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Abstract: Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk
factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new
treatment strategies, such as immunotherapy, that use different targets of the tumor microenviron-
ment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition
of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential
anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and
R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively.
Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and
IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results
revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical
tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by
regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the
proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the
combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical
cervical cancer.

Keywords: immunotherapy; IDO-1; CXCR-2; K14E7; cervical cancer

1. Introduction

Cervical cancer (CC) is a public health problem in low- and middle-income coun-
tries [1]. This disease is strongly associated with persistent high-risk human papillomavirus
(HR-HPV) infection. Although the prevalence of genital HR-HPV infections is relatively
high in all populations, cervical cancer is less frequent than infection rates, suggesting
that other factors that add to infection are necessary for malignant transformation [2].
Numerous studies have indicated that the tumor immune microenvironment (TIME) is an
essential factor for the development, persistence, and even radio and chemical resistance
of CC [3–5]. Immunosuppression is a crucial characteristic in TIME and is characterized
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by the presence of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs),
tumor-associated neutrophils (TAN), tumor-associated macrophages (TAMs), and amino
acid-derived metabolites [6,7].

Indolamine-2,3-dioxygenase 1 (IDO-1) is the main enzyme responsible for the catabolism
of tryptophan (Trp) in the kynurenine pathway (Kyn), leading to a local decrease in Trp
and the production of immunosuppressive metabolites [8]. It is expressed in immature
dendritic cells, secondary lymphoid organs and epithelial cells of the female genital tract,
placenta endothelial cells, the lung, interstitial cells of the intestinal tract, and β-pancreatic
cells [9]. Moreover, constitutive expression of this enzyme has also been reported in
approximately 60% of human tumors [10]. Concerning CC, an increase in IDO-1 positive
squamous cells and a higher Kyn/Trp ratio have been associated with immune suppression,
clinicopathological parameters, and poor survival [11–14]. Furthermore, IDO-1 has been
reported to be involved in the self-renewal and expression of OCT4 and SOX2 in cervical
cancer stem cells [15].

Another protumor factor for TIME is the deregulation of the CXCR-2/CXCLs axis.
CXCR-2 is a receptor for CXCL1–3 and CXCL5–8 chemokines, which are known for their
ability to recruit immune cells. Upon binding to its ligands, CXCR-2 triggers robust neu-
trophil, macrophage, and MDSC chemotaxis [16]. Additionally, the CXCR-2/CXCL axis
plays a role in tumorigenesis, angiogenesis, and metastasis [17–23]. In the case of CC, over-
expression of CXCL1 and CXCR2 has been reported [24]. Furthermore, the administration
of exogenous CXCL3 or CXCL5 on cervical cancer cell lines contributes to proliferation
and migration [25–27]. Moreover, using an in vivo model of cervical cancer, our research
group and others have demonstrated the expression of a set of chemokine genes (Cxcl1,
Cxcl2, Cxcl3, and Cxcl5) in stromal and epithelial cancer cells, revealing biological crosstalk
in cervical carcinogenesis [3,28].

Immunotherapy targeting TIME has emerged as a promising approach. In the con-
text of CC, the FDA has approved using pembrolizumab in patients who test positive for
programmed cell death ligand 1 (PD-L1). However, the response rate to this treatment
has been relatively low, ranging from 10% to 17% [29,30]. Single-agent immunotherapies,
exemplified by agents like pembrolizumab in the context of CC, may encounter limita-
tions due to tumor heterogeneity, immune escape mechanisms, or microenvironmental
factors [31]. Combining different immunotherapeutic agents, such as immune checkpoint
inhibitors, adoptive T cell therapies, cytokines, and vaccines, can create a more comprehen-
sive and dynamic immune response against the disease. For example, studies indicated
that when used as a single agent, IDO-1 or CXCR-2 inhibitors exerted little antitumor
efficacy, while combination with other therapies showed markedly enhanced antitumor ef-
fectiveness [32–35]. On the contrary, a phase 1 clinical study yielded inconclusive evidence
concerning the potential benefits of combined therapy incorporating the IDO-1 inhibitor
(navoximod) and the PD-L1 inhibitor (atezolizumab) in solid tumors, including CC [36].
Therefore, exploring the effects of the IDO-1 inhibitor (1-DL-MT) and the CXCR-2 inhibitor
(SB225002) can be useful based on their distinct mechanisms of action, which hold the
potential for a complementary impact on specific pathways crucial to the progression of CC.
Our study aimed to investigate the influence of inhibiting IDO-1 and CXCR-2 on cervical
tumor growth. To achieve this, we utilized pharmacological inhibitors in single-drug or
combination approaches using a preclinical model of cervical cancer (K14E7E2).

2. Materials and Methods
2.1. Cervical Cancer Mouse Model (K14E7E2)

In this study, we utilized the K14E7 mouse model. The K14E7 transgenic mouse has
been demonstrated to develop lesions resembling cervical intraepithelial neoplasia I (CIN-I)
after 1 month of estradiol treatment, CIN-II after 3 months, and high-grade dysplastic
lesions and invasive cancer (CIN-III and CIS) when subjected to continuous estrogen
treatment for 6 months [28,37]. A 6-month treatment with 17-beta estradiol (E2) (Cat#
SE-121; Innovative Research of America; Sarasota, FL, USA) was administered to induce
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cervical cancer in the mice for our study. Briefly, 1-month-old K14E7 transgenic mice were
anesthetized with isoflurane using the IMPAC6 (VetEquip Inhalation Anesthesia Systems;
Livermore, CA, USA) and a sustained release pellet that delivered 0.05 mg/60 days of E2
was implanted on the dorsal skin. The pellets were inserted every 2 months until mice
reached 7 months of age. Finally, for this study, this model was designated as K14E7E2.

The study was conducted under the guidelines established by the Laboratory Ani-
mal Production and Experimentation Unit (UPEAL-CINVESTAV-IPN, Mexico; NOM-451
062-ZOO-1999) and received approval on 8 October 2019, from the internal committee
responsible for care and use of the laboratory animals at the Centro de Investigación y de
Estudios Avanzados del Instituto Politécnico Nacional (protocol code: 0295-19).

2.2. Inhibition Therapy

For inhibition therapy, the 1-methyl-DL-tryptophan (1-DL-MT, IDO-1 inhibitor) (Cat#
860646; Sigma-Aldrich; Darmstadt, Hesse, Germany) was prepared as 20 mM stock in
0.1 N NaOH (pH 7.4) (Cat# S5881; Sigma-Aldrich; Darmstadt, Hesse, Germany). The stock
solution was then diluted in drinking water at a 2 mg/mL concentration and supplemented
with 2 g/L of aspartame (Equal; New Providence, NJ, USA). To ascertain the average
daily water consumption of the mice, we calculated the difference in solution volume
and subsequently divided it by the number of days and the number of mice in each
cage. The mice consumed an average of 5 mL/day, and the water was replaced every
5 days [38]. SB225002 (CXCR-2 inhibitor) (Cat# SML071; Sigma-Aldrich; Darmstadt, Hesse,
Germany) was prepared as 50 mM stock in DMSO (Cat# D8418; Sigma-Aldrich; Darmstadt,
Hesse, Germany) and diluted in 10% DMSO with 1× PBS, and mice were administered
intraperitoneally with 2.5 mg/kg once/2 days of SB225002 [39].

Due to exogenous estradiol dependency for the continued growth of cervical tu-
mors [40], the K14E7E2 mice were divided into two treatment regimens: In the first regimen
(R1), 6-month-old mice were administered a combination of 1-DL-MT and SB225002 for
30 days before completing the treatment with E2. These mice were then euthanized at
7 months old. In the second regimen (R2), 7-month-old mice, after completing the treat-
ment of E2, were treated with a combination of 1-DL-MT and SB225002 for 30 days and
euthanized at 8 months old. In both regimens, the efficacy of monotherapy with 1-DL-MT
or SB225002 was also evaluated. The K14E7E2 mice treated with vehicle solutions [0.1 N
NaOH diluted in drinking water (pH 7.4) supplemented with 2 g/L of aspartame and 10%
DMSO diluted in 1× PBS] served as the group that developed CIN-III/CC.

All mice were anesthetized using isoflurane with the IMPAC6 (VetEquip Inhalation
Anesthesia Systems; Livermore, CA, USA) and then sacrificed through cervical dislocation.
The female reproductive tracts were removed, and the endocervix and ectocervix zone was
dissected. The dissected tissue was fixed in 4% paraformaldehyde (Cat# 158127 Sigma-
Aldrich; Darmstadt, Hesse, Germany) overnight at 4 ◦C, embedded in paraffin (Cat# 76242;
Sigma-Aldrich; Darmstadt, Hesse, Germany), or stored at −70 ◦C for future experiments.
Four to six mice were used from each experimental procedure from each group.

2.3. Western Blot

The entire reproductive tracts of three K14E7 and three K14E7E2 mice were harvested.
The zone containing the endocervix and the ectocervix was dissected and macerated
using liquid nitrogen. The obtained samples were added to tubes containing 1 mL of
T-PER buffer lysis (Cat#. 78510; Thermo Fisher Scientific, Waltham, MA USA) and halt
protease inhibitors cocktail (Cat# 78430; Thermo Fisher Scientific, Waltham, MA USA),
then centrifuged at 10,000× g for 15 min at 4 ◦C. The supernatants were collected, and
the protein concentration was determined using the Bradford assay (BioRad, Hercules,
CA, USA). Next, protein samples were prepared using 2× Laemmli Sample Buffer (Cat#
1610737; BioRad, Hercules, CA, USA) and heated at 95 ◦C for 5 min. Next, 40 µg of protein
sample mix was loaded onto a 10% polyacrylamide gel, and electrophoresis was performed
at 100 V for 1 h using Mini-PROTEAN Tetra Vertical Electrophoresis Cell (BioRad, Hercules,
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CA, USA). Subsequently, electrophoretic protein transfer to a nitrocellulose membrane
(0.45 µm pore-size) was achieved at 20 V for 40 min using the Trans-Blot semi-dry transfer
cell (BioRad, Hercules, CA, USA). The membranes were incubated with a blocking buffer
(1× TBST with 3% w/v of nonfat dry milk) for 1 h at RT. IDO-1 rabbit mAb (3:1000)
(Cat# 51851S; Cell Signaling Technology, Danvers, MA, USA) was added to the membrane
and incubated overnight at 4 ◦C, followed by washing the membranes three times for
5 min in 1× TTBS. Afterward, the membranes were incubated with an anti-rabbit IgG
antibody linked to HRP (1:3000) (Cat# 7074S; Cell Signaling Technology, Danvers, MA,
USA) for 1 h at RT. The membranes were washed three times for 5 min in 1× TTBS, and
the chemiluminescence reaction was performed using the Clarity Western ECL Substrate
(BioRad, Hercules, CA, USA). The images were captured using the C-DIGIT blot scanner
(LI-COR Biosciences, Lincoln, NE, USA). The amount of protein was determined with
normalization using the fixed-point method, utilizing the Image Studio software (LI-COR
Biosciences, Lincoln, NE, USA). The Anti-GAPDH antibody (1:1000) (Cat# 32233; Santa
Cruz Biotechnology, Dallas, TX, USA) was used to detect the internal reference protein.
Total placenta extract was used as the positive control for IDO-1.

2.4. Histopathology and Tumor Area

The paraffin-embedded tissues previously described were serially sectioned into 5 µm
thick slices using the HistoCore BioCut microtome (Leica Biosystems; Deer Park, IL, USA).
A total of 10 sections were collected at 75 µm intervals for hematoxylin and eosin staining
and immunohistochemistry. Briefly, the tissue paraffin sections were incubated at 56 ◦C for
1 h and then immersed in xylene twice for 5 min each. Subsequently, the tissue sections were
washed in a decreasing alcohol gradient (100%, 90%, and 70%) and rinsed with 1× PBS. The
tissue sections were stained with hematoxylin and eosin and histopathologically classified
to determine the grade of the cervical lesion present and the size of the cancers in each
animal, as previously described [37]. Cervical intraepithelial neoplasia III was classified
as tissues characterized by cells with increased nucleus size, a high degree of anaplasia,
an increased frequency, and distribution of dysplastic cells in the suprabasal layers of the
squamous epithelium, with projection into the cervical stroma. Cancer in situ (CIS) was
classified as tissue containing abundant anaplastic cells with significantly increased nuclear
size and a pronounced degree of remodeling and undulation of the epithelial-stromal
border while retaining an intact basement membrane without evidence of microinvasion.
Invasive, well-differentiated squamous cancers comprised dysplastic cell invasion through
the basement membrane. An expert pathologist performed the histopathology.

The hematoxylin- and eosin-stained images were captured using the Zeiss Axio Imager
A2 microscope (Carl Zeiss Microscopy, White Plains, NY, USA). Tumor area analysis was
conducted by calibrating the software through “the analyze and set scale” option at a
known distance of 100 µm. The tumor area was delimited using the polygon selection tool
and analyzed using the ROI manager tool. All analyses were performed using ImageJ 1.46 J
software (https://imagej.nih.gov/ij/download.html, accessed on 10 October 2022). Three
tissue sections from each of the six mice in each study group were selected, and three to
five fields from each tissue section were analyzed.

2.5. Immunochemistry

For immunohistochemical staining, the tissue sections on the slide were initially
deparaffinized and hydrated, as mentioned earlier. Antigen retrieval was then performed
using 1× immunoDNA retriever citrate or 1× immunoDNA retriever with EDTA (Cat#
BSB 0022 and BSB 0032; BioSB system; Santa Barbara, CA, USA), depending on antibody
specifications. The retriever solution was heated to 110 ◦C for 10 min in a domestic pressure
cooker (Cuisinart; Stamford, CT, USA). Subsequently, the tissue sections were tempered
in 1× PBS at RT and incubated with a polydetector peroxidase blocker (Cat# BSB 0050;
BioSB system; Santa Barbara, CA, USA) for 5 min. In the background blocking step, an
ImmunoDNA background blocker (Cat# BSB 0107; BioSB system; Santa Barbara, CA, USA)
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was used for 10 min. The tissue sections were incubated overnight at 4 ◦C with primary
antibodies against MCM2 (1:800), IDO-1 (1:800) (Cat# 3619S and 51851S, respectively; Cell
Signaling Technology, Danvers, MA, USA); CXCL5 (1:100) (Cat# BS-2549R; Bioss Antibodies,
Woburn, MA, USA); CD8 (1:100), PCNA (1:100) (Cat# SC-25280 and SC-1177; respectively;
Santa Cruz Biotechnology, Dallas, TX, USA); MPO (1:8000) and Granzyme B (1:100) (Cat#
ab188211 and ab4059; respectively; Abcam, Waltham, MA, USA). Afterward, the tissue
sections were washed with 1× PBS and incubated with an HRP-linked secondary antibody
(1:1000) (Cat# 7074S; Cell Signaling Technology, Danvers, MA, USA) for 1 h at RT. Protein
detection was performed using the DAB chromogen. Finally, the tissue sections were
stained with hematoxylin for 1 min and covered with Entellan (Cat# 1079600500; Sigma-
Aldrich, Darmstadt, Hesse, Germany) mounting medium for microscopy. All experiments
were performed with four mice from each group.

Immunohistochemistry-based quantifications were performed by capturing five fields
within the cervical cancer tissue of each group. Brown pixels within the threshold were se-
lected and quantified as positive cells for each field using Image Pro Plus 4.5.0.19. Software
(Media Cybernetics, Rockville, MD, USA). Tissue sections without primary antibodies were
included as a negative control.

2.6. Indoleamine 2,3-Dioxygenase 1 (IDO-1) Activity

To measure IDO-1 activity in mammalian tissues, we used the IDO1 Activity Assay Kit
(Cat# Ab235936; Abcam; Waltham, MA, USA) according to the manufacturer’s instructions.
Briefly, we harvested complete female reproductive tracts, and the entire zone containing
the endocervix and ectocervix was isolated, macerated with liquid nitrogen, and homoge-
nized in 500 µL IDO-1 ice-cold assay buffer, followed by centrifugation (10,000× g, 15 min,
4 ◦C), and then the supernatant was collected. After that, 50 µL reaction premix (2×) was
prepared, mixed with 15 µL of the test sample, and made up to 90 µL with IDO1 assay
buffer. Next, 10 µL of the 1 mM IDO-1 substrate solution was added to each assay well,
and the plate was incubated at 37 ◦C in a dark environment for 45 min. Then 50 µL of the
fluorogenic developer solution was added, the plate was incubated at 45 ◦C for 3 h, and
the fluorescence (Ex/Em = 402/488 nm) was measured.

2.7. TUNEL Assay

According to the manufacturer’s instructions, the procedure was performed using the
HRP-DAB tunel assay kit (Cat# Ab206386; Abcam, Waltham, MA, USA). Briefly, the tissue
sections were deparaffinized for 1 h at 56 ◦C and washed twice in xylene for 5 min. Then,
they were hydrated in a decreasing alcohol gradient (100%, 90%, and 70%, each for 5 min)
and rinsed with 1× PBS. Next, 100 µL of peroxidase K solution was added, incubated for
20 min, and washed with 1× TBS; then, 100 µL of peroxidase block was added for 10 min
and washed with 1× TBS. The slides were covered with 100 µL of TdT equilibration buffer
and incubated for 30 min at room temperature. Following this, 40 µL of the TdT labeling
reaction mix was added. Coverslips were added to the slides and then incubated for 90 min
at 37 ◦C in a humid chamber. Next, the slides were washed with 1× TBS, and 100 µL of
stop buffer was added and incubated for 5 min. Then 100 µL of blocking buffer was added
and incubated for 10 min; the excess was removed, and 100 µL of the conjugate was added
and incubated for 30 min in a humid chamber. It was washed with 1× PBS, 100 µL of DAB
solution was added, and stained with 100 µL of methyl green for 3 min. Finally, the slides
were covered with Entellan (Cat# 1079600500; Sigma-Aldrich, Darmstadt, Hesse, Germany)
mounting medium for microscopy.

2.8. Analysis of the IDO1 and CXCLs Genes Using the GEPIA2 Database

To investigate the mRNA expression of IDO1 and CXCLs genes in cervical cancer, we
used the GEPIA2 platform (http://gepia2.cancer-pku.cn/#index, accessed on 8 December
2022). The mRNA levels of cervical squamous cell carcinoma/endocervical adenocarcinoma
and normal cervical/endocervical tissue were compared. The statistical analysis was
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performed using Student’s t-tests, and Log2FC Cutoff > 1 and p < 0.01 were assumed
significant. In addition, a Kaplan–Meier curve was used to analyze overall survival.

2.9. Statistical Analysis

The Shapiro–Wilk and Levene’s tests were conducted to assess the normal distribution
and homogeneity of the variance for all the groups under study. In the case of skewed
distribution, non-parametric tests were employed. We utilized the Kruskal–Wallis test,
followed by Dunn, as a post hoc analysis for multiple pairwise comparisons. Parametric
tests were used for the normally distributed data, including a one-way ANOVA with the
Tukey test for multiple pairwise comparisons. The statistical analyses were performed
using GraphPad Prism 9.5.1 software (GraphPad; San Diego, CA, USA).

3. Results
3.1. Targeting IDO-1 and CXCR-2 Inhibits Cervical Cancer

IDO-1 and the CXCR-2/CXCL axis are critical factors in the development of many
solid tumors. Our research group previously reported the overexpression of Ido1, Cxcl1,
and Cxcl5 mRNAs in cervical malignant lesions in the K14E7E2 mouse model [28]. Con-
sequently, the present study verified the expression of IDO-1 and CXCL5 at the protein
level (Supplementary Figure S1). Therefore, IDO-1 and CXCR-2 were proposed as ther-
apeutic targets in CC using the mouse model K14E7E2. We established two treatment
regimens, R1 and R2 (Figure 1A), as described in the Materials and Methods Section. Our
study observed a notable and statistically significant decrease in tumor areas following
combined therapy (CT) administration. In the R1 group, the tumor area decreased from
196.0 mm2 ± 26.76 mm2 SD to 58.24 mm2 ± 3.11 mm2 SD. Similarly, in the R2 group, the
tumor area decreased from 149.6 mm2 ± 53.98 mm2 SD to 52.65 mm2 ± 10.12 mm2 SD.
Notably, this decrease in tumor area remained consistent and significant regardless of the
dependency on exogenous estradiol.

Moreover, we observed accompanying changes in the affected regions, including
moderate dysplasia, papillae reduction, and inflammation, compared to the group that did
not receive combined therapy (Figure 1B, panel K14E7E2). To further evaluate the effec-
tiveness of the treatment, we also investigated the use of similar regimens as monotherapy.
Specifically, we examined the effects of the monotherapies shown in Figure 1B, panels
K14E7E2+IDO-1i and K14E7E2+CXCR-2i. While we observed a decrease in tumor areas
with these monotherapy approaches, especially in the K14E7E2+IDO-1i group, no statisti-
cally significant effects were found compared to the K14E7E2 group, as demonstrated in
Figure 1C.

Considering that the combined inhibition of IDO-1 and CXCR-2 (K14E7E2 + CT)
exhibited a more significant effect in reducing cervical tumor areas compared to single-
drug treatment in mice that developed CIN-III/CC (K14E7E2), we decided to utilize this
regimen for our subsequent experiments. We investigated the influence of CT on IDO-1
expression and activity, as well as neutrophil recruitment using myeloperoxidase (MPO)
staining. As shown in Figure 2A, IDO-1 expression was primarily observed in cellular
infiltration within cervical cancer samples. However, the immunohistochemical signal
decreased when combined therapy was administered (Figure 2A,B). Regarding IDO-1
activity, there was a decrease in both regimens; however, it was statistically significant in R1
(Figure 2C). Similarly, immunohistochemical signals in neutrophil recruitment decreased
when combined therapy was administered (Figure 2A,B).
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Figure 1. Combined inhibition of IDO-1 and CXCR-2 reduces the cervical tumor area. Figure
(A) shows the schematic representation of R1 and R2 regimens. As described in the Materials and
Methods Section, the R1 and R2 groups were treated with 1-DL-MT (IDO-1i) and SB225002 (CXCR-2i)
for 30 days at 6 and 7 months of age and were sacrificed at the end of each regimen. The dotted lines
represent the ages of the initiation of R1 and R2 regimens, while the x symbol represents the point of
euthanasia. (B) Tissue sections were stained with hematoxylin and eosin, and histopathology was
analyzed. The scale bar represents 100 µm, and the images were captured at 10× magnification. The
arrows indicate the observed histological changes. (C) Tumor areas in cervical tissues were measured,
and the Kruskal–Wallis and Dunn’s tests were used for statistical analysis (comparing matching R1
and R2). Geometric symbols represent individual mice, and the horizontal bars indicate the medians.
CC: cervical cancer, IDO-1i: IDO-1 inhibitor; CXCR-2i: CXCR-2 inhibitor; CT: combined therapy,
K14E7E2: mice treated with 17-beta estradiol for six months for the development of CC, 1, 6, 7 and
8 m: age of mice. * p < 0.05, *** p < 0.001 and **** p < 0.0001.
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Figure 2. Combined therapy decreases the expression and activity of IDO-1 and neutrophil recruit-
ment. (A) Immunohistochemical analysis of IDO-1 and MPO in cervical tissue from studied mice.
The nuclei were counterstained with hematoxylin. The visual field at 10× magnification. Scale bar
200 µm. The arrows illustrate positive cells for IDO-1 and MPO. (B) Immunohistochemical-based
quantification of IDO-1 and MPO. (C) Analysis of IDO-1 activity; pairwise comparisons were per-
formed among all groups. IDO-15L was used as positive inhibition control in the IDO-1 activity assay.
In (B,C), one-way ANOVA with Tukey tests was applied. In (C), Kruskal–Wallis with Dunn’s test was
used. Each bar is a representative experiment from four independent assays. The analyses compared
matching R1 and R2. * p < 0.05, ** p < 0.01, and **** p < 0.0001, ns = no statistical significance.

3.2. Inhibition of IDO-1 and CXCR-2 Decreases Cell Proliferation

Furthermore, we also examined the role of combined therapy in cell proliferation. We
performed an immunohistochemical assay for the proliferation markers MCM2 and PCNA.
In cervical cancer tissue (Figure 3A,B, K14E7E2 panel), the PCNA and MCM2 stainings
exhibited a nuclear pattern and were uniformly distributed throughout the thickness of the
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epithelium, consistent with previous reports on cervical cancer [41,42]. In the K14E7E2 + CT
group, MCM2 staining was restricted primarily to basal and parabasal cells, indicating
decreased proliferation. Regarding the PCNA marker, staining was limited to the basal and
suprabasal zones (Figure 3A, K14E7E2 + CT panel; Supplementary Figure S2).
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Figure 3. Combined therapy reduces the proliferation of cervical cancer tissue. The immunodetection
pattern of PCNA (A) and MCM2 (B) shows a decrease in proliferation when combined therapy is
administered (panel K14E7E2 + CT). The visual field at 10× magnification and scale bar 200 µm.
The arrows illustrate positive cells for PCNA and MCM2. One-way ANOVA with Tukey tests was
applied. Each bar is a representative experiment from four independent immunohistochemistry-based
quantifications. The analyses compared matching R1 and R2 **** p < 0.0001.

3.3. Combined Therapy Targeting IDO-1 and CXCR-2 Increases Apoptosis and CD8+ Infiltration

IDO-1 or CXCR-2 have previously been reported to inhibit cancer cell apoptosis [43,44].
In the present study, we report an increase in apoptosis through the combined inhibition
(CT) of IDO-1 and CXCR-2 in R1 (Figure 4A,C, tunel panel) and R2 (Figure 4B,D, tunel
panel) regimens compared to K14E7E2 mice treated with vehicle.



Biomedicines 2023, 11, 2280 10 of 17Biomedicines 2023, 11, x FOR PEER REVIEW  11  of  18 
 

 

Figure 4. Combined therapy increases apoptosis and the number of CD8+ T cells in cervical tumors. 

(A,B) Schematic  representation of  tunel apoptosis assay,  immunodetection of CD8+ T  cells, and 

Granzyme B in R1 and R2 regimens, respectively. The visual field at 20× magnification and scale bar 

200 μm. The arrows represent positive cells. Figures  (C,D,E)  illustrate  the percentage of positive 

cells. One‐way ANOVA with Tukey tests was applied. Each bar is a representative experiment from 

four independent immunohistochemistry‐based quantifications. The analyses compared matching 

R1 and R2 **** p < 0.0001. 

3.4. Analysis of the Expression and Association of the IDO1 and CXCL Genes with Cervical 

Cancer Survival 

To investigate the mRNA expression of the IDO1 and CXCL genes of human cervical 

cancer, we performed an analysis based on the cancer genome atlas (TCGA) and genotype 

tissue expression (GTEx) data using the GEPIA2 platform. The data showed a significant 

increase  in  IDO1,  CXCL1,  and  CXCL8  mRNA  expression  in  cervical  squamous  cell 

carcinoma  and  endocervical  adenocarcinoma  (CECS)  (Figure  5A).  A  Kaplan–Meier 

Figure 4. Combined therapy increases apoptosis and the number of CD8+ T cells in cervical tumors.
(A,B) Schematic representation of tunel apoptosis assay, immunodetection of CD8+ T cells, and
Granzyme B in R1 and R2 regimens, respectively. The visual field at 20× magnification and scale bar
200 µm. The arrows represent positive cells. Figures (C–E) illustrate the percentage of positive cells.
One-way ANOVA with Tukey tests was applied. Each bar is a representative experiment from four
independent immunohistochemistry-based quantifications. The analyses compared matching R1 and
R2 **** p < 0.0001.

The quantity and functionality of CD8+ T-cell tumor infiltration correlate with in-
creased immunotherapy effectiveness [45]. To evaluate the efficacy of CT, we performed im-
munohistochemical staining of CD8+ and Granzyme B. The results showed increased CD8
and Granzyme B-positive cells when CT was administered in both regimens (Figure 4D,E).
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3.4. Analysis of the Expression and Association of the IDO1 and CXCL Genes with Cervical
Cancer Survival

To investigate the mRNA expression of the IDO1 and CXCL genes of human cervical
cancer, we performed an analysis based on the cancer genome atlas (TCGA) and genotype
tissue expression (GTEx) data using the GEPIA2 platform. The data showed a significant
increase in IDO1, CXCL1, and CXCL8 mRNA expression in cervical squamous cell carci-
noma and endocervical adenocarcinoma (CECS) (Figure 5A). A Kaplan–Meier analysis
showed that CXCL1 and CXCL8 are prognostic and high expression is unfavorable in CC
(Figure 5B).
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Figure 5. Expression of IDO1, CXCL1, and CXCL8 and overall survival in human cervical cancer.
(A) Analysis of mRNA expression and (B) overall survival in patients with cervical cancer according
to low and high expression of IDO1, CXCL1, and CXCL8. In (A), Student’s t-tests, and Log2FC
Cutoff > 1 and * p < 0.05 were applied. The boxplots depict CECS (in red) and normal tissue (in grey),
with the medians represented by horizontal bars within the boxplots, and the whiskers delineate the
ranges encompassing the lower 25% and upper 25% of the data values, excluding any outliers. In (B),
a Kaplan–Meier curve was used.

4. Discussion

Elevated enzyme IDO-1 and dysregulation of the CXCR-2/CXCL axis have been
reported in different tumors. They have been associated with an advanced stage of the
disease, a poor prognosis, and an inadequate response to treatments [21,46–51]. For this
reason, several reports suggest that inhibition of CXCR-2 or IDO-1 may be therapeutically
helpful in many human cancers [52–58]. Regarding cervical cancer (CC), inhibition of IDO-1
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(Navoximod) in combination with atezolizumab (PD-L1 inhibitor) has been studied in a
phase 1 clinical trial (NCT02471846); however, antitumoral effectiveness was partial [36].
Recently, it was observed that IDO-1 inhibitors (D-1MT and DL-1MT) enhance the anti-
tumor effect of the HPV16 E7 oncoprotein vaccine (gDE7) [59]. However, it is crucial to
note that using IDO-1 inhibitors as a monotherapy approach promotes tumor growth [60].
Furthermore, Kenski et al. demonstrated that Epacadostat, an IDO-1 inhibitor, recently
exhibited the ability to restore tryptophan levels. This, in turn, exerted an adverse tumor-
protective effect on melanoma by preventing microphthalmia-associated transcription
factor (MITF) downregulation [61]. In the present study, we observed a modest reduction
in tumor burden when using the IDO-1 inhibitor DL-1MT as a monotherapy (Figure 1B,
panel K14E7E2 + IDO1i).

Concerning CXCR-2, it has been reported to be essential in the development and
persistence of CC [3,26,27]. Furthermore, inhibition of CXCR-2 in tumors with leukocytosis,
including CC, has been suggested to be a promising therapeutic target [5,62]. However,
the therapeutic effect of CXCR-2 inhibition in CC has been poorly studied. A study
demonstrated that SB225002-treated HeLa and C33A cell lines decreased cell viability and
induced cell apoptosis [24]. On the other hand, in different types of tumors, inhibition of
CXCR-2 in combination with other therapeutic targets has greater antitumor activity [53,63,64].
Based on the information mentioned above, in this study, we reported a more significant
antitumor effect when IDO-1i (DL-1MT) and CXCR-2i (SB225002) were administered
in a combination regimen (Figure 1B, K14E7E2 + CT panel). Therefore, the combined
inhibition of IDO-1 and CXCR-2 holds significant therapeutic value in CC compared to the
monotherapy strategy.

Another crucial finding of this study is that the dual inhibition of IDO-1 and CXCR-2
led to decreased proliferation and increased apoptosis. These results are partially consistent
with findings from both in vitro and in vivo studies. For instance, in clear cell renal
carcinoma, chronic myelogenous leukemia, and lung cancer cell lines, SB225002 treatment
induced apoptosis [53,65,66]. Additionally, CXCR-2 inhibition in the nasopharyngeal cancer
cell line, suppression of proliferation, and induction of apoptosis were observed when
inhibiting the MAPK pathway [67].

The antitumor capacity of IDO-1 inhibitors primarily stems from their regulation
of immune cells, resulting in increased infiltration of tumor-infiltrating lymphocytes. In
this study, we observed elevated levels of CD8+ T cells and an increase in Granzyme B
expression consequent to DL-1MT and SB225002 treatment. Consistent with this finding, a
combination of apo-IDO-1 inhibitor with apatinib [68] or sodium tanshinone IIA sulfonate
(IDO-1 inhibitor) with anti-PD1 therapy [69] has been shown to increase CD8 + T-cell
infiltration in colorectal cancer. Furthermore, DL-1 MT has demonstrated superior efficacy
compared to L-1MT stereoisomers in lymphocyte proliferation and cytokine production [70].
It is important to note that when using IDO-1 inhibitors in CC therapy, the positivity rate of
IDO-1 in this tumor varies between 52 and 100% [71]. Additionally, measuring the IDO-1
activity ratio should be considered, as this information has yet to be evaluated in some
clinical trials (P1/2 ECHO-202/KEYNOTE-037 and P3 ECHO-301/KEYNOTE-252) [72,73].

In the K14E7 transgenic mouse model, E2 promotes progression through stages of
CIN1, CIN2, CIN3, and CC. This model faithfully recapitulates the multistage process of
human cervical carcinogenesis [37]. Additionally, estrogen in this model contributes to the
sustained and malignant advancement of CC [40]. Furthermore, elevated estradiol concen-
trations have been documented within the tumor microenvironment (TME) of patients with
CC [74]. In our study, we categorized experimental animals into two distinct treatment
regimens based on their reliance on exogenous estradiol to sustain the growth of cervical
tumors. Under the R1 regimen, the experimental cohort continued to receive E2 treatment,
whereas the R2 regimen involved the discontinuation of E2 treatment. The findings in
Figure 1 indicate a consistent efficacy of IDO-1 and CXCR-2 inhibition, irrespective of the
tumor’s reliance on exogenous E2 treatment. This observation remains within the context
of the combined therapeutic approach.
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In the K14E7 and FvB models (control mice) treated with estradiol, we have reported
an increase in Ido1, Cxcls, CD274 (PD-L1), and other inflammation-related genes [28]. Hence,
we propose that estradiol is primarily responsible for deregulating these genes. Therefore,
implementing the therapeutic approach utilized in this study for CC patients would neces-
sitate subclassification based on the expression of these genes and prolonged hormonal
stimulation, such as oral contraceptives, hormone replacement therapy, or pregnancy.

The study has a notable limitation concerning the absence of a comparison between
the effects of PD-L1 + IDO-1 or PD-L1 + CXCR-2 inhibition with our therapeutic strategy.
Nonetheless, this aspect holds promise for exploration in future experiments.

5. Conclusions

Our results revealed that the simultaneous inhibition of IDO-1 and CXCR-2 induced
antitumor effects in cervical cancer. Therefore, our findings could have immediate clinical
implications, considering that IDO-1 and CXCR2 inhibitors are already in clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11082280/s1, Figure S1: Expression of IDO-1 and
CXCL5; Figure S2: The immunodetection pattern of PCNA and MCM2.
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