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Abstract: Fibromyalgia syndrome (FM), one of the most common illnesses that cause chronic
widespread pain, continues to present significant diagnostic challenges. The objective of this study
was to develop a rapid vibrational biomarker-based method for diagnosing fibromyalgia syndrome
and related rheumatologic disorders (systemic lupus erythematosus (SLE), osteoarthritis (OA) and
rheumatoid arthritis (RA)) through portable FT-IR techniques. Bloodspot samples were collected
from patients diagnosed with FM (n = 122) and related rheumatologic disorders (n = 70), including
SLE (n = 17), RA (n = 43), and OA (n = 10), and stored in conventional protein saver bloodspot cards.
The blood samples were prepared by four different methods (blood aliquots, protein-precipitated
extraction, and non-washed and water-washed semi-permeable membrane filtration extractions),
and spectral data were collected with a portable FT-IR spectrometer. Pattern recognition analysis,
OPLS-DA, was able to identify the signature profile and classify the spectra into corresponding classes
(Rcv > 0.93) with excellent sensitivity and specificity. Peptide backbones and aromatic amino acids
were predominant for the differentiation and might serve as candidate biomarkers for syndromes
such as FM. This research evaluated the feasibility of portable FT-IR combined with chemometrics
as an accurate and high-throughput tool for distinct spectral signatures of biomarkers related to the
human syndrome (FM), which could allow for real-time and in-clinic diagnostics of FM.

Keywords: fibromyalgia; biomarker; disease diagnostics; portable FT-IR spectroscopy;
chemometrics; blood

1. Introduction

Fibromyalgia (FM) is a common chronic disease characterized by widespread pain,
cognitive problems, sleep disturbances, and chronic fatigue, along with a plethora of other
symptoms [1]. This disease affects between 2 and 5% of the population or approximately
15 million people at any one time in the United States alone [2]. The coalescence of psychi-
atric comorbidity coupled with physical and/or functional symptomatology frequently
results in the exacerbation of underlying depressive symptoms, which makes treatment
more challenging [3]. FM represents a significant burden on health resources, leading
to voluminous expenditures in health, social, and economic sectors. In addition, work
absenteeism or disability may lead to job loss and the use of government assistance, further
burdening society due to the care of affected individuals [4].
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The burden that FM causes on patients, relatives, and society can be reduced by early
diagnosis and treatment [5]. FM diagnosis has evolved over the years, changing from de-
pendence on the presence of tender points to a method that is inclusive of comorbid features.
Current diagnostic criteria, which rely on a combination of scores from the widespread pain
index (WPI) and a symptom severity (SS) scale, help take into consideration the totality
of how FM affects the individual [6,7]. Nevertheless, rheumatologic disorders, including
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and osteoarthritis (OA),
may co-exist with FM or have overlapping symptoms and psychosocial features, which
can confound the diagnosis and treatment of both conditions [8–10]. Furthermore, patients
with poorly explained symptoms are often lumped into the FM category inappropriately
by physicians that lack training or experience [11].

As the etiopathogenesis of FM is still poorly understood, there are currently no
biomarkers or reliable, objective diagnostic tests for FM [7,12]. Up to 75% of patients go
undetected with FM, resulting in postponed care due to the absence of distinct diagnostic
markers [7,12]. In addition, FM patients make up a substantial proportion of chronic
pain patients receiving opioids, even though medical guidelines recommend against their
use in FM [13,14]. Unnecessary exposure of FM patients to opioids may result in poorer
outcomes and addiction and makes patients prone to numerous adverse events, including
death [14,15].

Developing a reliable and objective earlier diagnostic method would be a significant
step towards improving the health conditions of patients, lowering healthcare costs, and
improving the quality of life for individuals with FM. Infrared fingerprinting capabilities
allow for fast and high-throughput analysis of a wide range of sample types and provide
distinctive chemical ‘fingerprints’ with a unique spectral profile [16]. Mass spectrometry
(MS) techniques and NMR spectroscopy could provide enough selectivity and specificity
for screening metabolites [17]. However, high-cost instrumentation, labor-intensive and
complicated sample preparation, and well-trained personnel are required to operate the
instrumentation, which makes them less amenable to be implemented in clinics [18]. In the
last decades, portable infrared (IR) spectrometers have become commercial, with develop-
ments in micro-electro-mechanical system (MEMS) production and optoelectronics [19].
Portable optical systems have incorporated the analytical precision of spectroscopy into in
situ/in-field applications with high spectral resolution equivalent to benchtop instruments
for chemical identification [18]. The application of chemometrics, such as orthogonal partial
least squares discriminant analysis models (OPLS-DA), soft independent modeling class
analogy (SIMCA), and support-vector machines (SVM), is critical to extract unique spectral
features from other predominant vibrations related to chemical and physical properties
of biological samples [20]. Recent studies have investigated FT-IR techniques combined
with chemometrics for disease diagnostics [18], such as psoriasis [21], cancer [22,23], and
Alzheimer’s disease [24].

Our group reported the first metabolomics approach in diagnosing FM and related
rheumatologic disorders (RA, OA and SLE) [5]. The low-molecular-weight fraction (LMF) of
human blood was isolated (filtrate) by using centrifugal ultrafiltration on a semi-permeable
membrane (30 K), while high-molecular-weight solutes were retained (retentate) [5]. Pat-
tern recognition analysis of the spectra allowed discriminating FM patients from RA and
OA groups that appeared to be metabolically similar. However, chemical characterization
of the serum fraction by using a Raman database revealed that the spectrum was dominated
by glycerol bands. Raman analysis of the Whatman bloodspot blank paper and the ultrafil-
tration membranes indicated that the samples contained glycerol that was carried over from
the ultrafiltration membranes. Glycerol is coated to the membranes to maintain open pores
and preserve the membrane before use [25]; however, it dissolved during the extraction
process and accumulated in the serum fraction. This artifact masked several portions of
the IR spectra except for the amide region (1700–1500 cm–1) that served to discriminate the
subjects based on their disease. Nonetheless, alternative sample preparation methods are
required to avoid the artifact. Pure blood samples contain large molecules such as proteins,
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which may obscure some useful information [26]. Protein precipitation is usually achieved
by using an organic solvent such as acetonitrile (ACN) with great reproducibility and high
efficiency compared with using acidic reagents or heat [27]. Physical extraction is another
common approach and includes semi-permeable filtration methods [28].

Few studies have been carried out to find biomarkers for FM diagnosis recently.
Hackshaw et al. evaluated vibrational spectroscopy on distinguishing FM (n = 50) patients
from patients with other rheumatological diseases (RA (n = 29), OA (n = 19), and SLE
(n = 23)) and reported that protein backbones and pyridine-carboxylic acids could be key
metabolites for disease discrimination [5]. Some other studies compared metabolomic
differences between FM patients and healthy controls. Caboni et al. assessed distinct
metabolomic profiles of blood plasma from FM patients (n = 22) and controls (n = 21)
using LC-Q-TOF/MS analyses, which revealed that FM patients have a greater level of
lysophosphocholines than controls [29]. Malatji et al. investigated the metabolite profile
of urine from FM patients and healthy controls using NMR and suggested FM patients
(n = 18) could have increased metabolites that are widely related to the gut microbiome [30].
However, no reproducible, dependable distinguishing biomarkers for any of the techniques
have been found previously [12]. Furthermore, none of these studies have employed a large
sample number, including more variance from subjects, which is generally required in
disease diagnosis studies [18,26].

The objective of this study was to develop a non-targeted fingerprinting FT-IR tech-
nique that can identify FM as distinct from other related rheumatologic disorders. Ulti-
mately, the development of robust predictive models based on portable IR spectra could
allow for real-time and in-clinic diagnostics for potential revolutionary advances and huge
cost savings.

2. Materials and Methods
2.1. Patient Sample Recruitment and Sample Storage

All studies involving human subjects were approved by The University of Texas at
Austin institutional review board and abided by the Declaration of Helsinki principles.
Following IRB approval (study no. 2020030008/approval date 19 June 2020), blood samples
were obtained from patients with FM (n = 122) and related rheumatologic disorders (n = 70),
including SLE (n = 17), RA (n = 43), and OA (n = 10), at the University of Texas at Austin
and the Ohio State University rheumatology clinics located at Care Point East in Columbus,
Ohio. Bloodspots were obtained at the University of Texas at Austin Rheumatology Clinics
and at The Ohio State University Care Point East Rheumatology clinics from September
2020 to January 2023.

Patients’ blood samples were collected and stored on bloodspot cards (Whatman 903
Protein Saver Snap Apart Card, GE Healthcare, Westborough, MA, USA) at −20 ◦C until
they were shipped to the Rodriguez-Saona Vibrational Spectroscopy Laboratory at The
Ohio State University Department of Food Sciences on dry ice and stored for analysis. The
bloodspot size was standardized by collecting samples on cards with preprinted circles as
guides, with each circle containing approximately 50 µL of blood.

Self-reported symptoms were obtained from all subjects using the Revised Fibromyal-
gia Impact Questionnaire (FIQR), a 10-item self-rating instrument that measures physical
functioning, work status, depression, anxiety, sleep, pain, stiffness, fatigue, and well-
being [31]. The Beck Depression Inventory (BDI) is a 21-item questionnaire used to quantify
the psychological/behavioral dimension of depression [32]. The Symptom Impact Ques-
tionnaire Revised (SIQR) is the FM-neutral version of the FIQR and does not assume the
patient has FM [33].

Criteria for the diagnosis of FM included: age 18–80 with a history of FM and meeting
current American College of Rheumatology (ACR) criteria [6]. The diagnosis of OA [34],
RA [35], and SLE [36] was based on ACR criteria for each disorder.

Sigmaplot v14.5 and SigmaStat v4.0 software,(Inpixon, Palo Alto, CA, USA) were
utilized for statistical analysis of questionnaires and calculation of correlation coefficients.
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2.2. Sample Preparation

Samples were prepared by four approaches for spectral acquisition. (a) Blood serum
aliquots: one circle was punched from the bloodspot card, diluted with 1 mL of water
(HPLC grade, Sigma-Aldrich, Inc., St. Louis, MO, USA) in a 15 mL centrifuge tube, and
mixed by sonication (Sonic Dismembrator Model 100, Fisher Scientific, Inc., Pittsburgh,
PA, USA) for 15 min. Then, 100 µL of the diluted blood fluid was dried as a film using
a vacuum centrifuge (Vacufuge plus Concentrator, Eppendorf, Inc., Westbury, NY, USA)
and used for further analysis. (b) Chemical protein precipitation extraction [37]: one circle
of the bloodspot was mixed with 1 mL water with the same approach described above in
a 15 mL centrifuge tube. Then, 1 mL of blood fluid was mixed with 4 mL acetonitrile (HPLC
grade, Sigma-Aldrich, Inc., St. Louis, MO, USA), and the mixture was vortexed thoroughly.
After that, the centrifuge tube stayed in the fridge at 4 ◦C for 1 h and centrifuged (Sorvall
Legend XFR Centrifuge, Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 4000 rpm
for 15 min at 4 ◦C to precipitate proteins. The supernatant was collected and dried as a film
by using a sample concentrator (BTLab 103 Systems, BenchTop Lab System, St. Louis, MO,
USA) with nitrogen. To remove most of the protein (i.e., hemoglobin) thoroughly, the dried
film was redissolved by 100 µL water (HPLC grade) and mixed with 400 µL acetonitrile
(HPLC grade, Sigma-Aldrich, Inc., St. Louis, MO, USA) to participate with the remaining
protein and centrifuged to obtain the supernatant part. Finally, the supernatant part was
evaporated into a film by a sample concentrator.

Another two extraction approaches were conducted by using semi-permeable mem-
brane ultrafiltration extraction procedures by Hackshaw et al. with minor modifications [5].
(c) Washed semi-permeable membrane filtration extraction: Amicon Ultra-4 (10 K) centrifu-
gal filter tubes (Sigma-Aldrich, Inc., St. Louis, MO, USA) were washed 4 times (3 mL, each
time) with water (HPLC grade) by centrifuging at 4000 rpm for 15 min at 4 ◦C to eliminate
the glycerol coated on the walls of the filter. One circle of the bloodspot was mixed with
1 mL water with the same approach described in (a). Then, the supernatant was transferred
to the washed Amicon filter tube and centrifuged at 4000 rpm for 15 min at 4 ◦C. Blood
filtrate fluid was concentrated into a film by a sample concentrator. The low-molecular-
weight fraction (LMF) of the human plasma proteome, obtained by centrifugal membrane
filter devices, is a significant source in identifying plasma-based biomarkers of disease [28].
Overall, semi-permeable membrane filters removed proteins and isolated LMF of water-
soluble molecules (i.e., amino acids, peptides, sugars and lipids). (d) Semi-permeable
membrane filtration extraction: in this approach, filters did not wash before adding the
dissolved blood and all the rest of the procedures followed the same as described above in
(c). Therefore, the samples extracted by this approach contained the artifact glycerol.

2.3. Spectral Data Acquisition

A 4500a series Agilent’s portable FT-IR unit (Agilent Technologies, Inc., Santa Clara,
CA, USA) equipped with 3 bounce diamond attenuated total reflectance (ATR) was utilized
for spectral acquisition, covering the spectral range from 4000 to 700 cm−1. It has a 200 µm
active area on a 2 mm diameter sampling surface, giving ~6 µm penetration depth, and is
equipped with a zinc selenide beam splitter, a high-throughput Michelson interferometer,
and a thermoelectrically-cooled dTGS detector [38]. Dried blood fluid aliquots and plasma
pellets (extracted by using acetonitrile and washed semi-permeable membrane) were
redissolved in 10 µL of HPLC grade water and vortexed for 15 s to mix thoroughly for
spectral acquisition, while samples with glycerol extracted by using the non-washed
membrane method did not have to be redissolved. Then, 2 µL of the prepared sample was
applied directly onto the ATR sampling window, and the excess water was dried under
the vacuum to obtain a dry, thin film on the sampling window (Figure 1). The sampling
window was cleaned with 70% ethanol, and a background was obtained after every reading.
To enhance the signal-to-noise ratio, 128 scans were co-added with 8 cm−1 resolution for
spectral collection. Spectra were recollected, or samples were re-extracted from blood spots
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when spectral inconsistencies were encountered. Collected spectra were recorded using the
Agilent MicroLab PC software (Agilent Technologies, Inc., Danbury, CT, USA).
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2.4. Multivariate Data Analysis

IR spectral differences between samples from subjects with FM and related rheuma-
tologic disorders (SLE, RA, and OA) were analyzed using multivariate data analysis to
resolve the information of interest and cluster the samples according to the assigned sample
class (health condition) [5]. The spectral data were randomly divided into a training (75%,
FM (n = 92) and non-FM (RA, OA and SLE) (n = 53)) and an independent external validation
(25%, FM (n = 30) and non-FM (RA, OA and SLE) (n = 17)) set to generate the predictive
algorithm for diagnosing FM and related rheumatologic disorders. The spectra were im-
ported into the Pirouette pattern recognition software (Pirouette version 4.5, Infometrix Inc.,
Woodville, WA, USA) from the portable 4500a FTIR instrument as GRAMS (.spc) files to
perform orthogonal signal correction-partial least squares discriminant analysis (OPLS-DA)
analysis. Spectral data were transformed by the Savitsky–Golay (SG) second derivative
(21 points for spectra of blood aliquots, protein-precipitated samples, and LMF samples,
and 7 points for spectra of LMF samples with glycerol) and further preprocessed by mean
centering. SG filtering enhanced minor bands, resolved overlapping bands, and suppressed
unwanted spectral features (i.e., scattering effects), and mean centering helped to alleviate
multicollinearity [39].

OPLS-DA is a supervised learning technique that relates IR fingerprinting data to the
known information of class membership, such as FM (class 1) and related rheumatologic
disorders (SLE, RA, and OA, class 2), to build up the training models, elucidating separation
between the groups [40]. Orthogonal signal correction (OSC), a data filtering technique,
was used to remove systematic spectral variation that did not agree with the assigned
group memberships and to minimize the variance between individuals [40,41]. The PLS-
DA technique extracted factors from both X and Y such that the covariance between the
extracted factors was maximized. The discriminating ability of each OPLS-DA model was
evaluated using two validation approaches. Firstly, the internal cross-validation of each
OPLS-DA model’s performance was assessed using a leave-one-out approach, whereby
each sample, in turn, was excluded, and a model was generated from the remaining samples
to predict the class membership of the excluded sample. This internal cross-validation
approach can provide the performance of the training model with the diagnostics statistics
(misclassification and R). R represents the “goodness of fit” [42]. The optimal number
of latent variables (LVs) were selected by applying the cross-validation approach, while
the results of cross-validated OPLS-DA represented the classification of samples in the
training set. Secondly, the external validation of each training model was assessed by the
independent external validation set (25%), unseen by the training model, which provided
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an unbiased predictive accuracy, sensitivity and specificity performance, resembling in-
clinic applications.

3. Results
3.1. Clinical Characteristics of Subjects

Widespread pain syndromes such as FM, RA, SLE and OA are common problems
in the general population, but the pathogenesis of these disorders varies greatly and,
particularly for FM, is not well understood. In addition, these disorders may frequently
overlap, making diagnosis even more challenging. Therefore, a sensitive and specific
diagnostic test for FM would be a significant advance and is currently an unmet need. The
clinical characteristics of the patients are presented in Table 1.

Table 1. Clinical characteristics of all subjects. Values expressed as mean +/−/sd; N = number of
subjects, Age (range). FM: fibromyalgia, RA: rheumatoid arthritis, SLE: systemic lupus erythemato-
sus, OA: osteoarthritis. BMI: body mass index. FIQR: fibromyalgia impact questionnaire revised.
SIQR: symptom impact questionnaire revised. BDI: Beck depression index.

Age
R = 61 (18–79)

N
(22/170-M/F) BMI FIQR SIQR BDI

FM
44.5+/−13.2 122

32.3+/−9.4 54.9+/−18.2 19.5+/−9.3R = 55 (18–73) (M = 8, F = 114)

RA
54.6+/−13.4 43

31.4+/−8.2 34.6+/−25.4 9.5+/−7.9R = 57 (20–77) (M = 10, F = 33)

SLE
43.9+/−15.2 R = 50 17

29.9+/−8.9 35.4+/−28.9 10.9+/−10.7(18-68) (M = 1, F = 16)

OA
63.5+/−8.0 10

35.8+/−9.9 27.4+/−18.9 7.3+/−6.3R = 27 (52–79) (M = 3, F = 7)

Table 1 shows that patients with FM (n = 122, F: 114, M: 8) had a mean age of
44.5 +/−13.2 with a range of 18–73. Their BMI was 32.3+/−9.4, with a mean FIQR of
54.9+/−18.2 and a mean BDI of 19.5+/−9.3. Patients with RA (n = 43, F: 33, M: 10) had
a mean age of 54.6+/−13.4 with a range of 20–77. Their BMI was 31.4+/−8.2, with a mean
SIQR of 34.6+/−25.4 and a mean BDI of 9.5+/−7.9. Patients with SLE (n = 17, F: 16, M: 1)
had a mean age of 43.9+/−15 with a range of 18–68. Their BMI was 29.9+/−8.9, with
a mean SIQR of 35.4+/−28.9 and a mean BDI of 10.9+/−10.7. Finally, patients with OA
(n = 10, F: 7, M: 3) had a mean age of 63.5+/−8.0 (range 52–79), BMI of 35.8+/−9.9, with
a mean SIQR of 27.4+/−18.9 and a mean BDI of 7.3+/−6.3.

Scatterplot analyses of the Fibromyalgia Impact Questionnaire Revised (FIQR) vs. the
Beck Depression Index (BDI) for subjects with FM are presented in Figure 2. Corresponding
Pearson coefficients and p-values are +0.588 with p < 0.01.
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3.2. IR Spectroscopy

Figure 3a shows the spectra collected from blood aliquots, plasma extracted by a chem-
ical protein-precipitated method, and the low-molecular-weight fraction (LMF) of human
blood extracted by a water-washed semi-permeable membrane filtration method. The broad
peak centered around 3200–3300 cm−1 was primarily from -OH stretches, which could also
be associated with -NH stretches. The peaks occurring in the region 2970–2840 cm−1 were
attributed to methylene and methyl -CH stretching that are present in hydrocarbon chains
of lipids, proteins, and other metabolites [43]. Spectral features of chemically extracted
plasma and washed-membrane-extracted LMF showed similar profiles. A strong peak
was observed at 1583 cm−1 with a slight shoulder at 1670 cm−1. These were associated
with amide II (N-H in-plane bend and C-N stretch) [44] and amide I bands (C = O stretch),
which were related to the peptide backbone conformation [45]. The peaks between 1000
and 1200 cm−1 were attributed to C-O single bonds in carbohydrates [46]. Overall, both the
chemically precipitated and the LMF extraction methods mainly removed large proteins
and isolated hydrophilic molecules (i.e., amino acids, peptides, sugars, and lipids), there-
fore, resulting in a remarkable decrease in some IR absorption bands in the region between
1400 and 1800 cm−1 compared with the spectral profile of the blood aliquots [47]. For exam-
ple, the absorbances of bands centered at 1646 and 1535 cm−1, which were associated with
the amide I and II characteristics of large proteins (i.e., hemoglobin), were more evident in
the spectra of blood aliquots [48,49]. In Figure 3b, spectral features of samples extracted by
a non-washed semi-permeable membrane were dominated by glycerol bands, except the
amide region (1700–1500 cm−1). Glycerol is coated on the membranes to maintain open
pores and to preserve the membrane before use [50].
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3.3. OPLS-DA Prediction Model Development for Diagnosis of Fibromyalgia and Other
Rheumatologic Disorders

As described above, OPLS-DA analysis was performed to generate predictive algo-
rithms for the diagnosis of fibromyalgia and other rheumatologic disorders by combining
IR spectral data with the known information of class membership. To evaluate the ro-
bustness of the predictive models, 75% of the spectral data were randomly selected and
allocated as the calibration set, and the remaining 25% of data was assigned as the exter-
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nal validation set. The optimum latent variable (LV) numbers of predictive algorithms
were determined by leave-one-out cross-validation in order to discriminate between the
two classes and minimize the overfitting issue [39]. Highly collinear neighboring wavenum-
bers were excluded from the whole spectrum to maximize the predictive performance of
the calibration models. The score plots corresponding to the first three latent variables (LVs)
of OPLS-DA regression models obtained from the spectral data of samples prepared by
(a) redissolving, (b) chemical precipitation extraction, (c) washed membrane extraction and
(d) unwashed membrane extraction were presented in Figure 4. The score plots showed
distinctive clusters of spectra from subjects with fibromyalgia and subjects with other
rheumatologic disorders. To generate the cross-validated calibration model for the blood
aliquot samples and chemical-extracted samples, the spectral ranges of 3100–2600 cm−1

and 1750–700 cm−1 were included, which involved more signatures in differentiating FM
from other rheumatologic disorders. Blood aliquots model with five LVs for both FM and
other rheumatologic disorder classes explained 91.54% of the variance and provided an
excellent regression coefficient of cross-validation (Rcv) of 0.96. The calibration model
for chemical-extracted blood samples with eight LVs explained 81.31% of the variance in
both classes, providing an Rcv of 0.93. A cross-validated LMF (washed semi-permeable
membrane filtration extraction) model was generated by seven LVs in two classes with
a spectral range of 4000–2421 cm−1 and 1840–700 cm−1, which explained 83.17% of the
variance with an excellent Rcv of 0.99. Similarly, the calibration model of LMF with glycerol
with eight and seven LVs for FM and the other disorders, respectively, (3000–2380 cm−1

and 1881–1154 cm−1), explained 86.43 and 84.63% of the variance, respectively, with an Rcv
of 0.99. OPLS-DA, with up to eight factors and one OSC removed, distinguished FM and
other rheumatologic disorders with no misclassification for leave-one-out models.
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extraction, (c) washed membrane extraction (LMF), and (d) unwashed membrane extraction (LMF
with glycerol).

The predictive accuracy of these calibration OPLS-DA models generated from the
spectra with different sample preparation approaches was externally evaluated by the
independently unseen 25% of spectral data. The accuracy illustrated the capability of
the predictive models to differentiate the subjects with FM and the subjects with other
rheumatologic disorders to the corresponding classes correctly. Sensitivity demonstrated
the ability of the calibration models to determine the subjects with FM correctly, while
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specificity evaluated the performance of our model in determining the subjects with
other rheumatologic disorders correctly [51]. External validation separated the spectral
data from subjects with FM and subjects with other rheumatologic disorders, with excel-
lent accuracy/sensitivity/specificity (Table 2) of 80.9%/86.7%/70.6%, 95.7%/93.3%/100%,
93.6%/93.3%/94.1%, and 83.0%/83.3%/82.3%, respectively, by the OPLS-DA models gen-
erated by samples prepared from blood aliquots, chemical protein-precipitated extraction,
and unwashed and washed semi-permeable membrane extraction methods. Comparatively,
models generated from protein-precipitated samples and LMF (washed semi-permeable
membrane extraction) demonstrated a higher accuracy, sensitivity, and specificity than the
models of blood aliquots and LMF with glycerol.

Table 2. Statistical performance results of OPLS-DA models obtained from the portable FT-IR spectral
data of samples prepared by four different approaches (blood aliquots, chemical solvent precipitation
extraction, and unwashed and washed semi-permeable membrane extractions).

Model Types Accuracy (%) Sensitivity (%) Specificity (%)

Blood aliquots 80.9 86.7 70.6
Chemical precipitation 95.7 93.3 100

Washed membrane 93.6 93.3 94.1
Unwashed membrane 83.0 83.3 82.3

As significant as the predictive accuracy is the biological interpretation of the clas-
sification models. OPLS-DA calculated a regression coefficient for each variable, which
represented the contribution of each variable to the discrimination of FM and other rheuma-
tologic disorders (RA, OA, and SLE) [52]. Regression vectors from 1710–1410 cm−1 obtained
from OPLS-DA models are shown in Figure 5. Positive peaks suggested positive corre-
lations, while negative peaks indicated negative correlations, and zero represented no
effect [39]. The regression vectors showed the discriminating region was dominated in
1710–1510 cm−1 by the bands centered at 1643, 1628, 1598, 1575 and 1515 cm−1, charac-
teristic of C=O stretching vibrations in Amide I, the β-sheet structure, the N-H bend, the
C–C aromatic ring, and the C=C stretch of aromatic compounds, respectively [5,53–56].
Furthermore, amide bands and aromatic rings in the profiles of the regression vector for all
four models were consistently important.
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Overall, multivariate analysis of IR spectra from different sample preparation ap-
proaches yielded robust models, reflecting that peptides in the blood fluid can be candidate
vibrational biomarkers in the diagnosis of FM and other rheumatologic disorders (RA, OA,
SLE). Furthermore, the importance of aromatic compounds was also highlighted by the
chemometrics, which is in agreement with the finding reported by Hackshaw et al. [5], sup-
porting that aromatic amino acids (i.e., tryptophan) can be candidate biomarker molecules.
Our approach provided portable sensing capabilities to reduce the assay time and help
streamline the diagnosis procedure, enabling real-time and field-based measurements at
clinics and point-of-service.

4. Discussion

This study assessed the feasibility of a portable FT-IR spectrometer in the diagnosis
of individuals with fibromyalgia as distinct from those with other rheumatic disorders,
including RA, SLE, and OA. The different sample preparation approaches of human blood
samples were evaluated and investigated in building predictive algorithms. The results
of this study demonstrated unique IR spectral signatures that clustered subjects into the
corresponding classes (FM and other rheumatic disorders (RA, SLE, and OA)) with good
sensitivity and specificity. The regression vectors predominated by amide bands and
aromatic ring structures, indicating peptides and aromatic amino acids in the blood can be
candidate biomarkers.

Different preparation approaches for serum samples have been evaluated in this study,
and we found that the spectral profile of chemical-precipitated plasma and LMF prepared
by washed membrane filtration was similar. A recent study reported by Gowda et al. has
comprehensively compared the performance of protein precipitation by chemicals and
ultrafiltration approaches using NMR. The 1H NMR of both proteins precipitated, and
ultrafiltered serum detected all metabolites with comparable reproducibility. However, in
ultrafiltered serum, nearly half of the quantified metabolites exhibited lower concentrations,
especially tryptophan, benzoate, and 2-oxoisocaproate, compared to protein-precipitated
serum [57]. In addition, Gekko et al. and Yadav et al. have found that with the addition of
acetonitrile to an aqueous solvent, peptide-peptide hydrogen bonds could be enhanced,
and the conformation of a protein (i.e., lysozyme) could change to a helix-rich form [58,59].

The success of developing OPLS-DA predictive algorithms demonstrated the capa-
bility of using non-targeted portable fingerprinting techniques to differentiate individuals
with FM from those with RA, SLE, and OA. According to the studies reported by the
American College of Rheumatology, the diagnosis accuracy and sensitivity of patients
with fibromyalgia and other rheumatologic pains (but not fibromyalgia) were 84.9% and
88.4%, which used the traditional diagnostic approach by the pain analysis in up to 18 pain
sites [60]. Comparatively, models generated from protein-precipitated samples and washed-
membrane filtrated samples showed better predictive performance with high accuracy
and sensitivity. The slightly lower/comparable accuracy and sensitivity of the models
generated by blood aliquots and LMF with glycerol could be due to the large molecules
that mask the significant fingerprinting information of the metabolites (biomarkers).

Lechowicz et al. and Hackshaw et al. indicated that proline and tryptophan amino
acids could be effective compounds in distinguishing RA from the control healthy group
and FM from RA, SLE and OA groups, respectively, in agreement with our finding from mul-
tivariate data analysis that aromatic compounds/amino acids can be candidate biomarker
molecules [5,61]. Interestingly, as discussed above, the ultrafiltered serum could have less
tryptophan compared to protein-precipitated serum, and we also found the algorithm de-
veloped by ultrafiltered samples has a slightly lower sensitivity compared to the algorithm
of protein-precipitated serum.

Very limited studies have been performed by infrared spectroscopy to diagnose fi-
bromyalgia previously. Recently, our group has investigated the metabolite profile of
patients with FM (n = 50), RA (n = 29), OA (n = 19) and SLE (n = 23) using portable FT-IR
spectrometer based on an ultrafiltration sample preparation method, where soft indepen-
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dent modeling by class analogy (SIMCA) was applied to discriminate different syndrome
with 100% accuracy (20% samples for external validation) [5]. With the increasing sample
number, OPLS-DA was selected in this study, which “combines the separation strengths
of PLS-DA and SIMCA”, separating predictive from non-predictive (orthogonal) varia-
tion [62]. Similarly, Passos et al. have utilized benchtop FT-IR spectroscopy combined with
GA-LDA (genetic-algorithm-based linear discriminant analysis), achieving an accuracy of
84.2% and sensitivity of 89.5% for differentiating blood plasma from fibromyalgia patients
and control healthy subjects [60].

The clinical groups were generally similar in terms of BMI. The FM and SLE groups
were similar in age, with RA and OA groups being generally older. FIQR scores, although
not directly analogous to SIQR, do reflect the level of generalized anxiety and/or distress
exhibited by individual subjects. As a result, FIQR (and SIQR) might represent surrogate
measures of quality of life (QOL) for affected individuals. As would be expected, in FM
subjects, FIQR scores were generally higher than the corresponding SIQR seen in the RA or
SLE groups, reflecting more adversely impacted QOL. OA, not surprisingly, had the lowest
scores. Similarly, BDI scores tended to be higher in FM subjects (2 fold) relative to scores
in RA, SLE, and OA groups. Medications of the recruited patients have been recorded
at the time of blood collection in this study. Based on the spectroscopy data, there was
no obvious signal/influence from medications. However, the effect of medications was
beyond the scope of this study. To determine the influence of medications on the results,
further studies need a control population with medication free as well as similar clinical
features and demographics in order to compare with the corresponding population with
the medications. This would help to evaluate what effect, if any, medications might exert
on spectral results. The analysis of Figure 2 reflects the individual FIQR values plotted
against BDI scores, reflecting high dispersion within the FM group. The Pearson coefficient
of 0.588 shows a moderate to strong association between the two variable scales, with
evidence of a statistically significant association between the two continuous variables
at the 0.01 level. The figure, however, reflects high dispersion reflective of the diverse
phenotype that we see clinically in FM patients. Fibromyalgia patients have highly variable
clinical presentations; some have a high degree of comorbid depression coupled with
concurrent decreased overall quality of life (QOL), while others subjectively reporting
high levels of depressive symptomatology may have their QOL less adversely impacted.
Alternatively, we also encounter many individuals at the other ends of the spectrum
and many with a mixed picture. Currently, we are conducting studies to metabolically
evaluate the clinical domains of FM (quartiles of subjects based on depression levels, pain
scores, and other validated measures) by vibrational spectroscopy. If metabolic differences
between these domains can be ascertained by vibrational spectroscopy, then coupling
this technology with complementary LC-MS/MS would provide valuable insights into
targeted/personalized treatment approaches.

Many physicians may lack the training to diagnose FM accurately [5]. Patients with
poorly explained symptoms are often inappropriately lumped into the FM category. For
physicians, a diagnosis of FM often provides an explanation for difficult-to-understand
symptoms [5]. Based on the results from the 2012 United States National Health Interview
Survey, when patients received a diagnosis of FM, most of the patients did not satisfy
published FM diagnosis criteria [63]. The latest diagnostic criteria still fail to provide
an objective measure confirmatory of disease, which is actually what many FM patients
are looking for. The identification of individuals with this clinical phenotype in different
chronic pain cohorts can be a predictor of opioid non-responsiveness. The use of a rapid,
reproducible biomarker can reassure patients that their symptoms have an objective marker
and inform practitioners to direct therapy toward non-opioid regimens. Thus, this study has
great significance in developing reproducible vibrational biomarkers for disease diagnosis
and for identifying potential therapeutic targets. With the advances in the techniques
discussed above, technologies for the diagnosis and treatment of FM and related rheumatic
disorders might be advanced.
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5. Conclusions

In summary, this study showed that the in-clinic deployable fingerprinting FT-IR
technique has the capability of discriminating individuals with fibromyalgia from those
with other rheumatic disorders, including RA, SLE, and OA. Our results demonstrated the
OPLS-DA algorithms developed by protein-precipitated and washed-membrane filtered
samples have excellent sensitivity and specificity with no misclassification. Unique fin-
gerprinting IR spectral signatures have been resolved by multivariate data analysis, and
amide bands and aromatic ring structures dominated the regression vectors. Peptides and
aromatic amino acids in the blood can be candidate biomarkers for syndromes such as
FM. Ultimately, the development of robust predictive models based on portable IR spectra
could allow for real-time and in-clinic diagnostics and potential therapeutic targets for
potential revolutionary advances and huge cost savings.
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46. Huber, M.; Kepesidis, K.V.; Voronina, L.; Božić, M.; Trubetskov, M.; Harbeck, N.; Krausz, F.; Žigman, M. Stability of person-specific
blood-based infrared molecular fingerprints opens up prospects for health monitoring. Nat. Commun. 2021, 12, 1511. [CrossRef]

47. Rubio-Diaz, D.E.; Pozza, M.E.; Dimitrakov, J.; Gilleran, J.P.; Giusti, M.M.; Stella, J.L.; Rodriguez-Saona, L.E.; Tony Buffington, C.A.
A candidate serum biomarker for bladder pain syndrome/interstitial cystitis. Analyst 2009, 134, 1133. [CrossRef]

48. Kochan, K.; Bedolla, D.E.; Perez-Guaita, D.; Adegoke, J.A.; Chakkumpulakkal Puthan Veettil, T.; Martin, M.; Roy, S.; Pebotuwa, S.;
Heraud, P.; Wood, B.R. Infrared Spectroscopy of Blood. Appl. Spectrosc. 2021, 75, 611–646. [CrossRef]

49. Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using
Fourier transform IR spectroscopy. Nat. Protoc. 2015, 10, 382–396. [CrossRef]

50. Kaiser, A.; Stark, W.J.; Grass, R.N. Rapid Production of a Porous Cellulose Acetate Membrane for Water Filtration using Readily
Available Chemicals. J. Chem. Educ. 2017, 94, 483–487. [CrossRef]

51. Baratloo, A.; Hosseini, M.; Negida, A.; El Ashal, G. Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and
Specificity. Emergency 2015, 3, 48–49.

52. Ferguson, L.S.; Wulfert, F.; Wolstenholme, R.; Fonville, J.M.; Clench, M.R.; Carolan, V.A.; Francese, S. Direct detection of peptides
and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst 2012, 137, 4686.
[CrossRef]

53. Fadlelmoula, A.; Pinho, D.; Carvalho, V.H.; Catarino, S.O.; Minas, G. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse
Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines 2022, 13, 187. [CrossRef]

54. Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes
in Human Serum Albumin under Various Denaturation Conditions. Biomolecules 2019, 9, 359. [CrossRef]
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