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Abstract: This article provides a comprehensive narrative review of the history of antiepileptic drugs
(AEDs) and their development over time. Firstly, it explores the significant role of serendipity in the
discovery of essential AEDs that continue to be used today, such as phenobarbital and valproic acid.
Subsequently, it delves into the historical progression of crucial preclinical models employed in the
development of novel AEDs, including the maximal electroshock stimulation test, pentylenetetrazol-
induced test, kindling models, and other animal models. Moving forward, a concise overview of
the clinical advancement of major AEDs is provided, highlighting the initial milestones and the
subsequent refinement of this process in recent decades, in line with the emergence of evidence-
based medicine and the implementation of increasingly rigorous controlled clinical trials. Lastly, the
article explores the contributions of artificial intelligence, while also offering recommendations and
discussing future perspectives for the development of new AEDs.
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1. Introduction

Epilepsy is a complex neurological disorder that can be acquired as a result of brain
injury from trauma, stroke, infections, tumors, or even from genetic mutations in proteins
controlling brain excitability, ion channels, or neurotransmitter genes. It affects ~50 million
people worldwide and has a lifetime prevalence of ~1% [1–3]. Within its range of presenta-
tions, seizures can be considered the ultimate clinical manifestation of epilepsy. As such,
discovering drugs that can control seizure spread is of utmost importance.

1.1. History of Epilepsy

Although under different names and etiologies, epilepsy and seizures can be traced
back as far as the Mesopotamian civilization more than 3000 years ago [4]. One of its ancient
books, the Sakikku, which translates to “all diseases”, gathered diagnostic information for
different diseases, among which epilepsy and seizures can be recognized with a description
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of an unconscious man whose neck is turned, whose extremities are tense, and whose eyes
are wide open; they named it miqtu, meaning “the falling disease” [5]. Throughout the
centuries, different civilizations have each depicted and described what nowadays can be
defined as epilepsy. Many civilizations believed epilepsy had a magical or occult origin:
these included the Akkadian culture, and authors of the Sakikku, who directly related
it to Sin, the god of the moon. This magical conception persisted throughout different
civilizations until around the 5th century BC when the Hippocratic school of medicine
challenged the established belief [6]. Said school stated that epilepsy, which derives from
the Greek word epilambanein, meaning “to take hold”, was a result of an overflow of
phlegm in the brain and argued that the disease, which was called at the time “the sacred
disease”, was no more divine that other diseases, meaning it had a natural origin and, thus,
a possible cure [7].

1.2. Definitions

In 2005, the International League Against Epilepsy (ILAE) conceptually defined
epilepsy as an “enduring predisposition of the brain to generate epileptic seizures, with
neurobiological, cognitive, psychological, and social consequences. The definition requires
the occurrence of at least one epileptic seizure” [8]. However, this definition was not easily
applied in the clinical field, which is why the ILAE presented the practical or operational
definition of epilepsy stating that a patient is diagnosed with epilepsy if they meet any one
of the following criteria: (1) at least two unprovoked (or reflex) seizures occurring >24 h
apart; (2) one unprovoked (or reflex) seizure and a probability of further seizures similar to
the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the
next 10 years; (3) and diagnosis of an epilepsy syndrome [9]. Additionally, the ILAE’s Task
Force Report states that epilepsy should be considered as resolved when the patient has
not presented seizures for the past 10 years with no seizure medication for the past 5 years;
or when the patient presents with an age-dependent epilepsy syndrome and the patient
has passed the applicable age [10].

1.3. Epidemiology

Epilepsy is one of the most common chronic neurological diseases worldwide and af-
fects people of all ages, races, and socioeconomic conditions. In 2016 there were 45.9 million
people with active epilepsy globally, either of idiopathic or secondary nature. A systematic
review and meta-analysis of international incidence performed by Fiest et al. [11] reported a
pooled incidence of 61.4 per 100,000 people, with a higher incidence in low- and middle-income
countries (LMIC) than in high-income countries (HIC) (139 per 100,000 vs. 48.9 per 100,000,
respectively). It is believed that this difference in incidence originates in structural and so-
cioeconomic gaps, as well as higher exposure to risk factors for known etiologies of epilepsy
such as infections, traumatic brain injuries, and deficient perinatal care, among others [12].
When it comes to age, a bimodal distribution has been described: incidence is higher during
the first two decades and after the eighth decade of life. Said bimodal distribution might
be explained by higher numbers of epileptic syndromes occurring during infancy, and
epilepsy as a result of stroke, tumors, and dementia in the elderly population [9].

As mentioned in the definition, epilepsy has an intrinsic social and psychological
component, not only for the patient but also for their family or caregiver. A systematic
analysis of the Global Burden of Disease Study 2016 concluded that although there has been
a substantial decrease in the mortality and the DALY rates between 1990 and 2016, there is
still a significant treatment gap which might explain the notable difference in fatality and
disease severity when comparing LMICs and HICs [12]. According to the World Health
Organization (WHO), despite the availability of effective and low-cost antiepileptic medica-
tion, more than 75% of people in LMICs do not have access to treatment. They also affirm
that 70% of people with epilepsy worldwide could resolve their disease with adequate
use of cost-effective antiepileptic medication [13]. A study performed by Orozco et al. [14]
reported a prevalence of 11.3 cases per 1000 people in Colombia, 37% of whom had a drug-
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resistant form of epilepsy. The use of phenobarbital as an AED has been discouraged in
developed countries mostly because of its neurotoxicity, which manifests as sedation, mood
changes, and behavioral and cognitive alterations, among other symptomatology [15,16];
however, in the previously mentioned study, 28% of patients were receiving phenytoin
and 14% phenobarbital as monotherapy. Ethical discussions have arisen from the implica-
tions phenobarbital use might have, bearing in mind that one of the strongest reasons for
using it is its cost-effectiveness and low cost compared to other AEDs. As Nimaga et al.
pointed out, “sometimes the choice is not between phenobarbital and a new medication
but between phenobarbital and no treatment at all” [17]. Nevertheless, ethical debates and
considerations go beyond the scope of this article.

1.4. Epileptogenesis

A plethora of etiologies have been identified as the causal agents of epilepsy; however,
there is one thing that remains common to all of them; an initial brain insult is always
described as the culprit. The most commonly described causes are structural (such as
epilepsies resulting from stroke or traumatic brain injury), infectious diseases, and im-
munologic and genetic conditions [18]. Epilepsies that are not correctly classified into
one of the previously mentioned categories are said to be of idiopathic origin and are still
uncharted territory. During epileptic seizures, hyperexcitability and synchronous-firing
neurons result in a cascade of molecular events which act as perpetuators of neuronal
damage. Throughout the years, these repercussions have been broadly studied and a
common actor has risen; oxidative stress (OS) has remained one of the main highlights in
epileptogenesis and chronic neurodegeneration.

Brain tissue’s metabolic demand is one of the greatest in the human body, accounting
for approximately 20% of oxygen metabolism [19]. As it is known, cellular metabolism
results in reactive oxygen (ROS) and nitrogen species (RNS) such as superoxide (O2−),
hydrogen peroxide (H2O2), and hydroxyl radical (OH), among others. Under physiological
conditions, ROS can play a crucial role in cell signaling in nervous, skeletal, and cardio-
vascular systems among others; however, overproduction has a deleterious effect [20].
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase
along with non-enzymatic mechanisms such as vitamins C and E are some of the buffering
mechanisms the organism has to counteract an increase in ROS, or what is otherwise
known as oxidative stress. The brain’s high metabolic demand and low antioxidant enzyme
activity render it particularly susceptible to OS detrimental consequences [21,22].

The relation between OS and epilepsy has been widely studied and the questions
mainly asked remain: whether neurological damage resulting from OS acts as a causative
agent or rather acts as a perpetuator of it. Seizure-induced DNA oxidative damage demon-
strated by 8-hydroxy-2′-deoxyguanosine (8-oxo-dG), a guanine adduct resulting from
oxidation of mitochondrial DNA (mtDNA) bases has been proven to be increased in kainite-
induced seizure animal models [23]. As 8-oxo-dG acts as an indirect measure of oxidative
mitochondrial DNA (mtDNA) damage, explained by the proximity that exists between
the mitochondrial electron transport chain (the main source of ROS) and mtDNA, these
findings are consistent with the premise that seizure-induced ROS are perpetuators of
neurological damage [24]. Additionally, a direct correlation between mitochondrial an-
tioxidant agents and neurodegeneration strengthens the ROS involvement hypothesis,
wherein said correlation was demonstrated by animal studies in which transgenic mice
with overexpression of superoxide dismutase (SOD) were unsusceptible to seizure-induced
neurodegeneration, whilst partially deficient SOD mice had a higher susceptibility to
seizures and neurodegeneration arising from them [18].

Moreover, a direct response to antioxidant therapy in both animal models and clinical
trials further supports the previously mentioned hypothesis; clinical evidence from a
study performed in 1984 by Kovalenko demonstrated substantial benefits to a cohort of
drug-resistant epileptic patients to whom alpha α-Tocopherol (Vitamin E isoform with
the highest in vivo biological activity) was administered [25]. Positive outcomes such as
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reduction of seizure frequency and improvement in pathological electroencephalogram
findings (EEG) were documented; said study has been reproduced by different authors
maintaining the initial findings and corroborating its premise [26].

Glutamate build-up and the consequent polarization–depolarization cycle it produces
has been one of the cornerstones described in the pathophysiology of epilepsy; as previ-
ously stated, epileptic seizures arise from a disbalance between excitatory and inhibitory
mechanisms. Glutamate, the most commonly found excitatory neurotransmitter in the
brain, plays a crucial role in epileptogenesis and its accumulation leads to what is known
as excitotoxicity. Aberrant connectivity and sporadic depolarization occurring during
seizures lead to high glutamate concentrations in the postsynaptic cleft and the extracellu-
lar space. Under normal circumstances, astrocytes are able to reuptake excess glutamate
via excitatory amino acid transporter-2 (EAAT-2) and convert it to glutamine with the
help of glutamine synthetase (GS); however, when intracellular calcium concentration
within astrocytes rises, the mechanism is overridden, thus further increasing glutamate
extracellular concentration [27–29]. Furthermore, a study performed by Eid et al. [30] found
a deficiency in GS concentrations in surgically resected hippocampi from mesial temporal
lobe epilepsy (MTLE) patients, thus confirming excitotoxicity’s major role in epilepsy’s
pathophysiology [31].

Finally, as extracellular glutamate concentrations keep rising and N-methyl-D-aspartate
(NMDA) receptors (glutamate’s metabotropic receptor) are activated, intracellular calcium
concentrations begin rising as well. Elevated intracellular calcium concentrations are detri-
mental to cellular functionality and will eventually result in cellular death [27]. Some
of the mechanisms through which this outcome is reached are the overproduction of
ROS and RNS, nitric oxide synthase activation, protease activation, and generation of
mitochondrial pores through which ROS, RNS, and contents such as cytochrome C will
be leaked, activating caspases and nucleases leading to a cascade of events, resulting in
cellular death. Elevated calcium influx will also lead to overstimulation of nitric oxide
(NO) synthetase activity and the formation of more NO molecules which, combined with
superoxide molecules, result in peroxynitrite ions causing lipid peroxidation [32].

2. History of Antiepileptic Drugs and Serendipity

Epilepsy is one of the most ancient medical conditions to be documented, as well
as one of the most stigmatized diseases [33,34]. There is evidence of trepanned skulls in
different parts of the planet, suggesting that prehistoric physicians performed this type of
surgery on people who probably suffered from epilepsy, some forms of headaches, and/or
mental disorders [33–35]. Since the first documentation of epilepsy circa 3000 BC, more
than four thousand years went by before the appearance of what seemed to be the first
effective antiepileptic drug—potassium bromide. Charles Locock (1799–1875), obstetrician
and physician to Queen Victoria, demonstrated in 1857 the beneficial effect of this drug
in patients with catamenial seizures. Its efficacy was rapidly noted as it demonstrated
improvements in a significant number of patients with epilepsy, regardless of etiology
or gender [36].

Serendipity: Phenobarbital and Valproic Acid

In 1912, half a century after the discovery of potassium bromide’s antiepileptic prop-
erties, a second drug was discovered by Alfred Hauptmann (1881–1948), a German psy-
chiatrist and neurologist. Phenobarbital was first used as a sleep inducer; however, its
beneficial antiepileptic effect was also documented [37]. A third molecule was serendipi-
tously discovered 50 years later in the year 1962. Valproic acid was used as a solvent in
various pharmacological products, among which were various cough syrups. Epileptic
patients presenting with a cough who were given these cough syrups showed a significant
decrease in the number of seizures, and thus valproic acid’s antiepileptic properties became
an object of study. In France, the Meunier brothers decided to test it as an antiepileptic,
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demonstrating its great anticonvulsant efficacy. It was first marketed in the year 1967,
causing its use to skyrocket [38].

Although these drugs represented a very important improvement for epileptic patients,
some of their side effects such as sedation and high addictiveness caused difficulties among
patients, thus further prompting the search for new molecules [39].

3. Preclinical Models

Ever since the introduction of maximal electroshock stimulation in 1937, the identi-
fication of new antiepileptic drugs (AED) for the treatment of epilepsy and seizures has
been done in vivo on animal seizure models [40]. Throughout the years, a variety of new
rodent models have been added to the arsenal of research protocols, each one accounting
for different types of epileptic and seizure models, in order to better identify potential new
AEDs and their distinct mechanisms of action, tolerability, and therapeutic index, as well as
different programs focused on discovering and developing AEDs such as the Anticonvul-
sant Screening Program (ASP), known today as the Epilepsy Therapy Screening Program
(ETSP). However, because of human epilepsy and seizure heterogeneity, there is still a need
to find new etiology-oriented models that account for specific types of seizures, and to
introduce new AEDs for the ~30% of patients who have failed to appropriately control their
epilepsy and seizures with currently available treatments [1,41,42]. In this section, we aim
to present a brief overview of the three most used and validated rodent models, as well
as determine their different approaches and applicability regarding human epilepsies and
seizures, together with their advantages and disadvantages. A comprehensive timeline of
the most important milestones in preclinical AED models is provided in Figure 1.

3.1. Maximal Electroshock Stimulation (MES) Test

This model was first introduced by Merritt and Putnam in 1937. It consists of electri-
cally evoking acute seizures, and it is used to characterize the response of cats treated with
phenytoin [43]. At the present time, MES is performed on mice and rats; however, other
animal species are also susceptible to electrically induced acute seizures and can be used to
study potential new AEDs [44]. Regardless of the animal species and current intensity, MES
seizures are induced by administering a shock through corneal or ear clip electrodes on a
previously healthy and neurologically intact subject [40,44]. When using corneal electrode
implants, a saline solution of 0.9% with local anesthetic must be applied to the eyes to
improve electrical conductance and implant tolerability. For their part, ear clips must be
placed with electrode gels to improve conductance. Additionally, to guarantee replicability
among test subjects, electrodes are placed in the same place and at equal pressure. These
electrodes are then connected to a device capable of administering sufficient electrical
current to evoke a seizure [44]. Pharmacology testing is performed by administering the
potential AED, delivering the same current intensity to all test subjects, and recording
the extent of protection, among other outcomes [40,45,46]. Likewise, a threshold test can
be done by administering progressively increasing currents in a stepwise manner if no
endpoint (or seizure) is observed, starting from a known established threshold [47].

MES-induced seizures are electrophysiologically consistent with human seizures, ren-
dering this test highly reproducible. This model, therefore, represents primary generalized
tonic–clonic seizures and can be used for the initial identification of potential AEDs that can
stop seizure spread or increase seizure threshold [3,40,44]. As an important note, however,
some clinically effective AEDs such as levetiracetam, vigabatrin, and others do not show
efficacy in the MES test; hence, testing for new potential AEDs by the MES test alone is not
sufficient to identify antiseizure efficacy and other tests should therefore be used [1,40,44].
Likewise, because it does not generate focal seizures, the MES test cannot evaluate agents
that target and affect seizure focus directly [1,40].
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3.2. Pentylenetetrazol (PTZ) Induced Test

Although its mechanism of action is not fully understood, it is generally accepted that
PTZ is a non-competitive antagonist of the gamma-aminobutyric acid (GABA)(A) receptor
complex; hence, the PTZ molecule has epileptogenic properties [48]. According to this prin-
ciple, it can be used to test potential AEDs. Regardless of the test subject—usually mice or
rats—a certain dose of PTZ is administered, either intravenously (ivPTZ) or subcutaneously
(scPTZ), a threshold is established once seizure activity is observed, and seizure patterns
are recorded. It is important to note that PTZ-induced seizures also evoke generalized
clonic and tonic seizures; however, these differ from MES-induced seizures in the observed
pattern. MES seizures start with a tonic phase followed by a clonic phase, whereas PTZ
results in a clonic phase first, followed by usually infrequent tonic phases [30]. This model
was first validated by Everett and Richards in 1944 [49].

Pharmacology testing using PTZ follows the same principles as the MES test: the
potential AED is administered, PTZ is injected at threshold doses, and outcomes are
recorded. The ivPTZ test is preferred to determine whether the compound affects the
seizure threshold, by using an infusion protocol starting at a known and established
threshold dose and recording outcomes during infusion [44]. On the other hand, the scPTZ
test can be useful to research AED response and outcomes on generalized non-convulsive
myoclonic and generalized spike–wave seizures [42]. However, like the MES test, there are
clinically effective AEDs that are not effective when tested on PTZ-induced seizures, so this
test is not sufficient when used alone to determine antiseizure efficacy.

3.3. Kindling Models

First described by Goddard and colleagues in 1969 [50], kindling is defined as a process
in which daily repetitive administration of subconvulsive stimuli leads to brain alteration
and development of focal seizures, followed by secondarily generalized seizures as a result
of the recruitment of different brain areas [2,51]. Hence, this model mimics epileptogenesis
and can be used to test the efficacy of AEDs against focal and secondary generalized
seizures, as well as their long-term efficiency to control epileptogenesis [44].

Kindling models vary according to the stimuli (chemical, electrical, implant, corneal) [52,53],
the kindled brain area, and the expected outcome (anti-epileptogenesis or anticonvulsant
activity). The most used and well-known model is kindling of the mesial temporal lobe
or the basolateral amygdala in rats with an electrical stimulus [2], during which the exact
sequence of behavioral manifestations (both epileptic/seizure stages and behavioral co-
morbidities such as anxiety or cognitive deficits) are recorded [42], as these can drastically
change depending on the brain area affected. Ergo, this model requires precise preparation
and time, especially when testing for chronic effects [44,52]. Unlike the other tests, this
model proved the efficacy of different AEDs, including tiagabine, vigabatrin, and leve-
tiracetam, as well as demonstrating the lack of clinical efficiency of NMDA antagonists,
meaning this model can complement the other tests [1,40,44]. It is cautioned, however, that
the antiepileptogenic or disease-modifying activity identified by this model has not been
yet validated by human clinical trials [44].

3.4. Specific Models

Although the models explained above have been validated as useful assays to test for
potential AEDs, there has been a need to implement new models to account for specific
types of epilepsy and seizures, such as in the pediatric population, those caused by genetic
mutations, drug-resistant epilepsy, status epilepticus, among others. However, these go
beyond the scope of this article.

3.5. Contrasting Different Models

Both MES and PTZ models evoke acute generalized seizures with different patterns
and are often used as a first-line test to evaluate the antiseizure efficacy of potential AEDs,
specifically their protection against seizure spread or threshold increase on generalized



Biomedicines 2023, 11, 1632 7 of 25

seizures. These tests are easily reproduced on healthy neurologically intact subjects, require
little preparation compared to kindling models, and multiple studies can be conducted in
short periods of time, as only acute responses are evaluated, providing useful insight and
data for further research on more specific models. However, negative results in the MES
or ivPTZ/scPTZ test do not automatically rule out mechanistically novel molecules that
target different pathways, and other tests should be employed to further study different
mechanisms of action. For example, tiagabine and vigabatrin are not effective on the MES
test but are on the PTZ tests, while levetiracetam is not effective in either test, but it works
against kindled focal seizures [1,40,44].

For their part, kindled models have proven valuable in discovering different AEDs
with clinical efficacy and have provided results regarding antiepileptogenic and antiseizure
efficacy in focal and spike–wave seizures, unlike the aforementioned tests, although draw-
backs can be seen as these models require precise experimental logistics. As these mice
or rats are implanted with stimulating/recording electrodes in different brain areas, and
seizure patterns and behavioral stages are recorded precisely over a long period of time,
several considerations must be taken into account when conducting these tests, some
of them being: the adequate facilities and surgical resources required to implant these
electrodes, the housing needed for multiple test subjects, and the time required to conduct
studies for chronic effects of potential AEDs [44], in contrast to the acute models, which
need significantly less time to evaluate response and outcomes. Hence, kindled studies are
often restricted to late preclinical testing after promising AEDs have been found to have
robust antiseizure activity, as they can be useful to complement results from other tests.
A comparison of these three classic models is presented in Table 1.

By 1952 Swinyard and colleagues in the United States had identified a series of new
hydantoins, diones, succinimides, barbiturates, and deoxy barbiturates when exhaustively
exploring the cyclic ureide structure shared by both phenytoin and trimethadione, primarily
using the MES and PTZ tests [54,55]. However, once ethosuximide was successfully
marketed in 1960, almost all research was stalled, as the concept of approaching new
molecules with different structures was seen as an expensive task with a very high failure
rate [55], for which no unified workflow to facilitate testing and data management existed
at the time, and there was little to no funding for new AED discovery and development.
This sudden stop in research brought about a “drought” in new AED discovery for almost
a decade in the United States, something which was noticed by Richard Masland, Director
of the National Institute of Neurological Disorders and Stroke (NINDS), who appointed
J. Kiffin Penry in 1967 and a few years later Roger J. Porter to the newly formed Section
on Epilepsy at the NINDS, giving them the objective to create a better environment for
discovering and developing new AEDs [55].

During his period at the NINDS, Penry created the Epilepsy Advisory Committee,
which helped lay the groundwork for the anticonvulsant screening program (ASP), a pro-
gram seeking to perform blinded screenings of compounds in a variety of acute and chronic
seizure models, as well as in animals with epilepsy [54–56]. A request for a proposal was
issued to major pharmaceutical companies and university departments to supply the ASP
with novel chemical compounds. Whenever a screened compound had shown promising
activity, it would be commented to the provider, where it would most often receive an
additional test to further evaluate for potential antiseizure activity. It is approximated
that by the year 2018, more than 32,000 novel compounds had been screened. Some major
contributions the ASP provided were identifying potential in felbamate, topiramate, and
lacosamide, among others [54,55]. Once Penry retired, the project was run by Porter, who
took over and managed the Epilepsy Branch from 1979 to 1984, followed by Steve White,
who was involved in the program from 1986 and was formally instituted as the director
of the Anticonvulsant Drug Development (ADD) Program at the University of Utah in
2001 [55]. Of note is that in 2015 the ASP changed its name to the new Epilepsy Therapy
Screening Program (ETSP), emphasizing the need to identify differentiated compounds to
address the unmet medical needs of epilepsy, such as pharmacoresistant epilepsies [57].
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Table 1. Comparison between clinically validated animal seizure and epilepsy models.

Animal Model Species Seizure
Phenotype Human Correlate Clinical Validation Predictive of

AED Toxicity
AEDs

Showing Efficacy Mechanism of Action Identified

Maximal
electroshock

stimulation (MES)
Mice/rats Tonic extension

seizure
Generalized

tonic–clonic seizures.

Identification and
development of

phenytoin.
No

– Carbamazepine
– Phenytoin
– Oxcarbazepine
– Valproic acid
– Phenobarbital
– Felbamate
– Gabapentin
– Lamotrigine
– Lacosamide
– Topiramate
– Zonisamide

– Na+ channel blockers
– Enhanced slow inactivation of

voltage-gated Na+ channels
– K+ channel activators
– NMDA receptor antagonists
– AMPA receptor antagonists
– α2δ ligands

Subcutaneous
pentylenetetrazol

(scPTZ)
Mice/rats Minimal clonic

seizure

Generalized
myoclonic seizures

and spike–wave
seizures.

Discovery of
trimethadione,

phensuximide, and
ethosuximide.

No

– Ethosuximide
– Valproic acid
– Phenobarbital *
– Benzodiazepines
– Felbamate
– Gabapentin
– Tiagabine *
– Vigabatrin *

– T-type Ca2+ channel blockers
– Allosteric GABAA receptor modulators
– GABA transport blockers
– GABA transaminase inhibitors
– α2δ ligands
– mGluR modulators

Kindling models Rats Limbic seizures Partial seizures.

Only model to
correctly identify

antiseizure activity of
levetiracetam.

Yes

– Carbamazepine
– Phenytoin
– Phenobarbital
– Valproic acid
– Benzodiazepines
– Felbamate
– Gabapentin
– Lamotrigine
– Topiramate
– Zonisamide
– Levetiracetam
– Vigabatrin
– Lacosamide

– Na+ channel blockers
– Enhanced slow inactivation of

voltage-gated Na+ channels
– K+ channel activators
– AMPA receptor antagonists
– GABA receptor modulators (for example,

barbiturates and benzodiazepines)
– α2δ ligands
– SV2A ligands

* These AEDs block clonic seizures induced by scPTZ but are inactive against generalized absence seizures and may exacerbate spike–wave seizures. AED: antiepileptic drug; AMPA:
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; GABA: γ-aminobutyric acid; GAERS: genetic absence epileptic rat of Strasbourg; mGluR: metabotropic glutamate receptor;
SV2A: synaptic vesicle glycoprotein 2A. Adapted from Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs [1].
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Despite the high predictive values of these previous models and their utility in contin-
uing to identify new effective treatments for patients with epilepsy and seizures, there is
still a need to implement new models that account for etiology-oriented epilepsies, among
which are drug-resistant epilepsy, acute and chronic seizure phenotypes such as absent
epilepsies, pediatric encephalopathies, and genetic mutations [3]. To this end, several
recent rodent models have tried to replicate and mimic specific known acquired and ge-
netic etiologies of seizures to investigate potential and existing AEDs, such as the 6 Hz
psychomotor model in rats [53], lamotrigine-resistant models, phenytoin-resistant models,
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and post-status epilepticus models, among others [1]. However, these are usually labor
intensive, as replicating and reproducing specific etiologies, namely, mutations or drug
resistance, can be challenging [44,52]. Therefore, there remains a substantial unmet need for
patients with either drug-resistant epilepsy or difficult-to-control epilepsies; for instance,
25–40% of patients with focal epilepsy fail to achieve therapeutic goals with currently
available AEDs [1,41].

3.6. Drug Safety

It is important to note that the aforementioned tests do not evaluate drug safety when
used in humans; rather, these only serve as screening tests for antiepileptic activity in
novel chemical compounds. Hence, it is necessary to conduct proper pre-clinical trials to
further study potential adverse effects in humans, such as conducting toxicology studies in
two different animal species, usually a rodent and a nonrodent, as the use of two or more
unrelated animal species may increase the probability of detecting potential adverse effects
in humans [58], or testing for more specific body systems, especially that of the central
nervous system given the potential properties of AEDs, such as the rotarod test to evaluate
for effects on neuromuscular coordination or assess for higher cognitive functions to detect
impairment in learning, memory, attention, and executive functions [59]

Failure to account for drug safety can lead to adverse effects in humans; for example,
different studies have detected an increased risk of teratogenicity when using AEDs during
pregnancy, especially that of valproic acid [60], or the vigabatrin-induced retinal toxicity
when used chronically [61]. The contrary can happen as well, where an adverse effect is
found in animal studies, but no human case has been reported, meaning animal studies
have limitations in accurately representing potential unwanted side effects in humans, as
in, for example, the fact that valproic acid produces testis, epididymis, prostate gland, and
seminal vesicles atrophy in Wistar rats, but not in humans [62].

Despite limitations, these should not discourage nor constrain any attempts in further
testing for potential adverse effects detection. However, the adverse effects of these drug
categories and their appropriate testing are beyond the scope of this article.

4. Clinical Trials for AEDs

For a concise historical review of the clinical development of AEDs, a search was
conducted in PubMed using the names of individual AEDs as the MeSH term, combined
with the term ‘Clinical Trial’ [Publication Type], employing the Boolean operator ‘AND’
(e.g., ‘Phenytoin’[MeSH] AND ‘Clinical Trial’ [Publication Type]). The article selection
process was performed independently by two authors (clinical neurologists) following
their own criteria. Any discrepancies were resolved through consensus by a third author
(clinical pharmacologist). Strict filters were applied to refine the search results, ensuring
the inclusion of solely clinical studies conducted on human subjects and published in either
English or Spanish.

Clinical trials play a crucial role in confirming the safety and effectiveness of novel
drugs, and it is essential for this process to adhere to ethical and scientific quality stan-
dards [63]. Human clinical trials have been conducted since ancient times, with accounts
dating back to 500 BC in the Old Testament. The first recorded clinical study in history
was carried out by Ambroise Paré in 1537. However, the design of clinical studies has
evolved significantly over time [64]. In this section, we will provide a brief overview of
the development of clinical studies in the field of AEDs throughout history. The initial
antiseizure medications were approved without stringent regulatory requirements and
did not undergo the three phases of clinical trials. Instead, following experiments with
phenytoin in animal models, uncontrolled observational studies involving individuals with
epilepsy were initiated [65,66]. Although the initial findings from these clinical observations
demonstrated a reduction of the number of seizures, the observation period was relatively
short (average of 4.3 months), the sample size was relatively small (200 subjects), and



Biomedicines 2023, 11, 1632 11 of 25

neither a control group nor a placebo was utilized. The first observational clinical studies
on phenytoin were published in 1938, with regulatory approval occurring a year later [65].

After the discovery of phenytoin and until the 1950s, there was an increase in clinical
trials of novel AEDs (to 15% during the 1930s and up to 56% during the 1950s) [67]. In the
period until 1970, 250 studies were published evaluating one drug or multiple drug combi-
nations; however, only 110 studies had a formal protocol. The clinical studies published in
this period were not characterized by having adequate methodological rigor: most studies
were case reports and clinical trials with a medium sample size and a heterogenous length
of duration (ranging from 3 to 84 months with 47% of the studies not reporting the length).
The trial design most commonly used was a self-matching group of patients, and a random
method of the assignment was only described in three trials. Three studies used a placebo,
three trials used a single-blind or double-blind technique, and 107 of the clinical trials did
not report bias or were uncontrolled [67].

Additionally, the description and analysis of results were very loose, heterogeneous,
and without adequate rigor. Many of the studies (n = 90) did not report whether they used
an adjunctive treatment, while a description of demographic characteristics was scarce: only
5% of all the studies had complete demographic characterization. Results such as seizure
counts, type of seizure, and side effects were described with observational methods, and
results were reported by the percentage of patients improved [67]. This generated important
growth in the therapeutic options of the moment, with fewer sedative effects [67,68].
However, the studies’ poor methodological design and the scarcity of effective medications
for epilepsy until the 1960s made it easier to demonstrate an improvement in seizure
control [68]. During this period, antiseizure medications still used in clinical practice
such as phenobarbital, carbamazepine, valproic acid, ethosuximide, and primidone were
approved. Some of them were approved by some countries with results obtained from
uncontrolled observational clinical studies. However, by the 1970s, controlled studies
began to be designed, which expanded approvals by the FDA to include drugs such as
carbamazepine or valproic acid [69].

4.1. A New Era for the Development of Clinical Trials

In 1962 the Kefauver–Harris Drug Amendment was instated, which meant American
manufacturers would have to provide the United States Food and Drug Administration
(FDA) with substantial evidence, not only for efficacy but also regarding safety, in order to
receive approval for a new drug following “adequate and well controlled investigations, in-
cluding clinical investigations by experts”. Additionally, this amendment would introduce
what we now have come to know as the Phase 1, Phase 2, and Phase 3 structure of clinical
trials, marking the beginning of a new era for clinical trials in AEDs [68,70].

In fact, after the 1970s, there was no further development of new AEDs; on the con-
trary, during this time different clinical studies with a better methodological design were
carried out with the existing AEDs. This has provided a better understanding of phar-
macokinetics, individualization of doses, therapeutic drug monitoring, drug interactions,
clinical response, spectrum of activity, and adverse effects of AEDs. Furthermore, results
from many of these studies led to the understanding that polypharmacy is associated with
toxicity without improving seizure control, and that monotherapy can achieve seizure
control with drug-level monitoring [69].

At the beginning of the 1980s, studies with the existing AEDs continued and the
results from these clinical trials allow us to understand the tolerance and efficacy of the
first-generation AEDs. For example, a double-blind randomized trial by White et al. [71]
comparing phenobarbital, primidone, phenytoin, and carbamazepine sought to identify
the antiepileptic medication with the best efficacy and found that phenytoin had the best
antiseizure activity. In addition, the authors proposed the maximum dose for each one
of the medications in the trial to provide the patient with the best outcome measured in
seizure activity [69]. The definition of second-generation AEDs varies depending on the
exact year they were introduced; however, molecules such as felbamate, one of the first
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second-generation AEDs marketed in the United States, was introduced in the year 1993,
with many other second-generation AEDs emerging between the end of the 1980s and the
early 1990s [72]. Some AEDs such as oxcarbazepine, introduced in the year 1993 [73], were
studied in monotherapy compared with carbamazepine as add-on therapy, in placebo-
controlled, double-blind, cross-over and fixed-dose trials [68,69]. Second-generation AEDs
also had a longer period between the first clinical trial and the first approval. In fact, clinical
studies with lamotrigine date back to 1985 and it was approved by regulatory agencies
between 1990 and 1995.

4.2. Development of Second-Generation AEDs and Future Perspectives

From 1990 until today, clinical trial designs have been characterized by randomized,
double-blind, and placebo-controlled trials [69,74]. Clinical trials from 1990 to the present
have been novel in implementing: stricter eligibility criteria; parallel group design (replac-
ing the cross design); inclusion of maintenance period; and clinical studies of long-term
prognosis [69]. For instance, longitudinal cohorts, where patients are followed for 30 years,
allow a wider observation time than the initial studies [75]. However, the use of a placebo
has important considerations. First, exposing individuals to placebo therapy may be uneth-
ical and increase the risk of sudden death associated with epilepsy; therefore, many second-
generation AEDs are developed as adjuvant therapy, making the generation of designs
that minimize placebo exposure one of the greatest challenges second-generation AEDs
face. Some of the strategies used have been time-to-event designs, in which participants
withdrew from the study once they experienced a predetermined number of seizures [69].

Since 1989, the list of antiseizure drugs has increased considerably, with approximately
18 new molecules having entered the market [75]. With these novel molecules, it was hoped
that patients with difficult-to-control epilepsy and refractory epilepsy could improve their
clinical outcomes; however, only a small proportion of subjects with refractory epilepsy
achieved seizure control. Nevertheless, second-generation AEDs continue to have a better
safety profile compared to first-generation antiepileptics [69].

In recent years, clinical trials in AEDs have aimed to develop antiseizure drugs for
orphan diseases or molecules that act directly on epileptogenic mechanisms [59]. Some
of these new molecules include cannabidiol (approved in 2018) for Dravet and Lennox
Gastaux syndrome; everolimus (approved in 2017) for focal seizures associated with tuber-
ous sclerosis complex; felbamate (approved in 1993) for seizures associated with Lennox
Gastaux syndrome; and rufinamide (approved in 2007) for Lennox Gastaux; and vigabatrin
(approved in 1989) for infantile spasms [75]. The design of antiseizure medications, in
most cases, has aimed at controlling seizures; however, the design of new molecules for
epilepsy should target the etiology of epilepsy [75]. For instance, inflammatory pathways
in epilepsy have been the target of a wide range of drugs such as anakinra, adalimumab, or
minocycline that act as antagonists of IL-1R1, TNF alpha, and microglia, respectively [76].

5. Artificial Intelligence (AI) in AED Development: Challenges and Avenues

Over the last ten years, technology has become an ally for science and has, syn-
chronously with medical knowledge, been able to offer therapeutic strategies for diseases
that in the past were intractable. The growing use and applications of artificial intelligence
techniques have opened innovative paths in biomedical research, including the discovery of
AEDs. In this section, we will address the application of artificial intelligence techniques in
the development of AEDs with the aim of articulating the gaps in the current methodology
and possible future applications.

5.1. AI and Drug Design

Drug development is a time-consuming, expensive task with a high probability of
failure that could be optimized with artificial intelligence (AI) techniques [77]. Drug de-
velopment requires the analysis of complex biological systems, which in our era involves
processing heterogeneous sources of data and a great amount of information, including
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biomedical data from wearable devices, and genomic, metabolomic, and proteomic pro-
files [78]. Researchers have taken advantage of data challenges in drug development to
think about the problem from another perspective, using AI as an advantageous strategy.
AI could be defined as an advanced computational method for scientific discovery or
scientific understanding [79]. In drug development, AI could be a promising tool as it can
analyze great amounts of information, reveal hidden molecule properties, and simulate
different conditions with adjusted parameters, leading to discoveries related to multiple
processes underlying complex phenomena [80].

Machine learning (ML) is one of the most common AI methods used in healthcare [81].
ML uses statistical methods to create a model capable of generalizing concepts using a
training dataset, a process that is possible if the model learns information that could later
be applied to new data that it has not seen before. The model’s performance is assessed
through performance metrics that allow it to select the most efficient model [82], creating
a methodological advantage by opening multiple possibilities and probabilities of model
selection in drug development. Indeed, ML techniques are useful in all phases of drug
development, for drug discovery, clinical trial design, pharmaceutical product development
and management, quality assurance, and control [83] (Figure 2). Adopting these techniques
in the research phases of drug development could decrease the failure rate that results from
associated factors such as lack of efficacy, undesirable toxicity, inconsistent properties, and
commercial difficulties [84].
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Recently, ML has been predominantly used in drug development for target identifica-
tion and validation, lead compound discovery, synthesis, protein–ligand interactions, and
predictive biomarker discovery [85]. With these techniques, it has become easier to identify
target protein structures and design novel drugs from those targets. Usually, the first step
is the extraction of ligands and protein features through the information available in online
repositories. This procedure allows the modeling of possible active sites for a specific ligand.
The screened compounds are exposed to conditions with different physicochemical prop-
erties. Finally, leading compounds undergo in vitro and in vivo assays for validation [86].
Another widely used strategy is modeling through quantitative structure–activity rela-
tionships (QSAR). This technique identifies relationships between chemical structures and
biological activity in the studied compounds using mathematical models [87]. There are
multiple ML methods that have been successfully applied at different drug development
stages, and these are presented in Table 2.
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Table 2. Machine learning methods used in drug discovery. Adapted from Gupta et al. [87].

Tool and Software Method Features Performance
Metric Objective

LS-align:
Algorithm evaluating

ligand structural
alignment [87].

Machine learning

Generates atom-level structural
alignments of ligand molecules.

AUC

Structure–ligand
identification

Input: query structure, template
structure, initial alignment.

Output: final alignment, final
alignment score.

LigGrep:
Tool identifying
docked poses in

specified
receptor/ligand
interactions [88].

Machine learning

Prioritizes candidate small
molecule ligands using

computer docking.

AUROC and
pAUROC *

Input: docked-compound files
for drug target receptor and

candidate ligands.
Output: names of candidate
compounds with poses that

satisfy all user-defined filters.

AutoGrow4
Generates novel

drug-like molecules
and optimizes
pre-existing
ligands [88].

Genetic algorithm

Using a genetic algorithm draws
on a population of seed

molecules to create a new
population of potential ligands.

Ranks the candidates by
calculated fitness.

Docking score
(NNScore1,

NNScore2), ligand
efficiency,

diversity score.

Input: first generation of
independent seed pools formed
from high-scoring compounds

and diverse compounds.
Output: last generation of

selected seeds ranked by fitness
scores.

DLIGAND2 [89] Distance scaled

Predicts protein–ligand binding
affinity based on a

distance-scaled, finite, ideal gas
reference (DFIRE) state.

AUC, EFInput: residue-specific types for
protein atoms and a large protein

structural dataset for training.
Output: binding affinity

prediction using either native or
docking-predicted

complex structures.

StackCBPred [90] Machine learning

Predicts structural properties of
amino acids to effectively train a
stacking-based machine learning

method for the accurate
prediction of

protein–carbohydrate
binding sites.

AUC
ROC
ACC

F1 score
Input: protein sequence.

Output: predictors of
protein–carbohydrate

binding sites.
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Table 2. Cont.

Tool and Software Method Features Performance
Metric Objective

LSA [91] Machine learning

Computes the similarity of two
molecular structures by

considering the contributions of
both overall similarity and local

substructure match.

AUC

Input: three-dimensional
molecular structures with

substructure focus; computing
the similarity score based on

superimposing.
Output: similarity of two
molecular structures by

considering the contributions of
both overall similarity and local

substructure match.

ProPose [92]
Incremental
construction

algorithm

The combination of ligand- and
receptor-based methods steers

the virtual screening by ranking
molecules according to the

similarity of their interaction
pattern with known ligands. N/A

Result: energy torsion angle for
incremental molecule

construction within an active site
of a selected receptor.

TrixX [93] Machine learning

Structure-based molecule
indexing for large-scale virtual
screening in sublinear time is

among the fastest virtual
screening tools

currently available.
Enrichment

behavior
Input: compounds,

parameters, receptors.
Output: compound

placement score.

DEEPScreen [94] Convolutional neural
networks

High-performance drug target
interaction prediction. Used in

the fields of drug discovery and
repurposing for in silico

screening of
chemogenomic space.

F1 score, MCC

Input: 2D images of compounds
Output: binary classification
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Table 2. Cont.

Tool and Software Method Features Performance
Metric Objective

QSAR modeling

Structure and
biological activity

relation

ChemDes [95]

Pybel, CDK, RDKit,
BlueDesc, Chemopy,

PaDEL, and
jCompoundMapper

An integrated web-based platform
for the calculation of molecular

descriptors and
fingerprint computation. AUC

Input: molecules.
Output: QSAR, virtual screening,

ranking, ADME/T prediction.

ChemGrapher [96] Deep learning

Optical graph recognition of
chemical compounds. Produces all

information necessary to relate
each component of the resulting

graph to the source image. AUC

Input: image.
Output: molecular

graph structure.

ANFIS [97]

Neuro-fuzzy
modeling and

principal
component analysis

Evaluates physicochemical
descriptors of certain chemical

compounds for their appropriate
biological activities in terms of

QSAR models with the aid of an
artificial neural network (ANN)

approach combined with the
principle of fuzzy logic.

AUC

Input: fuzzy linear regression.
Output: adaptive neuro-fuzzy

inference (ANFIS).

DrugNet [98] Machine learning

Simultaneous integration of
information about diseases, drugs,

and targets can lead to a
significant improvement in

drug repositioning. AUC

Input: drugs.
Output: repositioning of drugs

with ranked lists for a
given disease.

RepCOOL [99] Random forest
classifier

The potency of the proposed
method is in detecting true
drug–disease relationships. AUC and ROC

Input: extracting primary data.
Output: suggested new drug.

GIPAE [100]
Gaussian interaction

profile kernel and
autoencoder

Computational drug repositioning
is designed to identify new

indications for existing drugs. The
batch normalization layer and the

full-connected layer are
introduced to reduce
training complexity.

AUC and ROC, F1
score

Input: drug and disease Gaussian
interaction.

Output: drug and disease
association prediction.
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Table 2. Cont.

Tool and Software Method Features Performance
Metric Objective

DrPOCS [101] Machine learning

Predicts potential associations
between drugs and diseases

with matrix completion. AUC, F1 score
Input: drug, disease.

Output: association prediction.

RCDR [102] Collaborative
filtering model

Prioritizes candidate drugs
for diseases.

AUC and ROCInput: drug set, disease set,
drug–disease association.

Output: predicted
association matrix.

Chembench [103]

Quantitative
structure–activity

relationship (QSAR)
modeling methods

Tools and services for
computer-assisted drug design
and computational toxicology.

Correct
classification rate,
accuracy, negative
predictive value,

positive predictive
value

Physicochemical
properties

Input: standardized chemical
compounds.

Output: dataset visualization,
modeling, model validation,

virtual screening.

mCSM-lig [104]
Machine learning
models, Platinum

database

Effective in predicting a range of
chemotherapeutic, antiviral, and
antibiotic resistance mutations,
providing useful insights for

genotypic screening and guiding
drug development.

AUC and ROC,
precision, accuracy

Input: mutation in
protein–ligand complexes.

Output: mCSM—lig signature.

DendPoint [105]
Machine learning and

principal
component analysis

Used to guide dendrimer
construct design and refinement

before embarking on more
time-consuming and expensive

in vivo testing.
AUC and ROC

Input: pharmacokinetic
parameters.

Output: predictive values
(half-life, clearance, %Dose urine,

%Dose liver).

ProTOX-II [106]

Molecular similarity,
fragment

propensities, and
machine learning

Webserver for the prediction of
toxicity of chemicals. Predicts
acute toxicity, hepatotoxicity,
cytotoxicity, carcinogenicity,

mutagenicity, and
immunotoxicity. AUC, balanced

accuracy, Kappa
index

Mode of action and
toxicityInput: SMILES string, drawing

of the chemical structure,
compound name (pubchem).
Output: median lethal dose,

toxicity class, average similarity
with three most similar toxic

compounds.
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Table 2. Cont.

Tool and Software Method Features Performance
Metric Objective

ADMETlab [107]
Designed based on

the Django
framework in Python

Early drug-likeness evaluation,
rapid ADMET virtual screening
or filtering, and prioritization of

chemical structures. ACC, SP, SE, AUC,
and ROCInput: SMILES string, drawing

of the chemical structure.
Output: ADMET profile.

* AUC: area under the curve; AUROC: area under the receiver operating characteristic; ACC: selected accu-
racy; EF: enrichment factor; MCC: Matthew’s correlation coefficient; ROC: receiver operating characteristic;
SE: sensitivity; SP: specificity.

The use of ML in drug development has limitations because it is a novel area that uses
multiple methods and analysis strategies. The main applications have been found in the
development of antimicrobial and antineoplastic drugs [108]. In nervous system diseases,
drug development is limited due to a higher attrition rate compared to other drugs [109].
The next section will discuss novel drug development strategies, mainly focused on ML
techniques and AED development.

5.2. Novel Approaches in AED Technology

The development of new drugs for nervous system diseases has great challenges,
which could explain the high failure rate in drug discovery [77]. Epilepsy is not the
exception, as it comprises heterogeneous conditions that challenge its identification and
treatment. AED development has critical needs related to the heterogeneity of epilepsy
conditions, gaps in translational research, and the considerable percentage of patients
who are refractory to treatment [110]. In response, precision medicine intends to integrate
biodata to predict an individually variable response to epilepsy interventions [111]. With
precision medicine, it is possible to obtain a holistic view of epilepsy as well as integrate
multiple factors in order to understand the phenomenon from the genotypic and molecular
substrates that condition a seizure phenotype and propose innovative therapeutic targets.

Pharmacology repurposing (PR) is a growing strategy that was potentiated during the
SARS-Cov2 outbreak [112]. PR seeks to identify new uses of previously studied molecules
with well-known pharmacological, pharmacokinetic, and toxicological properties. In the
last five years, it has been a key method applied in AED development. Applying ML
analysis in PR is advantageous because computational methods could detect relationships
between various types of biodata, thereby reducing time and costs [113]. Integrating AI
methods and PR, some studies have identified molecules widely used in clinical practice
that could have potential as AEDs such as doxycycline, metformin, nifedipine, and pyrantel
tartrate [114,115]. In fact, AI techniques and PR could be a bridge between approved
experimental methods based on seizure phenotypes in animal models and novel precision
medicine strategies (Figures 2 and 3).
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In the clinical phases of AED drug development, novel approaches, and AI methods
could help in the first stage of discovery and development, target validation, compound
screening, and optimization of the lead compound. As seen in Table 1, multiple methods
and tools could be applied in this stage. As an advantage, the data sources come from
online, open repositories with a large amount of information. The challenge is to develop
target identification and prioritization based on gene-disease associations, and design
compounds with desirable properties with ligand-based screening. In preclinical research,
biomarkers are essential for the identification, classification, and prediction of clinical
endpoints. AI techniques at this phase could integrate information and aid in decision
making [117,118]. In phase I, AI could aid in dose escalation and evaluating toxicity using
methods for relating the structure, activity, and mode of action. In phases II and III, it can
confirm dose efficacy and toxicity. Finally, for drug review and post-marketing surveillance
and safety monitoring, ML models could predict and follow up on specific concerns related
to treatment response and adverse events [119].

6. Limitations and Future Directions

Advancing drug development in AEDs necessitates a shift from serendipitous discov-
eries to data-driven research, incorporating an innovative perspective with an integrative
research approach focused on understanding the underlying mechanisms. AI techniques
have the potential to be the cornerstone tool for integrating translational and precision
medicine, leading to the development of a new generation of AEDs with unprecedented
efficacy and safety profiles. The use of AI techniques in drug development has highlighted
challenges in reproducibility and external validation, to overcome these difficulties, a trans-
sectoral collaborative approach is desirable, aiming to establish universal standards that
address these challenges effectively.

7. Conclusions

Effective antiepileptic treatment has been used for over a century; yet, a substantial
number of patients in LMICs are not receiving treatment, thus increasing the morbidity and
mortality associated with this disease. Additionally, when receiving treatment, practical
guidelines and recommendations for patients in LMICs usually include AEDs that are
nowadays not recommended in HICs, such as phenobarbital, an AED that has been proven
efficient in controlling seizures but whose adverse effects are still a matter of concern. The
undertreatment of epilepsy in LMICs, either due to low accessibility or high-cost therapies,
is of major concern and should be targeted in order to reduce mortality and the burden of
disease. Development of new AEDs should consider and thus overcome these barriers to
guarantee efficient and accessible treatment.
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The development of new AEDs presents significant challenges in terms of effectiveness
and safety. Approximately one-third of epileptic patients do not respond to treatment,
which raises questions about the underlying mechanisms of the disease. Epilepsy, being a
multifactorial and complex inherited disease, requires the identification and prioritization
of targets based on interactions between “multiomics” and health determinants. Therefore,
in preclinical research, experimental designs based on biomarkers serve as the initial
step in designing compounds with desirable properties and conducting ligand-based
screening [120,121].

In relation to the clinical development of AEDs, it can be concluded that the earli-
est discoveries were made through serendipity or through the conduct of case series or
observational studies, which inherently possess methodological limitations. Over time,
randomized controlled trials (RCTs) gained prominence for the development of “new”
AEDs, which we consider should continue to be the gold standard for the development of
future medications for managing this condition. These should be supplemented with phase
IV pragmatic clinical studies that confirm the effectiveness and safety of these medications
in real-world conditions.

Translational medicine has the potential to revolutionize the development of AEDs by
proposing methodologies that consider disease biomarkers, pharmacodynamic responses,
and compound–target interactions within the same trial [120,121]. Additionally, precision
medicine, which places the patient at the center of care, aims to go beyond symptom man-
agement and focuses on individual etiopathological mechanisms [122,123]. Taking into ac-
count the epilepsy diagnostic workup is crucial for the development of new AEDs [122,123].
Recent trends in utilizing AI techniques in healthcare have demonstrated their potential
in discovering new possibilities for epilepsy management. Methods such as automating
processes, analyzing large datasets to identify novel drug candidates, and discovering
biomarkers to optimize drug development phases can bridge the gap between translational
and precision medicine in the development of AEDs [124].

Author Contributions: Conceptualization: M.G.C.-H., C.-A.C.-O., L.P.-S., M.G.-C., N.B.-R. and S.E.-
L.; investigation: M.G.C.-H., C.-A.C.-O., L.P.-S., M.G.-C., N.B.-R., I.E.M.-R. and S.E.-L. writing—original
draft preparation: M.G.C.-H., C.-A.C.-O., L.P.-S., M.G.-C., N.B.-R., I.E.M.-R. and S.E.-L.; writing—review
and editing: M.G.C.-H.; Figure 1: S.K.V.-H. and M.G.C.-H.; Figure 2: N.B.-R.; Table 1: S.K.V.-H.;
Table 2: N.B.-R. and S.E.-L.; supervision: C.-A.C.-O., L.P.-S., M.G.C.-H. and N.B.-R.; project adminis-
tration: M.G.C.-H. and C.-A.C.-O.; funding acquisition: J.H.R.-Q. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by LaCardio and Universidad del Rosario.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank Tim Hiley for his English language proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov. 2010,

9, 68–82. [CrossRef] [PubMed]
2. Löscher, W.; Brandt, C. Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and

Translational Research. Pharmacol. Rev. 2010, 62, 668–700. [CrossRef] [PubMed]
3. Barker-Haliski, M.L.; Johnson, K.; Billingsley, P.; Huff, J.; Handy, L.J.; Khaleel, R.; Lu, Z.; Mau, M.J.; Pruess, T.H.; Rueda, C.; et al.

Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy. Neurochem. Res. 2017, 42, 1904–1918.
[CrossRef]

4. Chaudhary, U.J.; Duncan, J.S.; Lemieux, L. A dialogue with historical concepts of epilepsy from the Babylonians to Hughlings
Jackson: Persistent beliefs. Epilepsy Behav. 2011, 21, 109–114. [CrossRef] [PubMed]

https://doi.org/10.1038/nrd2997
https://www.ncbi.nlm.nih.gov/pubmed/20043029
https://doi.org/10.1124/pr.110.003046
https://www.ncbi.nlm.nih.gov/pubmed/21079040
https://doi.org/10.1007/s11064-017-2227-7
https://doi.org/10.1016/j.yebeh.2011.03.029
https://www.ncbi.nlm.nih.gov/pubmed/21550316


Biomedicines 2023, 11, 1632 21 of 25

5. Patel, P.; Moshé, S.L. The evolution of the concepts of seizures and epilepsy: What’s in a name? Epilepsia Open 2020, 5, 22–35.
[CrossRef] [PubMed]

6. Eadie, M.J. Epilepsy—From the Sakikku to hughlings Jackson. J. Clin. Neurosci. 1995, 2, 156–162. [CrossRef]
7. Kaculini, C.M.; Tate-Looney, A.J.; Seifi, A. The History of Epilepsy: From Ancient Mystery to Modern Misconception. Cureus

2021, 13, e13953. [CrossRef]
8. Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic Seizures and Epilepsy: Definitions

Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005,
46, 470–472. [CrossRef]

9. Falco-Walter, J. Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623.
[CrossRef]

10. Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al.
ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [CrossRef]

11. Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.-S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and
incidence of epilepsy: A Systematic Review and Meta-Analysis of International Studies. Neurology 2017, 88, 296–303. [CrossRef]

12. Beghi, E.; Giussani, G.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abraha, H.N.; Adib, M.G.; Agrawal, S.; Alahdab, F.;
Awasthi, A.; et al. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of
Disease Study 2016. Lancet Neurol. 2019, 18, 357–375. [CrossRef] [PubMed]

13. World Health Organization. WHO|Epilepsy: A Public Health Imperative; WHO: Geneva, Switzerland, 2019; p. 171.
14. Orozco-Hernández, J.P.; Quintero-Moreno, J.F.; Marín-Medina, D.S.; Castaño-Montoya, J.P.; Hernández-Coral, P.; Pineda, M.;

Vélez, J.D.; Villada, H.C.; Martínez, J.W.; Lizcano, A. Clinical and sociodemographic profile of epilepsy in adults from a reference
centre in Colombia. Neurol. (Engl. Ed.) 2019, 34, 437–444. [CrossRef]

15. Kwan, P.; Brodie, M.J. Phenobarbital for the Treatment of Epilepsy in the 21st Century: A Critical Review. Epilepsia 2004,
45, 1141–1149. [CrossRef] [PubMed]

16. Kale, R.; Perucca, E. Revisiting phenobarbital for epilepsy: Large gaps in knowledge still exist, but we may be underestimating its
clinical value. BMJ Br. Med. J. 2004, 329, 1199. [CrossRef] [PubMed]

17. Nimaga, K.; Desplats, D.; Doumbo, O.; Farnarier, G. Treatment with phenobarbital and monitoring of epileptic patients in rural
Mali. Bull. World Health Organ. 2002, 80, 532.

18. Geronzi, U.; Lotti, F.; Grosso, S. Oxidative stress in epilepsy. Expert Rev. Neurother. 2018, 18, 427–434. [CrossRef]
19. Watts, M.E.; Pocock, R.; Claudianos, C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease.

Front. Mol. Neurosci. 2018, 11, 216. [CrossRef]
20. Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020,

21, 363–383. [CrossRef]
21. Parsons, A.L.M.; Bucknor, E.M.V.; Castroflorio, E.; Soares, T.R.; Oliver, P.L.; Rial, D. The Interconnected Mechanisms of Oxidative

Stress and Neuroinflammation in Epilepsy. Antioxidants 2022, 11, 157. [CrossRef]
22. Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Prim. 2018,

4, 18024. [CrossRef] [PubMed]
23. Patel, M. Mitochondrial dysfunction and oxidative stress: Cause and consequence of epileptic seizures. Free. Radic. Biol. Med.

2004, 37, 1951–1962. [CrossRef] [PubMed]
24. Yang, N.; Guan, Q.-W.; Chen, F.-H.; Xia, Q.-X.; Yin, X.-X.; Zhou, H.-H.; Mao, X.-Y. Antioxidants Targeting Mitochondrial Oxidative

Stress: Promising Neuroprotectants for Epilepsy. Oxid. Med. Cell. Longev. 2020, 2020, 6687185. [CrossRef]
25. Ambrogini, P.; Torquato, P.; Bartolini, D.; Albertini, M.C.; Lattanzi, D.; Di Palma, M.; Marinelli, R.; Betti, M.; Minelli, A.;

Cuppini, R.; et al. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-
derived neurodegeneration: The role of vitamin E. Biochim. et Biophys. Acta (BBA) Mol. Basis Dis. 2019, 1865, 1098–1112. [CrossRef]
[PubMed]

26. Mehvari, J.; Motlagh, F.G.; Najafi, M.; Ghazvini, M.R.A.; Naeini, A.A.; Zare, M. Effects of Vitamin E on seizure frequency,
electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv. Biomed. Res. 2016, 5, 36.
[CrossRef] [PubMed]

27. Baracaldo-Santamaría, D.; Ariza-Salamanca, D.F.; Corrales-Hernández, M.G.; Pachón-Londoño, M.J.; Hernandez-Duarte, I.;
Calderon-Ospina, C.-A. Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022, 14, 152.
[CrossRef]

28. Schousboe, A.; Scafidi, S.; Bak, L.K.; Waagepetersen, H.S.; McKenna, M.C. Glutamate Metabolism in the Brain Focusing on
Astrocytes. Adv. Neurobiol. 2014, 11, 13. [CrossRef]

29. Swamy, M.; Yusof, W.R.W.; Sirajudeen, K.N.S.; Mustapha, Z.; Govindasamy, C. Decreased glutamine synthetase, increased
citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model. J. Physiol. Biochem.
2011, 67, 105–113. [CrossRef]

30. Eid, T.; Thomas, M.J.; Spencer, D.D.; Rundén-Pran, E.; Lai, J.C.K.; Malthankar, G.V.; Kim, J.H.; Danbolt, N.C.; Ottersen, O.P.;
de Lanerolle, N. Loss of glutamine synthetase in the human epileptogenic hippocampus: Possible mechanism for raised extracel-
lular glutamate in mesial temporal lobe epilepsy. Lancet 2004, 363, 28–37. [CrossRef]

https://doi.org/10.1002/epi4.12375
https://www.ncbi.nlm.nih.gov/pubmed/32140641
https://doi.org/10.1016/0967-5868(95)90010-1
https://doi.org/10.7759/cureus.13953
https://doi.org/10.1111/j.0013-9580.2005.66104.x
https://doi.org/10.1055/s-0040-1718719
https://doi.org/10.1111/epi.12550
https://doi.org/10.1212/WNL.0000000000003509
https://doi.org/10.1016/S1474-4422(18)30454-X
https://www.ncbi.nlm.nih.gov/pubmed/30773428
https://doi.org/10.1016/j.nrleng.2017.02.012
https://doi.org/10.1111/j.0013-9580.2004.12704.x
https://www.ncbi.nlm.nih.gov/pubmed/15329080
https://doi.org/10.1136/bmj.329.7476.1199
https://www.ncbi.nlm.nih.gov/pubmed/15550407
https://doi.org/10.1080/14737175.2018.1465410
https://doi.org/10.3389/fnmol.2018.00216
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.3390/antiox11010157
https://doi.org/10.1038/nrdp.2018.24
https://www.ncbi.nlm.nih.gov/pubmed/29722352
https://doi.org/10.1016/j.freeradbiomed.2004.08.021
https://www.ncbi.nlm.nih.gov/pubmed/15544915
https://doi.org/10.1155/2020/6687185
https://doi.org/10.1016/j.bbadis.2019.01.026
https://www.ncbi.nlm.nih.gov/pubmed/30703511
https://doi.org/10.4103/2277-9175.178780
https://www.ncbi.nlm.nih.gov/pubmed/27099849
https://doi.org/10.3390/pharmaceutics14010152
https://doi.org/10.1007/978-3-319-08894-5_2
https://doi.org/10.1007/s13105-010-0054-2
https://doi.org/10.1016/S0140-6736(03)15166-5


Biomedicines 2023, 11, 1632 22 of 25

31. Eid, T.; Williamson, A.; Lee, T.-S.W.; Petroff, O.A.; De Lanerolle, N.C. Glutamate and astrocytes-Key players in human mesial
temporal lobe epilepsy? Epilepsia 2008, 49 (Suppl. 2), 42–52. [CrossRef]

32. Vishnoi, S.; Raisuddin, S.; Parvez, S. Glutamate Excitotoxicity and Oxidative Stress in Epilepsy: Modulatory Role of Melatonin.
J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 365–374. [CrossRef]

33. Valero, S.P.; García, M. Aspectos Históricos de La Epilepsia. Actividades Integradoras del Aprendizaje por Sistemas, AIAS del Sistema
Nervioso; Editorial Universidad del Rosario: Bogotá, Colombia, 2017; pp. 67–76. [CrossRef]

34. Palacios Sánchez, L. Abriendo La Caja Negra. Una Historia de La Neurociencia. Abriendo la caja negra. Una Hist. Neurocienc.
2020. [CrossRef]

35. García-Ramos, R.; García-Pastor, A.; Masjuan, J.; Sánchez, C.; Gil, A. FEEN: Informe sociosantario FEEN sobre la epilepsia en
España. Neurología 2011, 26, 548–555. [CrossRef] [PubMed]

36. Neligan, A.; Shorvon, S.D. The history of status epilepticus and its treatment. Epilepsia 2009, 50 (Suppl. 3), 56–68. [CrossRef]
[PubMed]

37. Yasiry, Z.; Shorvon, S.D. How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in
the last 100 years. Epilepsia 2012, 53, 26–39. [CrossRef]

38. Tomson, T.; Battino, D.; Perucca, E. The remarkable story of valproic acid. Lancet Neurol. 2016, 15, 141. [CrossRef] [PubMed]
39. Casper, S.T. A revisionist history of American neurology. Brain 2010, 133, 638–642. [CrossRef]
40. Barker-Haliski, M.; White, H.S. Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls

in ASD screening. Neuropharmacology 2019, 167, 107750. [CrossRef] [PubMed]
41. Chen, Z.; Brodie, M.J.; Liew, D.; Kwan, P. Treatment Outcomes in Patients with Newly Diagnosed Epilepsy Treated with

Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018, 75, 279–286. [CrossRef]
42. Löscher, W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy

Res. 2016, 126, 157–184. [CrossRef]
43. Putnam, T.J.; Merritt, H.H. Experimental Determination of the Anticonvulsant Properties of Some Phenyl Derivatives. Science

1937, 85, 525–526. [CrossRef] [PubMed]
44. Barker-Haliski, M.; Harte-Hargrove, L.C.; Ravizza, T.; Smolders, I.; Xiao, B.; Brandt, C.; Löscher, W. A companion to the

preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A Report of the TASK3
Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018, 3, 53–68. [CrossRef] [PubMed]

45. Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new
antiepileptic drugs. Seizure 2011, 20, 359–368. [CrossRef] [PubMed]

46. Smith, M.; Wilcox, K.S.; White, H.S. Discovery of antiepileptic drugs. Neurotherapeutics 2007, 4, 12–17. [CrossRef] [PubMed]
47. Frankel, W.N.; Taylor, L.; Beyer, B.; Tempel, B.L.; White, H.S. Electroconvulsive Thresholds of Inbred Mouse Strains. Genomics

2001, 74, 306–312. [CrossRef]
48. Hansen, S.L.; Sperling, B.B.; Sánchez, C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in

pentylenetetrazole-kindled mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 105–113. [CrossRef]
49. Everett, G.M.; Richards, R.K. Comparative Anticonvulsive Action of 3,5,5-trimethyloxazolidine-2,4-dione (Tridione), Dilantin and

Phenobarbital. Anesthesiology 1945, 6, 448. [CrossRef]
50. Goddard, G.V.; McIntyre, D.C.; Leech, C.K. A permanent change in brain function resulting from daily electrical stimulation. Exp.

Neurol. 1969, 25, 295–330. [CrossRef]
51. Sato, M.; Racine, R.; McIntyre, D. Kindling: Basic mechanisms and clinical validity. Electroencephalogr. Clin. Neurophysiol. 1990,

76, 459–472. [CrossRef]
52. Matagne, A.; Klitgaard, H. Validation of corneally kindled mice: A sensitive screening model for partial epilepsy in man. Epilepsy

Res. 1998, 31, 59–71. [CrossRef]
53. Barton, M.E.; Klein, B.D.; Wolf, H.H.; White, H.S. Pharmacological characterization of the 6 Hz psychomotor seizure model of

partial epilepsy. Epilepsy Res. 2001, 47, 217–227. [CrossRef]
54. Rho, J.M.; White, H.S. Brief history of anti-seizure drug development. Epilepsia Open 2018, 3, 114–119. [CrossRef]
55. Porter, R.J.; Kupferberg, H.J. The Anticonvulsant Screening Program of the National Institute of Neurological Disorders and Stroke,

NIH: History and Contributions to Clinical Care in the Twentieth Century and Beyond. Neurochem. Res. 2017, 42, 1889–1893.
[CrossRef]

56. Wilcox, K.S.; West, P.J.; Metcalf, C.S. The current approach of the Epilepsy Therapy Screening Program contract site for identifying
improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology 2020, 166, 107811. [CrossRef]
[PubMed]

57. Löscher, W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs.
Neurochem. Res. 2017, 42, 1873–1888. [CrossRef] [PubMed]

58. Prior, H.; Baldrick, P.; De Haan, L.; Downes, N.; Jones, K.; Mortimer-Cassen, E.; Kimber, I. Reviewing the Utility of Two Species in
General Toxicology Related to Drug Development. Int. J. Toxicol. 2018, 37, 121–124. [CrossRef]

59. Hernier, A.M.; Froger-Colléaux, C.; Castagné, V. CNS safety pharmacology: A focus on cognitive functions. J. Pharmacol. Toxicol.
Methods 2016, 81, 286–294. [CrossRef] [PubMed]

60. Tomson, T.; Battino, D. Teratogenic effects of antiepileptic drugs. Seizure 2008, 17, 166–171. [CrossRef]

https://doi.org/10.1111/j.1528-1167.2008.01492.x
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016016399
https://doi.org/10.2307/j.ctt1t6p6sm.12
https://doi.org/10.12804/urosario9789587845693
https://doi.org/10.1016/j.nrl.2011.04.002
https://www.ncbi.nlm.nih.gov/pubmed/21757265
https://doi.org/10.1111/j.1528-1167.2009.02040.x
https://www.ncbi.nlm.nih.gov/pubmed/19298433
https://doi.org/10.1111/epi.12026
https://doi.org/10.1016/S1474-4422(15)00398-1
https://www.ncbi.nlm.nih.gov/pubmed/28463122
https://doi.org/10.1093/brain/awp339
https://doi.org/10.1016/j.neuropharm.2019.107750
https://www.ncbi.nlm.nih.gov/pubmed/31469995
https://doi.org/10.1001/jamaneurol.2017.3949
https://doi.org/10.1016/j.eplepsyres.2016.05.016
https://doi.org/10.1126/science.85.2213.525
https://www.ncbi.nlm.nih.gov/pubmed/17750072
https://doi.org/10.1002/epi4.12254
https://www.ncbi.nlm.nih.gov/pubmed/30450485
https://doi.org/10.1016/j.seizure.2011.01.003
https://www.ncbi.nlm.nih.gov/pubmed/21292505
https://doi.org/10.1016/j.nurt.2006.11.009
https://www.ncbi.nlm.nih.gov/pubmed/17199014
https://doi.org/10.1006/geno.2001.6564
https://doi.org/10.1016/j.pnpbp.2003.09.026
https://doi.org/10.1097/00000542-194507000-00047
https://doi.org/10.1016/0014-4886(69)90128-9
https://doi.org/10.1016/0013-4694(90)90099-6
https://doi.org/10.1016/S0920-1211(98)00016-3
https://doi.org/10.1016/S0920-1211(01)00302-3
https://doi.org/10.1002/epi4.12268
https://doi.org/10.1007/s11064-017-2215-y
https://doi.org/10.1016/j.neuropharm.2019.107811
https://www.ncbi.nlm.nih.gov/pubmed/31790717
https://doi.org/10.1007/s11064-017-2222-z
https://www.ncbi.nlm.nih.gov/pubmed/28290134
https://doi.org/10.1177/1091581818760564
https://doi.org/10.1016/j.vascn.2016.04.002
https://www.ncbi.nlm.nih.gov/pubmed/27071953
https://doi.org/10.1016/j.seizure.2007.11.016


Biomedicines 2023, 11, 1632 23 of 25

61. Westall, C.A.; Wright, T.; Cortese, F.; Kumarappah, A.; Snead, O.C.; Buncic, J.R. Vigabatrin retinal toxicity in children with
infantile spasms: An observational cohort study. Neurology 2014, 83, 2262–2268. [CrossRef]

62. Iamsaard, S.; Sukhorum, W.; Arun, S.; Phunchago, N.; Uabundit, N.; Boonruangsri, P.; Namking, M. Valproic acid induces
histologic changes and decreases androgen receptor levels of testis and epididymis in rats. Int. J. Reprod. Biomed. 2017, 15, 217.
[CrossRef]

63. Barton, A. Handbook for good clinical research practice (GCP): Guidance for implementation. J. Epidemiol. Community Health
2007, 61, 559. [CrossRef]

64. Bhatt, A. Evolution of Clinical Research: A History Before and Beyond James Lind. Perspect. Clin. Res. 2010, 1, 6. [PubMed]
65. Merritt, H.H.; Putnam, T.J. Landmark article 17 September 1938: Sodium diphenyl hydantoinate in the treatment of convulsive

disorders. By H. Houston Merritt and Tracy J. Putnam. JAMA 1984, 251, 1062–1067. [CrossRef] [PubMed]
66. Friedlander, W.J. Putnam, Merritt, and the Discovery of Dilantin. Epilepsia 1986, 27 (Suppl. 3), S1–S20. [CrossRef]
67. Coatsworth, J. Studies on the Clinical Efficacy of Marketed Antiepileptic Drugs; National Institut of Health: Bethesda, MD, USA, 1971.
68. Perucca, E. What clinical trial designs have been used to test antiepileptic drugs and do we need to change them? Epileptic Disord.

2012, 14, 124–131. [CrossRef]
69. Perucca, E. Antiepileptic drugs: Evolution of our knowledge and changes in drug trials. Epileptic Disord. 2019, 21, 319–329.
70. Greene, J.A.; Podolsky, S.H. Reform, Regulation, and Pharmaceuticals—The Kefauver–Harris Amendments at 50. N. Engl. J. Med.

2012, 367, 1481–1483. [CrossRef]
71. White, P.T.; Plott, D.; Norton, J. Relative Anticonvulsant Potency of Primidone; a Double Blind Comparison. Arch. Neurol. 1966,

14, 31–35. [CrossRef]
72. Chung, A.; Eiland, L.S. Use of Second-Generation Antiepileptic Drugs in the Pediatric Population. Pediatr. Drugs 2008, 10, 217–254.

[CrossRef]
73. Shorvon, S.D. Drug treatment of epilepsy in the century of the ILAE: The second 50 years, 1959–2009. Epilepsia 2009, 50, 93–130.

[CrossRef]
74. Bialer, M.; Johannessen, S.; Kupferberg, H.; Levy, R.; Loiseau, P.; Perucca, E. Progress report on new antiepileptic drugs:

A summary of the Third Eilat Conference. Epilepsy Res. 1996, 25, 299–319. [CrossRef] [PubMed]
75. Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: Impact and future

perspectives. Lancet Neurol. 2020, 19, 544–556. [CrossRef] [PubMed]
76. Ravizza, T.; Vezzani, A. Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental

and clinical studies. Epilepsia Open 2018, 3, 133–142. [CrossRef] [PubMed]
77. Dowden, H.; Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019, 18, 495–496. [CrossRef]
78. Mallappallil, M.; Sabu, J.; Gruessner, A.; Salifu, M. A review of big data and medical research. SAGE Open Med. 2020,

8, 205031212093483. [CrossRef]
79. Krenn, M.; Pollice, R.; Guo, S.Y.; Aldeghi, M.; Cervera-Lierta, A.; Friederich, P.; dos Passos Gomes, G.; Häse, F.; Jinich, A.;

Nigam, A.; et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 2022, 4, 761–769. [CrossRef]
80. Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A.G.; Fisher, J.; Jansen, J.M.; Duca, J.S.;

Rush, T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [CrossRef]
81. Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthcar. J. 2019, 6, 94–98. [CrossRef]
82. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
83. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al.

Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [CrossRef]
84. Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022,

12, 3049–3062. [CrossRef] [PubMed]
85. Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277.

[CrossRef] [PubMed]
86. Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev.

2021, 55, 1947–1999. [CrossRef] [PubMed]
87. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine

intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [CrossRef] [PubMed]
88. Ha, E.J.; Lwin, C.T.; Durrant, J.D. LigGrep: A tool for filtering docked poses to improve virtual-screening hit rates. J. Cheminform.

2020, 12, 69. [CrossRef] [PubMed]
89. Chen, P.; Ke, Y.; Lu, Y.; Du, Y.; Li, J.; Yan, H.; Zhao, H.; Zhou, Y.; Yang, Y. DLIGAND2: An improved knowledge-based energy

function for protein–ligand interactions using the distance-scaled, finite, ideal-gas reference state. J. Cheminform. 2019, 11, 52.
[CrossRef]

90. Gattani, S.; Mishra, A.; Hoque, T. StackCBPred: A stacking based prediction of protein-carbohydrate binding sites from sequence.
Carbohydr. Res. 2019, 486, 107857. [CrossRef]

91. Li, X.; Yan, X.; Yang, Y.; Gu, Q.; Zhou, H.; Du, Y.; Lu, Y.; Liao, J.; Xu, J. LSA: A local-weighted structural alignment tool for
pharmaceutical virtual screening. RSC Adv. 2019, 9, 3912–3917. [CrossRef]

92. Seifert, M.H.J. ProPose: Steered Virtual Screening by Simultaneous Protein−Ligand Docking and Ligand−Ligand Alignment.
J. Chem. Inf. Model. 2005, 45, 449–460. [CrossRef]

https://doi.org/10.1212/WNL.0000000000001069
https://doi.org/10.29252/ijrm.15.4.217
https://doi.org/10.1136/jech.2006.048819
https://www.ncbi.nlm.nih.gov/pubmed/21829774
https://doi.org/10.1001/jama.1984.03340320048027
https://www.ncbi.nlm.nih.gov/pubmed/6363736
https://doi.org/10.1111/j.1528-1157.1986.tb05743.x
https://doi.org/10.1684/epd.2012.0511
https://doi.org/10.1056/NEJMp1210007
https://doi.org/10.1001/archneur.1966.00470070035004
https://doi.org/10.2165/00148581-200810040-00003
https://doi.org/10.1111/j.1528-1167.2009.02042.x
https://doi.org/10.1016/S0920-1211(96)00081-2
https://www.ncbi.nlm.nih.gov/pubmed/8956930
https://doi.org/10.1016/S1474-4422(20)30035-1
https://www.ncbi.nlm.nih.gov/pubmed/32109411
https://doi.org/10.1002/epi4.12242
https://www.ncbi.nlm.nih.gov/pubmed/30564772
https://doi.org/10.1038/d41573-019-00074-z
https://doi.org/10.1177/2050312120934839
https://doi.org/10.1038/s42254-022-00518-3
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1016/j.apsb.2022.02.002
https://www.ncbi.nlm.nih.gov/pubmed/35865092
https://doi.org/10.3390/molecules25225277
https://www.ncbi.nlm.nih.gov/pubmed/33198233
https://doi.org/10.1007/s10462-021-10058-4
https://www.ncbi.nlm.nih.gov/pubmed/34393317
https://doi.org/10.1007/s11030-021-10217-3
https://www.ncbi.nlm.nih.gov/pubmed/33844136
https://doi.org/10.1186/s13321-020-00471-2
https://www.ncbi.nlm.nih.gov/pubmed/33292486
https://doi.org/10.1186/s13321-019-0373-4
https://doi.org/10.1016/j.carres.2019.107857
https://doi.org/10.1039/C8RA08915A
https://doi.org/10.1021/ci0496393


Biomedicines 2023, 11, 1632 24 of 25

93. Schellhammer, I.; Rarey, M. TrixX: Structure-based molecule indexing for large-scale virtual screening in sublinear time. J. Comput.
Aided. Mol. Des. 2007, 21, 223–238. [CrossRef]

94. Rifaioglu, A.S.; Nalbat, E.; Atalay, V.; Martin, M.J.; Cetin-Atalay, R.; Doğan, T. DEEPScreen: High performance drug–target
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