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Abstract: Nanomedicine, a promising area of medicine, employs nanosized tools for the diagnosis,
prevention, and treatment of disease. Particularly, liposomes, lipid-based nanovesicles, are currently
one of the most successful nanosystems, with extensive applications in the clinic and an increasing
pipeline of products in preclinical and clinical development. These versatile nanotechnological
tools are biocompatible and biodegradable, and can load a variety of molecules and, ultimately,
improve the therapeutic performance of drugs while minimizing undesired side effects. In this
review, we provide a brief description on liposomes’ composition and classification and mainly focus
on their clinical use in various areas, including disease management (e.g., cancer, fungal and bacterial
infections, ocular pathologies), analgesia, vaccination, diagnostics, and immunosuppression in organ
transplantation. Herein are described examples of current liposomal products already in the clinic, as
well as the most recent clinical trials involving liposomes as effective and safe nanomedicine tools.
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1. Introduction

The constant evolution of science is prompted by knowledge exchange between
different areas. In the biology field, it was in the late 1600s that Robert Hooke carried out
the first observations of the unit of life, the cell, with only a thirty-times magnification
microscope. In parallel, Anton van Leeuwenhoek developed and improved the microscopy
field, constructing a microscope capable of up to 300 times magnification that allowed
the observation of different types of mammalian cells, tissues and bacteria [1]. In 1931,
Ernst Ruska and Max Knoll, two German scientists, achieved a major breakthrough in
microscopy technology by creating the first transmission electron microscope [2].

1.1. A Brief History of Liposomes

Since the observation of cells under a microscope, scientists have tried to understand
how lipids and biological membranes behave [3]. In 1890, Lord Raleigh studied the
interfacial tension between a triglyceride (castor oil) and water [4]. Later, in 1925, Gorter and
Grendel demonstrated that the cell membrane was constituted by phospholipid molecules,
the “lipid bilayers” [5]. Following these discoveries, Singer and Nicolson suggested the
“Fluid Mosaic Model”, in 1972, still accepted today [6]. The introduction of electron
microscopy allowed the visualization of biological membranes in greater detail. These
appeared as two “opaque” bands divided by “a less opaque interspace” [7], an observation
that was interpreted as two opposed phospholipid monolayers [8]. It was around 1962 that
Alec Bangham, using a friend’s electron microscope, observed that, in aqueous negative
stain, the phospholipid lecithin or its mixture with cholesterol spontaneously formed
closed structures, with concentric lamellae [9]. This apparently simple discovery was a
revolutionary step in the course of lipid research [3]. At that time, the systems visualized
by Bangham were designated as “multilamellar smectic mesophases” and, later on, Gerald
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Weissmann proposed the name “liposomes” [10]. In the 70 s, Bangham postulated that
“something like liposomes must have been available to house the first forms of cellular life”
that, together with other studies, remarkably impacted evolutionary history [10].

1.2. Liposome Properties and Composition

Liposomes are defined as small synthetic vesicles composed of one or more lipid bilay-
ers separated by aqueous compartments (Figure 1a) [3]. Liposomes are mainly composed
of phospholipids, a group of amphiphile molecules that includes two main categories:
glycerophospholipids and sphingomyelins [3,11]. Examples of glycerophospholipids are
phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), and phosphatidyl glycerol
(PG) [12,13]. An important characteristic of lipids that affects the bilayer properties, includ-
ing its fluidity, is the phase transition temperature (Tc). This parameter is defined as the
temperature at which the physical state of the lipid changes from an ordered and rigid
gel-state to a disordered and more fluid liquid-crystalline phase [14]. Tc highly depends on
the length and saturation degree of nonpolar chains, with longer and more saturated chains
corresponding to higher Tc [14]. Examples of phospholipids with different chain length and
saturation degree are distearoyl phosphatidyl choline (DSPC; Tc ≈ +55 ◦C), dipalmitoyl
phosphatidyl choline (DPPC; Tc ≈ +41 ◦C), dimyristoyl phosphatidyl choline (DMPC;
Tc ≈ +24 ◦C), and dioleoyl phosphatidyl choline (DOPC; Tc ≈ −17 ◦C) (Figure 1b) [13,14].

These lipid vesicles are extremely versatile, as they can load a variety of molecules, pro-
tecting them from premature degradation, changing the pharmacokinetics and improving
the biodistribution profile, and ultimately enhancing the therapeutic effect of incorporated
drugs [15,16]. Different factors can directly influence the properties of developed lipo-
somal formulations, such as lipid composition, surface charge, bilayer fluidity, size, and
preparation method [11,13]. For instance, surface modification with polyethylene glycol
(PEG) covalently linked to distearoyl phosphatidyl ethanolamine (DSPE-PEG; Figure 1)
is able to decrease the opsonization by plasmatic proteins, avoiding premature detection
and uptake by the mononuclear phagocytic system [17–19]. Consequently, in vivo, this
increases the half-life of liposomes in the bloodstream and their ability to extravasate to
affected sites [17–19].
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Figure 1. (a) Schematic representation of a liposome. These lipid-based nanosystems mimic bio-
logical membranes and are composed of one (unilamellar) or more (multilamellar) concentric lipid
bilayers separated by aqueous compartments. Liposomes are able to accommodate both hydrophilic
and hydrophobic molecules and their surface may be coated with specific ligands that recognize
receptors overexpressed at tumor cells. (b) Chemical structures of commonly used phospholipids
for the preparation of liposomes. PC: phosphatidyl choline; DOPC: dioleoyl phosphatidyl choline;
DMPC: dimyristoyl phosphatidyl choline; DSPE-PEG: poly(ethylene glycol) 2000 covalently linked
to distearoyl phosphatidyl ethanolamine. Images adapted from [20].

1.3. Classification and Main Applications of Liposomes

As depicted in Figure 2, liposomes are usually classified into three big groups based
on size and number of bilayers: unilamellar vesicles (ULVs; one lipid bilayer); oligolamellar
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vesicles (OLVs; 2–5 lipid bilayers); and multilamellar vesicles (MLVs; more than five lipid
bilayers, MLVs). In terms of diameter, ULVs are categorized into small unilamellar vesicles
(SUVs; 20–100 nm), large unilamellar vesicles (LUVs; 100–1000 nm), and giant unilamellar
vesicles (GUVs; >1000 nm) [11,21–23]. In some cases, concentric phospholipid spheres are
produced within larger liposomes, forming multivesicular vesicles (MVV) [21,24–26].
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Liposomes can also be further subdivided according to their composition and applica-
tion (Table 1) [22,26,27].

Table 1. Classification of liposomes based on their composition and properties [22,26,27].

Classification of
Liposomes Composition and Main Properties

Conventional Neutral or negatively charged phospholipids and/or cholesterol.

Long circulating Surface is coated with inert, biocompatible polymers; displays dose-independent, non-saturable,
log-linear kinetics and increased bioavailability.

pH−sensitive Include phospholipids such as dioleoyl phosphatidyl ethanolamine (DOPE) with cholesteryl
hemisuccinate (CHEMS) or oleic acid (OA); stable at neutral pH.

Cationic Composed of cationic lipids appropriate for loading negatively charged macromolecules, such as
DNA, RNA, and oligonucleotides.

Immunoliposomes Conventional or long circulating liposomes with their surface coated with specific ligands (e.g.,
antibodies); can be recognized by receptors overexpressed at affected sites.

The first research studies using liposomes began in the the 1960s, being applied as
models of biological membranes [3]. In 1971, Gregory Gregoriadis introduced liposomes as
delivery systems for enzymes (lysozyme) [28,29] and, since then, this lipid-based nanosys-
tem has been used to entrap L-asparaginase [30,31], catalase [32], superoxide dismutase [33],
among other enzymes [34]. Besides functioning as models of biological membranes, lipo-
somes are versatile and ideal nanotechnological tools for various purposes, as detailed
in Table 2.

Table 2. Description of some applications of liposomes [27,35].

Applications General Features

Drug Delivery
Encapsulation of drugs for in vivo delivery, a major use of these lipid-based nanosystems. Liposomes delay
drug clearance, change its biodistribution profile, and minimize potential toxic effects, ultimately enhancing
the therapeutic index [36].

Vaccines
Liposomes can carry and deliver antigens to antigen-presenting cells, whilst protecting them from
degradation. Liposomes that are injected intramuscularly or subcutaneously accumulate in the lymph nodes,
which is advantageous for vaccines [11].

Gene Therapy Liposomes can be used as carriers for DNA and nucleic acid-based therapeutics, including anti-sense
oligonucleotides and siRNA [11,19,37].

Diagnostic Probes can be encapsulated for imaging applications, such as magnetic resonance imaging [38]

Supplements Compounds such as glutathione and various vitamins have been associated to liposomes [39,40].

Cosmetics Liposomes are being utilized to increase the topical delivery of main ingredients included in cosmetics [41].
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As previously mentioned, liposomes are extremely useful as delivery systems, with
countless examples of high and low molecular weight molecules (e.g., enzymes, pro-
teins, metal-based complexes, antibiotics) that can be loaded in this lipid-based nanoplat-
form [30,31,33,42–55]. As part of the drug development pipeline, these liposomal for-
mulations must first undergo extensive characterization and evaluation in both in vitro
and in vivo models. In Table 3 are presented some examples of preclinical reports with
different liposomal formulations, highlighting the advantages of using this nanosystem for
therapeutic applications.

Table 3. Selected preclinical studies of liposomes loaded with high and low molecular
weight molecules.

Disease Therapeutic Agent Lipid Composition Main Findings Ref.

Cancer

Lymphoma

L-asparaginase
EPC:Chol:GM1

EPC:Chol:PI
EPC:Chol:SA

Liposomal formulations increased up to 15-fold
the half-life of the enzyme in blood circulation,
enhanced its antitumor effect, and improved

survival rate, with no adverse events.

[30]

Acylated
L-asparaginase

EPC:Chol:PI
EPC:Chol:SA

Liposomal formulations increased up to 8-fold
the half-life of the enzyme in blood circulation

and enhanced the antitumor effect, with no
adverse events.

[50]

Lewis lung carcinoma L-asparaginase SPC:Chol:DSPE-PEG Liposomes loading L-asparaginase increased
survival rate. [31]

Melanoma

Hybrid molecule
(L-tyrosine analogue

conjugated with a
triazene)

EPC:DSPE-PEG

Liposomes loaded with the hybrid molecule
preferentially accumulated at tumor sites and
significantly improved antimelanoma effect in
subcutaneous and metastatic murine models

devoid of toxicity.

[51]

Copper(II) complex DMPC:Chol:DSPE-PEG
DMPC:CHEMS:DSPE-PEG

Liposomal formulations greatly enhanced the
antimelanoma activity of metal complex with

no adverse events.
[52]

Iron(III) complex DOPE:DOPC:CHEMS:DSPE-
PEG

Liposomes loading the metal complex
displayed the highest antitumor activity, even

when compared with the positive control, TMZ.
No toxic effects were reported.

[53]

Colon cancer

Copper(II) complex DMPC:DOPE:CHEMS:DSPE-
PEG

pH-sensitive liposomes loaded with copper(II)
complex impaired tumor progression

compared to the compound in the free form
without toxic effects.

[54]

Zinc(II) complex DOPE:DOPC:CHEMS:DSPE-
PEG

pH-sensitive liposomes of zinc(II) complex
reduced tumor progression in the same extent

as the positive control 5-FU, using a 3-fold
lower therapeutic dose and without toxic side

effects.

[55]

Inflammation Rheumatoid arthritis

Superoxide dismutase EPC:Chol:SA
EPC:Chol:PI

Liposomal formulations improved the
therapeutic activity of the enzyme. [42]

Superoxide dismutase
(SOD) or acylated

superoxide dismutase
(Ac-SOD)

EPC:Chol:DSPE-PEG
EPC:Chol:SA

DSPE-PEG liposomes loading SOD and
Ac-SOD displayed the highest half-life times in

blood circulation. All SOD and Ac-SOD
liposomes accumulated at inflammation sites.

DSPE-PEG liposomes loading Ac-SOD showed
a faster anti-inflammatory effect.

[33]

Infection

Mycobacterium avium

Paromomycin
DPPC:DPPG

DMPC:DMPG:DSPE-PEG
DPPC:DPPG:DSPE-PEG

Paromomycin-loaded liposomes significantly
reduced bacterial loads in all infected organs,

showing higher antimycobacterial activity than
the positive control rifabutin.

[43]

Rifabutin PC:PS

RFB liposomal formulations reduced
mycobacterial infection in a higher extent than

the antibiotic in the free form both in
therapeutic and prophylactic murine models.

[44]

Mycobacterium tuberculosis Rifabutin
DPPC:DPPG

HPC:Chol:DSPE-PEG
DPPC:PEG

DPPC:DPPG liposomes promoted a higher
accumulation of RFB in liver, spleen and lung.

This nanoformulation improved the
antimycobacterial effect of RFB in the M.

tuberculosis murine model.

[48]

Leishmania infantum Paromomycin DPPC:DPPG

Paromomycin-loaded liposomes displayed a
superior reduction of parasite burden, even

when compared with the commercial
antileishmanial drug Glucantime®.

[43]
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Table 3. Cont.

Disease Therapeutic Agent Lipid Composition Main Findings Ref.

Ischemia-reperfusion Superoxide dismutase

EPC:Chol:DSPE-PEG
(SOD liposomes)

EPC:Chol:DSPE-PEG:DSPE-
PEG-maleimide (SOD

enzymosomes)

SOD enzymosomes enhanced the
therapeutic effect of the enzyme, compared

to SOD liposomes.
[45]

Thromboembolism

Streptokinase DSPC:Chol:DSPE-PEG
Liposomes loaded with streptokinase

increased 16-fold the half-life of the protein
in blood circulation.

[46]

Urokinase DPPC:DSPE-PEG-
NHS:DSPE-mPEG

Liposomal formulation improved the
thrombolytic activity of urokinase,

being safe.
[47]

EPC: egg phosphatidyl choline; Chol: cholesterol; GM1: monosialogangliosides; PI: phosphatidyl inositol;
SA: stearylamine; SPC: soya phosphatidyl choline; DSPE-PEG: distearoyl phosphatidyl ethanolamine covalently
linked to poly(ethylene glycol) 2000; DMPC: dimyristoyl phosphatidyl choline; CHEMS: cholesteryl hemisuccinate;
HPC: hydrogenated phosphatidyl choline; SOD: superoxide dismutase; TMZ: temozolomide; 5-FU: 5-fluouracil;
PS: phosphatidylserine; RFB: rifabutin; DSPE-PEG-NHS: distearoyl phosphatidyl ethanolamine covalently linked
to succinimidyl poly(ethylene glycol) 2000; DSPE-mPEG: distearoyl phosphatidyl ethanolamine covalently linked
to methoxy poly(ethylene glycol) 2000.

2. Liposomes as Nanomedicine Tools

Over the years, liposomes have been employed as tools to maximize the therapeutic
index of a panoply of molecules, including anticancer drugs, antibiotics, genetic material
and antifungals [16,19,27,56–58]. Nowadays, the success of liposomes is evidenced by
several approved products (Table 4; Figure 3) or undergoing clinical trials [59–61].

Table 4. Examples of liposomal formulations approved for clinical use [11,21,23,27,61,62].

Clinical Application Trade Name Active Pharmaceutical
Ingredient Lipid Composition Year of First Approval

Cancer

DaunoXome® Daunorubicin DSPC:Chol 1996

DepoCyt® Cytarabine DOPC:DPPG:Chol:triolein 1999

Doxil®/Caelyx®

Doxorubicin

HSPC:Chol:DSPE-
PEG2000 1995

Myocet® PC:Chol 2001

Lipodox® HSPC:Chol:DSPE-
PEG2000 2012

Lipusu® Paclitaxel PC:Chol 2006

Mepact® Mifamurtide DOPS:POPC 2009

Marqibo® Vincristine Sphingomyelin:Chol 2012

Onivyde® Irinotecan DSPC:Chol:DSPE-
PEG2000 2015

Vyxeos® Cytarabine and
daunorubicin DSPC:DSPG:Chol 2017

Fungal infections

AmBisome®

Amphotericin B

HSPC:Chol:DSPG 1990
Amphocil® Cholesteryl sulphate 1993

Abelcet® DMPC:DMPG 1995
Amphotec® Cholesteryl sulphate 1996
Fungisome® PC:Chol 2003

Bacterial infections Arikayce® Amikacin DPPC:Chol 2018

Ocular disorders Visudyne® Verteporfin DMPC:PG 2000

Analgesia
DepoDur™ Morphine sulfate DOPC:DPPG:Chol:triolein 2004

Exparel® Bupivacaine DEPC:DPPG:Chol:tricaprylin 2011
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Table 4. Cont.

Clinical Application Trade Name Active Pharmaceutical
Ingredient Lipid Composition Year of First Approval

Vaccination

Epaxal®
Hepatitis A virus antigen,

strain RGSB DOPC:DOPE 1993

Inflexal® V
Influenza virus antigen,

strains A and B DOPC:DOPE 1997

Mosquirix™ RTS,S antigen DOPC:Chol 2015

Shingrix varicella zoster virus
glycoprotein E Chol:MPL:QS21 2017

Comirnaty®
mRNA encoding for the

SARS-CoV-2 spike protein

ALC-0315:
ALC-015d:Chol:DSPC 2020

Spikevax™ SM-102:PEG2000-
DMG:Chol:DSPC 2021

PG: phosphatidyl glycerol; DSPC: distearoyl phosphatidyl choline; Chol: cholesterol; DOPC: dioleoyl
phosphatidyl choline; DPPG: dipalmitoyl phosphatidyl glycerol; HSPC: hydrogenated soy phosphatidyl
choline; DSPE-PEG2000: distearoyl phosphatidyl ethanolamine covalently linked to poly(ethylene glycol) 2000;
PC: phosphatidyl choline; DSPG: distearoyl phosphatidyl glycerol; DMPC: dimyristoyl phosphatidyl choline;
DMPG: dimyristoyl phosphatidyl glycerol; PG: phosphatidyl glycerol; DOPE: dioleoyl phosphatidyl ethanolamine;
DEPC: 1,2-dierucoyl-sn-glycero-3-phosphocholine; DOPS: dioleoyl phosphatidyl serine; RTS,S: portion of
Plasmodium falciparum circumsporozoite protein fused with hepatitis B surface antigen (RTS) and combined
with hepatitis B surface antigen (S); MPL: monophosphoryl lipid A, a detoxified derivative of the lipopolysac-
charide from Salmonella minnesota; QS21: saponin purified from the bark extract of Quillaja saponaria Molina
(fraction 21); ALC-0315: 6-((2-hexyldecanoyl)oxy)-N-(6-((2-hexyldecanoyl)oxy)hexyl)-N-(4-hydroxybutyl)hexan-
1-aminium; ALC-0159: 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide; SM-102: heptadecan-9-yl
8-{(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino}octanoate; PEG2000-DMG: 1,2-dimyristoyl-rac-glycero-
3-methoxypolyethylene glycol-2000.
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2.1. Liposomes for the Treatment of Fungal Infections

AmBisome® was the first approved liposomal formulation to be used in the clinic
against fungal infections, including aspergillosis, mucormycosis, invasive candidiasis, and
cryptococcal meningitis [63]. Initially, the drug amphotericin B was developed for the
treatment of local mycotic infections, being subsequently approved as a systemic antifungal
agent [64]. Due to associated nephrotoxicity and infusion-related reactions, the liposomal
formulation AmBisome® was designed. This retained the antifungal activity of the drug,
while significantly reducing toxicity [63]. In 2022, results from a phase III clinical trial
in patients with HIV-associated cryptococcal meningitis demonstrated that a single dose
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of AmBisome® (together with flucytosine and fluconazole) was equivalent to the current
standard of care, with less toxicity [65].

2.2. Liposomes for Cancer Management

In cancer treatment, one of the most well-known examples is Doxil®/Caelyx®, the
commercial name for liposomal doxorubicin. This drug, when intravenously administered
in the free form, presents high cardiotoxicity. However, following its encapsulation in
liposomes, a drastic toxicity reduction was achieved, while the antitumor efficacy was
maintained [66], reinforcing the advantages of using this delivery nanosystem. The loading
of daunorubicin into liposomes (DaunoXome®) also proved to be very advantageous,
increasing tumor drug delivery by approximately 10-fold compared to the free drug and
promoting a sustained release in vivo [67].

Another example of an antineoplastic liposomal product is Vyxeos®, which was
approved for the treatment of acute myeloid leukemia [68]. This nanoformulation contains
two cytotoxic drugs, cytarabine and daunorubicin (5:1). As each one of these drugs displays
distinct mechanisms of action, the simultaneous delivery of both drugs in a liposomal
formulation resulted in a synergistic effect, increasing treatment efficacy with a lower
dosing [68,69].

Continuous advances in nanomedicine are witnessed every day, with novel liposomes
being developed and entering clinical trials. Liposomes with ligands attached to their
surface (immunoliposomes) are currently under investigation to selectively recognize
receptors overexpressed at tumor cells and to promote cellular internalization [70]. This,
in turn, results in increased therapeutic efficacy and reduced unwanted side effects. For
instance, the endothelial growth factor receptor (EGFR) is known to promote tumorigenesis
and it is recognized as a biomarker of drug resistance [71]. Anti-EGFR immunoliposomes
loading doxorubicin are in phase II clinical trials for patients with advanced triple-negative
breast cancer (NCT02833766) [72]. Also, constant improvements of existing nanomedicines
are being made. For example, a novel liposomal formulation of doxorubicin (Talidox)
was developed and is currently under a phase I clinical trial (NCT03387917) to assess
safety, maximal tolerated dose, pharmacokinetics, and preliminary efficacy. This new
liposomal product is expected to improve the benefit/risk profile when compared to
established doxorubicin liposomes, namely Doxil®/Caelyx® [72]. Topotecan, a hydrophilic
anticancer drug derived from camptothecin, was encapsulated in dihydrosphingomyelin-
based liposomes (FF-10850). Currently, liposomal topotecan is undergoing phase I clinical
trials (NCT04047251) for the treatment of advanced solid tumors [72,73]. Cancer resistance
to drug therapy is a challenge that greatly affects clinical outcomes. In the case of platinum-
resistant small cell lung cancer, Onivyde® (liposomal irinotecan) is being tested in a phase
3 clinical trial, showing promising antitumor activity and safety [74].

2.3. Liposomes for the Delivery of Antibacterial Drugs

Liposomes also function as tools to enhance the therapeutic performance of antibi-
otics, being advantageous against antimicrobial resistance [56]. Arikayce® is a liposomal
formulation of amikacin, an antibiotic that belongs to the aminoglycoside class [75,76]. Due
to limited safety data, the Food and Drug Administration (FDA) approved this liposo-
mal product only for adult patients with nontuberculous mycobacterial lung disease, in a
combination treatment regimen. Inhalation of Arikayce® through a nebulizer improves
lung drug delivery compared to intravenously administered free amikacin, effectively
clearing pulmonary infections caused by Mycobacterium avium complex [75,76]. A clinical
trial (NCT04163601) with liposomal amikacin for inhalation is being conducted to assess
the therapeutic efficacy against infections caused by Mycobacterium abscessus, which are
difficult to treat and are commonly found in patients with cystic fibrosis [72].
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2.4. Liposomes for Ophthalmologic Applications

In ocular diseases, Visudyne® is used for the therapeutic management of age-related
macular degeneration by photodynamic therapy [77]. The treatment starts with an intra-
venous infusion of Visudyne®, followed by nonthermal light activation of the photosen-
sitive drug, verteporfin [77]. Moreover, for the relief of dry eye symptoms, the liposomal
products Lacrisek® (Fidia Farmaceutici S.p.A., Abano Terme, Italy) and Optrex™ ActiM-
ist™ (Reckitt Bensicker, Slough, UK) are currently commercialized [78]. In the prevention
of macular edema after femtosecond laser-assisted cataract surgery, liposomes loading
triamcinolone acetonide were as effective as a combination therapy, with better visual
outcomes [79]. Furthermore, in a phase I/II clinical trial (NCT02006147), a liposome oph-
thalmic formulation of dexamethasone sodium phosphate (TLC399) effectively improved
macular edema secondary to retinal vein occlusion [72,80].

2.5. Liposomes in Analgesia

Another useful application of liposomes is in pain management. Opioid analgesia is a
major part of post-operative pain control. However, the excessive prescription of opioids
brings troubling health consequences for the patients. DepoDur™ (Pacira Pharmaceuticals,
Inc., San Diego, CA, USA) is a liposomal formulation of morphine sulfate for a single-dose
administration into the lumbar epidural space, providing up to 48 h of analgesia [81,82].
Compared to standard epidural morphine, this nanoformulation decreased the need for
supplemental analgesics and ameliorated post-Cesarean delivery pain, with improved
mobility of patients [81,82]. In addition, liposomal bupivacaine (Exparel®) is a long-acting
analgesia formulation that effectively decreased post-surgery pain and reduced opioid
needs [83]. Furthermore, the analgesic efficacy of a single dose of liposomal bupivacaine is
being assessed in a phase IV study (NCT03737604) in renal transplant recipients [72].

2.6. Liposomes in Vaccination

In the field of immunization, the introduction of mRNA vaccines was a breakthrough
since these elicit a potent and long-lasting immunity. The application of lipid-based nanosys-
tems for mRNA vaccination constitutes an effective strategy and, with the 2019 outbreak
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this nanotechnology
further proved its importance in the response against this global health crisis [84]. More-
over, the composition of liposomes can be modeled to exert an immunostimulant effect
(e.g., containing monophosphoryl lipid A), being useful as antigen carriers and adjuvants
for vaccines [85]. For instance, a vaccine to prevent and reduce human immunodeficiency
virus (HIV) spread has been designed (ACTHIVE-001). This vaccine consists in a native-like
HIV-1 envelope adjuvanted with MPLA liposomes and is currently in phase I clinical trial
(NCT03961438) to evaluate the safety and immunogenicity in healthy adults [72].

2.7. Liposomes for the Delivery of Immunosuppressive Drugs

Organ transplantation is considered one of the major advances of modern medicine
and it is often the only chance for patient survival. Organ rejection still represents a chal-
lenge, and constant refinement of immunosuppression protocols is required [86] since
treatment duration and intensity is associated with increased risk of developing malignan-
cies [87]. Therefore, it is urgent to find tools that provide a more effective and safer use of
immunosuppressant drugs. An example is the application of liposomes for the delivery for
cyclosporin A. To prevent bronchiolitis obliterans syndrome after allogenic hematopoietic
stem cell transplantation or after lung transplant, aerosolized liposomal cyclosporine A
was developed (L-CsA) [88,89]. Phase II (NCT04107675) and phase III (NCT03657342,
NCT03656926, NCT04039347) studies are being conducted to assess the tolerability and
safety, as well as to evaluate the pharmacokinetics and therapeutic efficacy [72].



Biomedicines 2023, 11, 435 9 of 13

2.8. Liposomes for Diagnostic Applications

In Alzheimer’s disease, important diagnostic information can be obtained by different
imaging modalities, such as magnetic resonance imaging (MRI) and positive emission
tomography (PET), which allow the early detection of changes in the brain. One of the
hallmarks of this irreversible neurodegenerative disease that impacts cognition and function
is the progressive accumulation of extracellular amyloid beta plaques [90]. For contrast-
enabled MRI of amyloid plaques, a novel liposomal platform loading the contrast agent
gadolinium (ADx-001; single intravenous infusion) is under phase I clinical trial. This
study will evaluate the safety and provide the proof-of-concept in patients with suspected
Alzheimer’s disease (NCT05453539) [72].

Overall, liposomes have brought significant advances in medicine, with a positive
outcome in terms of efficacy and safety. As previously mentioned, one of the benefits of
liposomes is the ability to change the biodistribution profile of loaded drugs, depending on
the lipid composition, leading to a higher concentration at target sites and minimizing expo-
sure of healthy tissues in comparison with the unloaded drug. Nevertheless, this modified
biodistribution may cause some unexpected effects [26]. This is the case of doxorubicin
encapsulated in pegylated liposomes. Although its encapsulation in liposomes increases
blood circulation and reduces the cardiotoxicity associated to this chemotherapeutic agent,
a skin toxic effect has been described, named as hand-foot syndrome [26]. This effect is
mainly due to the accumulation at hands and feet of the polymer PEG included in the lipid
composition. Fortunately, this occurrence is frequently mild and patients are not usually
required to withdraw treatment [26,91].

Another issue associated with liposome administration is the complement activation-
related pseudoallergy (CARPA) [92]. This hypersensitivity reaction is sometimes observed
upon first exposure to phospholipids included in liposome formulation. However, with
subsequent administrations, the symptoms usually decrease or resolve [92,93]. In problem-
atic clinical circumstances, CARPA can be managed by decreasing the infusion rate and by
pre-treating patients with steroids and antihistamines to decrease its severity [92,93]. In pre-
clinical studies, for the particular case of Doxil®, premedication with unloaded PEGylated
liposomes (placebo liposomes) is being evaluated as a strategy to mitigate CARPA. These
in vivo studies demonstrated that placebo liposomes induced tachyphylaxis, resulting in a
substantial decrease or almost complete remission of the symptoms [94].

In summary, scientific knowledge is continuously evolving, providing solutions for
current and emerging challenges in the area of nanomedicine. Preclinical research and
clinical evaluation are crucial to further improve the efficacy and safety of liposomal for-
mulations, ensuring their successful approval for the benefit of patients. All the limitations
that may be observed for the new nanomedicines have to be evaluated case by case. Never-
theless, for each clinical condition, a rigorous balance between efficacy and safety have to
be carefully considered.

3. Conclusions

Nanotechnology is, undoubtedly, vital to tackle complex medical situations. Lipo-
somes, in particular, have revolutionized the pharmaceutical industry and medicine, pro-
viding innovative solutions for disease management and improving patients’ quality of
life. Over the years, several liposomal products have successfully reached the market
worldwide, with many being researched at the preclinical stage or undergoing clinical
trials. These biocompatible lipid-based nanosystems improve the solubility and stability of
drugs, prolong half-lives, and promote drug accumulation at target sites (e.g., tumor, infec-
tion, inflammation), enhancing treatment efficacy while minimizing unwanted side effects.
From a regulatory point of view, the diversity of liposomal products requires appropriate
guidelines to ensure their quality, effectiveness and safety, with each phase of research,
development and production being tightly controlled. For instance, minor changes in
the lipid composition might result in significant variations in the pharmacodynamics and
pharmacokinetics of the loaded drug, having repercussions in the therapeutic performance.
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Globally, lipid-based nanosystems continue to provide innovative solutions for clinical
challenges, advancing the treatment and diagnosis of human pathologies.
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