplying barcode
DNA Antibody,

Aptamer Testosterone
1 pg/mL -

Urine
-

[56]Fluorescence Multiplying
fluorophore 10 pg/mL - -

LC/MS Molecular barcode
carried by AuNPs 10 ag/mL - 108.94%

AFM voltage response -
Voltage

response
difference

Ascorbic acid, Caffein,
Thiamine 0.1 pg/mL 1 pg/mL–10 ng/mL

Ultrapure, river,
tap, mineral

water
- [57]

Photocurrent
DNA amplification
(RCA), multiplying

fluorophore

Aptamer,
Antibody

2,5-DCP, EE, BPA, E3, Glu,
BSA, Urea 0.01 pM 0.04 pM–10 pM Royal jelly, milk

powder, urine 82.58–108.19% [58]

Optical intensity - Aptamer,
Antibody E3, HC, P4, testosterone, E1 3.1 pM 1 pM–250 pM Human urine - [59]
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