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Abstract: Parkinson’s disease (PD), a progressive neurodegenerative disease, has no cure, and current
therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic
neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated
with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The
downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including
microglial activation and induction of inflammatory responses. Activated microglia have been impli-
cated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory
responses, leading to neuron death. Calpain expression and activity is increased following glial
activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and
migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating
a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain
activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage
in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in
oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and
aging, and possible strategies and research directions for therapeutic intervention.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease that affects motor function,
causing symptoms such as tremors, stiffness, difficulty with walking and talking, and
balance and coordination problems [1,2]. The non-motor symptoms, such as constipation,
loss of smell, disturbed sleep, memory, and cognitive changes, are evident before the onset
of motor symptoms [3,4]. The neurodegenerative changes in PD are not only limited to the
brain, but they are also detected in the spinal cord [5] and enteric nervous system [6,7]. PD
is primarily characterized by a loss of dopaminergic neurons in the substantia nigra (SN)
pars compacta in the mid-brain [1,8,9]. Evidence suggests that along with the dopaminergic
system, other neurotransmitter systems, such as noradrenergic and cholinergic, also play
a role in onset and/or progression of PD. The dysfunction of the locus coeruleus (LC)
noradrenergic neurotransmitter system is indicated by the prodromal symptoms of PD, such
as sleep disturbance [10], and in the later stages, orthostatic hypotension and apathy [11]. In
PD, the loss of SN neurons reduces dopamine levels in the striatum, resulting in an increase
in acetylcholine release by the cholinergic interneurons, which alters striatal cholinergic
signaling, activity, and connectivity. Thus, understanding the crosstalk between these
neurotransmitter systems is crucial for comprehending the pathogenesis of PD.
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Although the etiopathology of the sporadic form of PD is still unknown, the familial
forms of PD have revealed various key players that may be involved in PD pathogenesis.
Notably, over 200 PD-related genes have been identified [12]. Some of these mutations are
alpha-synuclein (α-syn) gene (SNCA), parkin (PRKN), PTEN-induced kinase 1 (PINK1),
Leucine rich-repeat kinase 2 (LRRK2), Vacuolar protein sorter-35 (VPS35), coiled-coil-helix-
coiled-coil-helix domain containing 2 (CHCHD2), prosaposin (PSAP), and DJ-1 [13–15].
These genetic mutations have provided crucial insight into the mechanisms and pathways
involved in PD, such as mitophagy, oxidative stress, vesicular/intracellular trafficking,
defects in mitochondrial respiratory complex, and α-syn aggregation. Furthermore, these
mutations have helped in developing animal models to study PD pathogenesis and de-
velop therapeutic interventions [16]. Information from genetic mutation and diseased brain
autopsies has revealed some key players and pathways involved in the disease process.
Considering these cues, animal models are created using neurotoxins to investigate the
sporadic forms of PD [17,18]. The most prevalent models are intraperitoneal (i.p.) in-
jections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice, sub-cutaneous
(s.c.) injections of rotenone in rats, or lesion of dorsal striatum by intracerebral infusion of
6-hydroxydopamine (6-OHDA) in rats. These toxin-induced models imitate PD pathogenesis
by replicating the degeneration of dopaminergic neurons in the SN.

Neuroinflammation is one of the pathophysiological processes among several path-
ways implicated in neurodegeneration. Evidence from PD patient brain samples illustrates
that activated microglia and reactive astrocytes are present in the brain [19,20]. Similarly,
the animal models have also indicated the presence of these activated glial cells in the
nigrostriatal pathways [21,22]. Additionally, the protein α-syn activates microglia, leading
to pro-inflammatory responses in the brain. This activation occurs when α-syn binds to
integrin CD11b, which then activates the downstream Rho-ROCK pathway [23]. A number
of studies have suggested that the over-activation of calpain, which is a calcium-dependent
non-lysosomal cysteine protease, may play a critical role in the onset and/or progression
of several neurodegenerative diseases [21,24–27]. The over-activation of calpain may also
affect the downstream Rho-ROCK pathway. In PD, the role of calpain in its pathogenesis is
suggested because α-syn, one of the proteins cleaved or degraded by calpain, forms Lewy
bodies (LBs) [28–30]. It is, therefore, likely that the dysfunction of calpain activity may
contribute to the onset of PD, and regulating calpain activity could be a viable therapeutic
approach to intervene in neurodegeneration. In animal models of PD, our group has shown
over-expression of calpain in the SN dopaminergic neurons [21,24,26]; hence, preventing
the over-activation of calpain using a specific inhibitor could be a potential treatment op-
tion. These findings also suggest that neuroinflammation plays a critical role in the disease
process and highlight the need for further research to explore potential neuro-immune
interactions with other cell types.

The pathophysiology of PD shows similarities with the changes that occur during the
aging process at a cellular and molecular level. Observations from animal disease models
indicate that the characteristic features related to PD, such as mitochondrial dysfunction and
oxidative stress, chronic inflammation, dysfunction in autophagy leading to the formation
and accumulation of protein aggregates, functional deficit, and cognitive dysfunctions,
are common in aging [31]. These similarities in cellular changes in aging and PD indicate
that aging could be a risk factor in PD. Moreover, PD is typically diagnosed in individuals
above 60 years of age, which further supports the theory that age is a predominant risk
factor in PD. This review will discuss calpain activation, α-syn aggregation, and formation
of LBs in PD, and calpain’s role in the regulation of the Rho-ROCK pathway in PD, related
dementia, and aging.

2. Parkinson’s Overview

PD is a neurodegenerative disease that causes movement disorder, dementia, sleep
behavior disorder, pain, and other health-related issues [8,32,33]. PD can be identified by
signs of tremor, stiffness, difficulty walking and talking, and instability in both balance
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and coordination. It is also a disease of the central nervous system (CNS), which consists
of the brain and spinal cord [24,26,34]. The brain is categorized as nervous tissue and it
responds to memory, thought processes, communication, emotion, movement, sensations,
and responses [33,35]. The spinal cord sends motor commands from the brain to the
peripheral body and relays sensory information from sensory organs to the brain. The
spinal cord has two distinct pathways: the ascending and descending pathways [33,36].
The ascending pathway is where sensory information travels from the body to the spinal
cord and the brain. The descending pathway is where motor signals from the brain are
sent to lower motor neurons, where efferent neurons then lead to muscle movement. As
mentioned above, PD is characterized by the loss of SN dopaminergic neurons. This
leads to a lower level of dopamine in the target area, the caudate putamen/striatum, and
consequent diminished motor function, leading to clinical features of the disease [1]. This
loss of dopamine in the caudate contributes to movement disorder, since the function
of this nucleus is to plan the execution of movement. The caudate also affects memory
and cognition [37,38]. The cholinergic interneurons are the main source of acetylcholine
in the striatum and are innervated by the SN pars compacta dopaminergic neurons [39].
Acetylcholine release in the striatum by cholinergic interneurons is known to modulate
striatal dopamine release [40,41]. Along with the loss of SN dopaminergic neurons, the
extensive loss of LC noradrenergic neurons is also detected in PD patients [31,42–44]. The
noradrenergic neurotransmitter system typically participates in stress response, emotional
memory, and control of motor, sensory, and autonomic functions [45,46]. Several lines of
evidence suggest that the α-syn pathology and other degenerative changes develop in
the LC neurons before affecting the dopaminergic neurons in the SN pars compacta [47].
These findings strongly indicate that LC noradrenergic neuronal loss plays a critical role in
disease initiation, progression, and severity.

3. Lewy Bodies Are a Key Characteristic of PD

One of the major key players in PD is the aggregated form of α-syn, which plays
multiple functions in the brain along with synaptic transmission and neurogenesis [48–50].
The presence of an aggregated form of α-syn contributes significantly to the formation
of Lewy bodies (LBs), which are the pathological hallmark of PD [51–53]. LB inclusions
are detected in the SN dopaminergic neurons in all cases of PD. Other brain areas in PD
patients also show the presence of LB, such as LC, dorsal vagal nucleus, nucleus basalis
of Meynert, cerebral cortex, olfactory bulb, thalamus, and hypothalamus [54–56]. LB
production might begin with an inflammasome response to pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) [57]. This response
leads to the conversion of procaspase-1 into caspase-1, which activates pro-inflammatory
cytokines (Figure 1). This can also lead to the activation of calpain, which truncates α-syn.
The truncated α-syn units bind with other truncated α-syn units, causing aggregates of the
protein and LB formation. Not only can the presence of active proteases, such as calpain,
cause cleavage of the protein at its C-terminal, but mutations in it are another culprit of
cleavage for this particular α-syn protein [58–60]. These aggregates lead to penetration
of neuronal membranes via toxic fibril structures, causing oxidative stress, calcium influx
disruption, and neuronal apoptosis of dopamine-producing neurons in the nigrostriatal
pathway [61,62].
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Figure 1. α-syn aggregation and formation of LBs. Initiation of inflammasome response may lead to
activation of pro-inflammatory cytokines and calpains, triggering α-syn cleavage and aggregation,
and LB formation. Arrows indicate the logical steps in the formation of LBs.

α-syn is also involved in the activation of microglia and induces neuroinflammation.
It interacts with integrin CD11b on microglia and this interaction triggers the activation of
NADPH Oxidase 2 (NOX2), which leads to the production of ROS [23,63]. It has been shown
that in PD patients, there is excessive ROS production, which may cause oxidative stress
and damage to SN neurons [64–66]. Oxidative stress also activates ataxia–telangiectasia
mutated kinases and ataxia–telangiectasia- and Rad3-related protein kinases. Together,
these kinases deactivate oncoprotein MDM2 and activate p53 [67–69], ultimately leading
to the release of pro-inflammatory cytokines. The mediators of the inflammation process
are intracellular multiprotein complexes and inflammasomes, which contribute to neuron
injury and death, as well as the activation of T cells.

Substantial intronic transcriptional changes in PD patients compared to healthy con-
trols have been reported [70]. Although the exact cause of PD is unknown, several factors,
such as genetic, environmental, and head trauma, are implicated in the disease process.
Mutations in certain genes, such as SNCA, PARK2, PARK7, PINK1, and LRRK2, can lead
to the development of PD [20,70–73]. The onset of neurodegenerative diseases may be
influenced by a combination of environmental and genetic factors, including interactions
between genes. Along with genetic mutations, various studies, such as genome-wide
association studies (GWAS) and targeted single-nucleotide polymorphism (SNP) studies,
have identified numerous loci and polymorphisms associated with neurodegenerative
diseases [74–77]. In addition to mutations, another suspected genetic component associated
with PD is the most abundant retrotransposons, SINE-VNTR-Alus (SVAs) [78–80]. At least
13 SVA insertions causing the disease have been identified so far, including one that causes
X-linked dystonia Parkinsonism (XDP) [81,82]. Moreover, SVAs have the capability to
influence tissue-specific gene expressions [83]. Using the whole genome sequence and
transcriptomic and clinical data from the Parkinson’s Progression Markers Initiative (PPMI),
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the researchers identified eighty-one SVAs polymorphic for their presence/absence, seven
of which were linked with PD progression [84]. Ongoing mobilization of SVAs has led to
the emergence of polymorphic insertions known as retrotransposon insertion polymor-
phisms (RIPs) [81,85]. One of these RIPs, SVA-67, is located 12 kb upstream of the KANSL1
(KAT8 regulatory non-specific lethal complex subunit 1) gene, which is part of the MAPT
locus (microtubule-associated protein tau). MAPT is considered as a significant risk factor
for neurodegenerative diseases, such as AD and PD [86–89]. It has been demonstrated
that SVA insertions have the potential to influence the expression of multiple genes over
large distances and that regulation can be isoform-specific [80]. SVAs could influence the
disease course of PD and ALS through modulation of isoform expression and usage, which
ultimately could affect protein levels and biological processes. Environmental exposures to
pesticides, such as rotenone, paraquat, dieldrin, and lindane, can also lead to the onset of
PD [90–93]. Head trauma through direct or indirect blows caused by sports injuries, vehicle
accidents, falls, etc., can also contribute to the onset of PD [94,95]. These findings indicate
complex gene–environment and gene–gene interactions in neurodegenerative diseases,
which is still an underexplored area.

4. Lewy Bodies in Dementia and Aging

Dementia with Lewy body (DLB) is a disorder that is associated with age as a risk
factor. Lewy bodies (LBs), which are abnormal deposits of a protein called α-syn, are a
hallmark of PD and are present in most DLB patients [96,97]. The most common symptoms
of DLB are changes in cognition, movement, and sleep disturbance, which can be easily
associated with PD symptoms [98]. Other signs and symptoms, such as a reduced sense
of smell, constipation, frequent falls, and apathy, are commonly observed in both PD and
DLB [99].

Neurodegenerative diseases, such as Alzheimer’s disease (AD) and DLB, are accom-
panied by structural changes in the brain that lead to functional changes. The major
pathological difference between AD and DLB detected by imaging is that medial temporal
lobe atrophy is less severe in patients with DLB when compared to AD [29,100]. Gray
matter density (GMD) decreases nonlinearly with age, especially between 7 and 60 years
old. This is most noticeable in the dorsal frontal and parietal association cortices on both the
lateral and interhemispheric surfaces [101], suggesting progressive age-associated neuronal
loss. Microglia are the resident macrophages of the CNS and are the primary immune
effector cells in the brain. Microglia homeostasis is regulated by intrinsic and extrinsic
factors [102,103]. Aging leads to a decline in microglial phagocytic activity [104–106], which
may cause the accumulation of the misfolded α-syn protein. This α-syn protein aggregates
over time and leads to the formation of LBs, as described in Figure 1. Microglia in the aging
brain are believed to be “primed” but do not necessarily enhance the brain’s response to
immune challenges. By contrast, peripheral immune challenge may induce robust inflam-
matory responses [107,108]. α-syn aggregation activates microglia and may lead to a cycle
of neuroinflammation [109]. Like PD, mitochondrial dysfunction can also cause oxida-
tive stress and chronic inflammation, which are contributing factors in aging-associated
degenerative changes in the brain [110,111].

5. Calpain’s Role in Neuroinflammation and PD

Calpain, an intracellular non-lysosomal neutral protease, is involved in different cel-
lular processes, including neuronal remodeling, axon degeneration, apoptosis, cellular
proliferation, and cell motility [27,112]. The excessive activation of calpain influences sev-
eral pathways, such as neuroinflammation, ROS, apoptosis, and autophagy [21,24,113,114].
Calpain over-activation is observed in various neurological disorders and injuries such as
PD, AD, muscular dystrophy, traumatic brain injury, and spinal cord injury. Its activity
increases with mutated α-syn [115]. Activation of the RhoA pathway plays a crucial role in
cell signaling in both neurons and glial cells [116–118]. The Rho-ROCK pathway regulates
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various cellular processes, including cytoskeleton reorganization, cell death, mitochondrial
homeostasis, autophagy, inflammation, and gene transcription.

Calpain consists of two subunits, a large subunit containing a cysteine protease and a
small subunit containing a calcium binding site. There are a number of calpain isoforms,
but calpain-1 and calpain-2 are ubiquitously expressed in the CNS. Calpain-1 is activated
by micromolar (µ) calcium levels, while calpain-2 is activated by millimolar (m) calcium
levels [27]. Once activated, calpain is thought to cleave α-syn. This cleaved α-syn activates
toll-like receptors 2 and 4, causing inflammatory signal activation and oxidative stress in
dopaminergic neurons [61,119]. Toll-like receptor and α-syn interact with CD36, which
contributes to additional neuroinflammation and neurodegeneration. PD has a direct
impact on calcium homeostasis [120,121]. During PD, or the introduction of neurotoxin,
oxidative phosphorylation is disrupted, which occurs with an impaired electron transport
chain in mitochondria, leading to inhibition of Complex I, reduced production of ATP, and
increased calcium concentrations [121–123]. Since calpain is activated by calcium, increased
levels of calcium lead to increased levels of activated calpain. Calpain cleaves the sodium
exchanger in the electron transport chains Complex I and impacts Bax-2 and Bcl-2, and
they determine the fate of cell survival. Additionally, studies have reported that calpain
could be linked to the deregulation of BDNF signaling, causing synaptic dysfunction [124].

Calpain-1 vs. Calpain-2 in Neuroinflammation and PD

Both calpain-1 and calpain-2 are ubiquitous and uniformly distributed in neurons and
glia [124,125]. Each plays a specific role in the brain. Calpain-1 has been found to be neuro-
protective, whereas calpain-2 is known to be neurodegenerative [21]. Our laboratory has
recently shown that both calpain-1 and calpain-2 expression increased in SN dopaminergic
neurons in a rotenone rat model of PD [21]. Although rotenone administration induced
over-expression of calpain-1 and calpain-2 in the rat brain, calpain-2 appeared to be more
degenerative, as its expression correlated with the death of dopaminergic neurons in the
SN. Interestingly, blocking calpain activation, especially calpain-2, decreased neuronal
loss in rotenone-injected rats [21]. This finding suggested that activation of calpain-1 and
calpain-2 occurs in rotenone rats, but inhibition of calpain-2 could be more important to
attenuate degenerative events in PD.

Calpain-2 is expressed in many different tissues in mammals, and unlike other pro-
teases, calpain-2 does not break down its target proteins completely [126]. Instead, it
cleaves them into smaller pieces that have different functions, are distributed differently,
and interact with other proteins in different ways [127]. The many different activities asso-
ciated with calpain-2 are a result of its ability to produce these different protein fragments.
Calpain-2 is shown to be involved in the breakdown of α-syn in PD and huntingtin protein
in Huntington’s disease (HD), and it cleaves TDP43 proteins implicated in motor neu-
ron function in Amyotrophic Lateral Sclerosis (ALS) [96,128,129]. Because of this distinct
function, calpain-2 could be seen as a central player in a variety of signaling pathways.

Calpain-2 could become hyperactive in the later stages of neurodegenerative diseases
such as AD. This hyperactivity may increase beta-amyloid deposits, which can lead to
further cognitive decline [130,131]. Overall, calpain-1 and calpain-2 play important roles in
organizing neurotransmitter receptors, releasing neurotransmitters, regulating cytoskeletal
dynamics, and facilitating local protein translation [27,132–134].

6. Neurotoxicity in PD and Aging

The pathophysiology of neurodegenerative diseases is very complex and still needs
to be fully understood. Animal models created using different neurotoxin targeting SN
dopaminergic neurons provided a valuable tool to investigate the disease process [135–137].
The most popular rodent models to study PD are generated by using different treatment
paradigms of neurotoxins in mice or rats. The PD models are induced by i.p. injections of
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice, s.c. injections of rotenone
in rats or mice, and lesion of dorsal striatum by intracerebral infusion of 6-OHDA in
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rats [24]. These toxin-induced models imitate PD pathogenesis by replicating the degen-
eration of dopaminergic neurons in the SN. These toxins primarily disrupt complex I of
the mitochondrial electron transport chain, affecting cellular processes such as oxidative
phosphorylation, adenosine triphosphate (ATP) depletion, reactive oxygen species (ROS)
production, and elevation of intracellular Ca2+ levels [114,138,139]. By replicating the
functional circuitry dysfunction of the basal ganglia caused by the death of dopaminergic
neurons in the SN, these neurotoxin models provide valuable information about the cellular
and molecular events occurring during the disease process [21,24,26,61].

While MPTP is specific to PD induction in mice, MPP+ is a metabolite of MPTP that is
used in in vitro studies to test disease mechanism to gain insights into the pathogenesis of
PD. Rotenone, 6-OHDA, and paraquat are used in both mice and rats to induce PD-like
diseases [135]. These neurotoxins activate microglia and astrocytes, which lead to the release
of cytokines, chemokines, and free radicals, just as in naturally occurring PD [19,140–142].
This leads to microglial activation and increased expression of MHC-II proteins that can
interact with CD4+ T cells, thereby promoting T-cell infiltration and inflammation [9,24,143].
There are pro-inflammatory and anti-inflammatory microglia functions [140,144]. PD
causes the activation of more pro-inflammatory microglia, promoting inflammation and
neurodegeneration [142]. The following inflammatory markers have been found as markers
of PD: MHC-II, IFN-γ, and TNF-α. Each of these factors further activates microglia and
astrocytes. Investigating these neurotoxin-induced changes should provide a valuable
tool for designing and generating new animal models to gain a better understanding
of this neurodegenerative disease and development of therapeutic interventions. Most
PD cases are believed to be sporadic, and various environmental factors may affect the
risk of developing the disease. Pesticide exposure, genetic susceptibility, and traumatic
brain injury increase the risk, while tobacco smoking and physical activity are known
to be protective factors [145,146]. It appears that the interplay among aging, genetics,
and environmental factors may be involved in the onset and progression of PD. Despite
evidence that aging is a primary risk factor for PD, the biological connection is still unclear.

The significance of aging in the development of PD (in most cases) highlights the
importance of developing animal and in vitro models of PD. Analyzing the findings from
these models may help gain insights into the cellular and molecular events that occur
during the progression of the disease. As epidemiological studies have strongly linked
aging with the development of PD, there must be more shared biological pathways between
the two, suggesting that age-related changes may lead the way for the dopaminergic
neurodegeneration observed in PD. The number of SN neurons declines by 7 to 9.8%
per decade in healthy individuals with normal aging [147,148]. Dopaminergic neuronal
populations in SN are vulnerable to loss with aging compared to other brain regions, e.g.,
the hippocampus. SN neurons are particularly susceptible to mitochondrial dysfunction,
which accumulates within them with advancing age. These changes could be important to
the pathogenesis of PD.

The accidental discovery of neurotoxin MPTP gave an experimental tool to investigate
PD pathogenesis in animal models and demonstrated the critical role of mitochondria
in the disease process. This toxin and other pesticides, such as paraquat and rotenone,
recapitulated PD and showed that the SN cell loss occurred via inhibition of complex I of
the electron transport chain in mitochondria [149,150]. These findings were supported by
reports of reduced complex I activity and protein expression in brain tissues from patients
with PD [151,152].

A close relation between an age-related reduction in nigral TH neurons and an in-
creased intracellular α-syn accumulation strongly suggests that aging represents a sub-
threshold pre-Parkinsonian state [153]. The aggregation of misfolded proteins in neurons is
related to oxidative stress and neuroinflammation, and possibly, some unknown factors
caused by reactive oxygen and nitrogen species, which accumulate within the SN with
advancing age. These extrinsic and intrinsic events in the brain predispose the SN neurons
to be under significant oxidative stress with a high concentration of damaged proteins,
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suggesting that efficient protein degradation pathways are critical for cellular integrity
and function.

7. Activation of Rho-ROCK Pathway in PD and Aging

Rho GTPases regulate cytoskeletal and cell adhesion dynamics [154–156]. They are
involved in cell morphogenesis, cell survival, cell proliferation, and cell migration (Figure 2).
Rho GTPases are also molecular switches that cycle between an active GTP-bound state and
inactive GDP-bound state. This switch is controlled by guanine nucleotide-exchange factors
(GEFs) that exchange between GTP, GDP, and GTPase activating proteins (GAPs) [157,158].
The Rho GTPases are inhibited by catalyzing GTP hydrolysis. When Rho is GTP-bound, it
interacts with downstream effector proteins, such as Rho-associated Kinase-1 (ROCK1),
Rho-associated Kinase-2 (ROCK2), and DIAPH1 [154,158]. ROCK is a serine-threonine
kinase that promotes actomyosin contractile force generation [159–161]. ROCK does this
by increasing myosin light chain, a subunit of motor protein myosin II, phosphorylation.
While there are multiple types of ROCK [162], ROCK2 is primarily associated with PD.
ROCK2 is found in the brain and spinal cord, whereas its isoform, ROCK1, is found in
non-neuronal tissue, such as glia [163]. The high RhoA activity in the cells can cause
ROCK activation and upregulate the activity of phosphatase and tensin homolog (PTEN).
Activation of the Rho-ROCK pathway stimulates protein/lipid phosphatase and tensin
homolog, which inhibits cell growth and survival (Figure 2).
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Figure 2. Activation of the Rho-ROCK pathway triggers PTEN, LIMK, MLC, and CRMP2 molecules
and related pathways, influencing cell survival and death. The activation of Rho/ROCK/LIMK
pathway also leads to neurodegeneration in PD. Arrows indicate various steps in the neurodegenera-
tion process.

RhoA-ROCK signaling induces LIM kinase-dependent phosphorylation and inacti-
vates cofilin, a mediator of actin turnover involved in disassembling actin filaments [164].
This leads to the buildup of filamentous actin (F-actin) and the formation of actin stress
fibers, significantly influencing the dynamics of the cytoskeleton, as described by Villalonga
et al. [165]. The phosphorylation of MLC initiates the interaction between actin and myosin,
leading to heightened contractility of the actin cytoskeleton [166]. CRMP2 plays a role in
regulating various aspects such as neuronal polarity, axon guidance, dendritic projection,
and the migration of neurons and immune cells. Hyperphosphorylation of CRMP2 is
commonly linked to neuronal injury and degeneration [167–169]. Although RhoA-ROCK
signaling induces neuroinflammation and neurodegeneration, it also activates collapsin
response mediator protein-2, which is involved in stimulating the promotion axon growth
with microtubule assembly [154,167].
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7.1. Activation of Rho-ROCK Pathway in PD

The activation of the Rho-ROCK pathway is associated with microglial activation and
astrocyte activation. Microglia are immune cells of the CNS. Microglia aid in controlling
α-syn levels, so when microglia are impaired, dysregulated α-syn increases along with
LB aggregates [170–172]. The activation of these cells leads to neuroinflammation and
neurodegeneration through the release of inflammatory cytokines and chemokines. The cell-
to-cell transfer of α-syn also contributes to the development of PD, suggesting the spread
of α-syn pathology [172]. The spread of extracellular α-syn can also disrupt microglial
autophagy activity, contributing to neuroinflammation and PD development.

Inflammation and activation of ROCK are associated with loss of function in α-syn
clearance mechanisms in microglia. Activation of the Rho-ROCK pathway also leads to
disruption of the blood–brain barrier, which allows infiltration of immune cells and harmful
substances in the brain. The activation of Rho-ROCK signaling not only leads to neuroin-
flammation, but it also alters the autophagy process, which can aid in the accumulation
of damaged proteins, a contributing factor in neurodegeneration. Inhibiting the ROCK
pathway could be a way to design therapy to prevent worsening neurodegeneration and
inflammation in the PD brain.

7.2. Activation of Rho-ROCK Pathway in Aging

Abnormal activation of the RhoA/Rho pathway may contribute to the induction of
neuroinflammatory and pro-oxidative responses, axonal retraction, and apoptosis. In-
creased expression of RhoA and ROCK II proteins and ROCK activity have been shown
in the brains of aged rats, particularly in the substantia nigra [173]. Increased ROCK ac-
tivity may enhance major mechanisms responsible for aging-related neurodegeneration,
thus representing a major factor in the vulnerability of dopaminergic neurons to damage.
Thus, inhibition of ROCK2 may constitute an effective neuroprotective strategy against
aging-related risk of dopaminergic degeneration and possibly against other aging-related
neurodegenerative processes (Figure 3).

A recent study tested the role of RhoA-ROCK-mediated Wnt/β-catenin signaling in
the regulation of aging-associated disorders [174]. This study found that high ROCK activity
closely correlated with Jak and Gsk3β activities but inversely correlated with β-catenin
signaling activity in bone marrow mesenchymal stromal cells from elderly male humans
and mice. Another study tested soleus feed arteries (SFAs) from young (4 months) and old
(24 months) male Fischer 344 rats [175]. In this study, smooth muscle cells isolated from
one group of SFA were assessed for phosphorylated ROCK. Interestingly, total ROCK1 and
ROCK2 were similar in cells isolated from young and old SFAs, whereas phospho-ROCK1
and phospho-ROCK2 levels were higher in cells isolated from old SFAs relative to young
arteries. These results suggested that smooth muscle contractile function declines with age
in SFA. Thus, the study of the Rho-ROCK pathway in aging and neurodegenerative diseases
(e.g., PD and AD) should be investigated further in relevant animal models and humans.
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8. Calpain Activation and Regulation of Rho-ROCK Signaling in PD

Rho GTPases have a particular importance in the CNS: developing neurons, neuronal
survival, growth, axon and dendrite branching, and forming and maintaining dendritic
spines [154,176,177]. Rho GTPases are essential to maintain plasticity of synapses. When
Rho GTPases are dysregulated, many neurological disorders and diseases can take place,
including schizophrenia, depression, ALS, autism spectrum disorders, PD, and AD. RhoA,
however, acts as an inhibitor of these processes: promoting neuronal death, retraction of
axonal and dendritic spines, and hence synapse loss. RhoA has been found to be elevated
following injury to the brain in both animals and humans. This elevation of RhoA can
restrict regeneration and full functional recovery in the CNS. An increased activity of
RhoA in PD patients may increase phosphorylated α-syn, and therefore, both calpain-1 and
calpain-2 isoforms could be activated in the nigrostriatal pathway. Activated calpain may
also stimulate the ROCK pathway, leading to the cleavage of IkB [143,178], which causes
NF-kB to translocate to the nucleus. NF-kB is crucial in biological responses. NF-kB controls
cell growth, proliferation, apoptosis, cell survival, stress response, etc. [179]. Activated NF-
kB also leads to inflammation, which causes death to surrounding dopaminergic neurons.
The death of these dopaminergic neurons leads to loss of motor function.

RhoA-ROCK signaling in microglia is thought to be a major player in the progression of
neurodegenerative disorders [180]. Although ROCK is ubiquitously expressed in all tissues,
ROCK2 subtype expression in the brain and the spinal cord is more abundant and improves
with age, triggering inflammation. ROCK2 is also thought to be involved in angiotensin
II-induced inflammation, and attenuation of calpain expression and activity may decrease
ROCK2 and attenuate inflammation (Figure 3). Angiotensin I and angiotensin II receptors
are in dopaminergic neurons, nigral microglia, and astrocytes [181–183]. These receptors
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are in the angiotensin pathway, and the activation of angiotensin I and angiotensin II
speeds microglial receptor NADPH oxidase and glial inflammatory response. Angiotensin
I receptors also mediate the Rho-ROCK pathway and microglial activation. Thus, inhibiting
ROCK could significantly decrease microglial activation and dopaminergic cell death [184].

9. Targeting Rho-ROCK Pathway in PD and Aging

Activation of RhoA is the beginning of the ROCK pathway. Activation of the ROCK
pathway in PD causes axonal growth inhibition, loss of dendritic spine plasticity, inhibition
of Parkin mitophagy, inhibition of autophagy, inhibition of apoptosis, inhibition of cell
division, inhibition of cell contractility, and inhibition of cell mobility [185,186]. Inhibiting
the ROCK pathway is a promising therapy for improving PD-caused damage in the body.
There are multiple ROCK pathway inhibitors: fasudil, Y-27632, statin, onjisaponin B,
loganin, and KD025 [187–190]. Fasudil has been used in neuroblastoma cell lines, mice,
rats, H4 cell culture, and mesencephalic culture [191]. Fasudil has been found to improve
neurite outgrowth, lower expression of ROCK2, and decrease dopaminergic neuron loss in
neuroblastoma cell lines.

Fasudil has been found to lower α-syn aggregation in H4 cell culture. In mice, fasudil
improved motor and cognitive function and increased DOPAC, as well as decreased RhoA
and ROCK2 mRNA levels and ROCK activity in microglia. Fasudil also improved motor
function when given to rats with induced PD [192]. Y-27632 has been found to lower
dopaminergic neuronal loss in neuron glia culture, increase dopaminergic neurons and
grafted dopaminergic fibers along with lessened behavioral impairments in rats, improved
neuroprotective effects and removal of damaged mitochondria in drosophila melanogaster,
and in SH-SY5Y neuroblastoma cells [193]. Y-27632 administration lowered apoptosis
through inhibition of ROS generation. Statin lowers α-syn accumulation in mice and neu-
roblastoma cells and protects dopaminergic neurons from damage in mesencephalic cell
cultures. Onjisaponin B treatment in mice lowered the expression of RhoA and ROCK2,
lessened dopaminergic degeneration, and reduced microglia activation and inflammatory
factor expression. Loganin in PC12 cells increased Akt and GSK-3beta signaling pathway,
increased Nrf2/HO-1 signaling pathway, lowered ROS levels, lowered apoptosis, and
lowered mitochondrial membrane permeability. In mesencephalic neuronal culture, lo-
ganin administration inhibited the RhoA-ROCK pathway. In mice, loganin administration
lowered ROS levels and MPTP toxicity [194].

10. Conclusions

PD involves a complex array of symptoms, including the motor symptoms in the
SN. The activation of calpain, α-syn aggregation, and oxidative damage may promote
the Rho-ROCK pathway, inducing neuroinflammation and neurodegeneration in PD and
other forms of dementia. Inhibiting calpain to reduce inflammation and protect motor
neurons from degradation could be a possible therapeutic strategy. Inhibiting calpain could
also reduce glial activation, which would help prevent dopaminergic neuron loss in the
substantia nigra. Preventing dopaminergic neuron loss would slow the loss of dopamine
required for motor function, allowing PD patients to have a slower, or lessened, loss of
motor function. Calpain inhibition could also attenuate Rho-ROCK activation and reduce
oxidative stress in aging. Overall, regulating the Rho-ROCK pathway could be a promising
therapeutic strategy to lower dopaminergic neuron loss, improving the quality of life of
those with PD. In addition, regulating this Rho-ROCK pathway could not only benefit
individuals with PD, but also those with hypertension, angina, vasospasm, atherosclerosis,
stroke, heart failure, coronary vasospasm, endothelial dysfunction, AD, HD, and ALS, as
Rho-ROCK is implicated in these disorders. Since dopaminergic neuronal populations
seem vulnerable to loss with aging as compared to many other brain regions, a reduction in
calpain and Rho-ROCK activation could also benefit neurodegenerative disorders in aging.
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