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1. Introduction

Welcome to Biomedicines’ 10th Anniversary Special Issue, a journey through the human
mind’s labyrinth and complex neurological pathways. This edition, focused on “Trans-
lational Laboratory and Experimental Medicine for Neurological Diseases and Mental
Illnesses”, presents 21 pioneering papers that explore the enigmas of the brain and its
remarkable ability to heal and adjust. We investigate the various impacts of time on neural
circuits and cognitive responses. Our research spans studying how the brain can adjust and
recuperate following a stroke, a process known as neuroplasticity, to exploring the intricate
link between age and behavior [1–6].

We are particularly interested in the neural mechanisms that underpin these mecha-
nisms, such as the role of neural circuits and their plasticity in cognitive responses [7–11].
By investigating neural activity and connectivity, we hope to gain insight into brain adapta-
tion [12–14]. This entails investigating how these changes affect cognitive functions such
as memory and decision-making, as well as their implications for cognitive development
and disorders [15–21]. Hence, we may be able to uncover the complex mechanisms that
underpin neurodegenerative disorders and investigate potential therapeutic strategies that
hold promise for novel treatments [22–28].

Preclinical research plays a crucial role in understanding neuropsychiatric condi-
tions [29–32]. By conducting studies in vitro and in vivo, researchers gather valuable data
that would be impractical to obtain directly from humans [33–38]. These preclinical find-
ings, combined with ongoing clinical studies, help us better understand the behavioral
aspects of neuropsychiatric disorders [39–41]. Computational and inferential methods also
contribute to new approaches to treating neurological and psychiatric disorders by helping
to unravel the underlying pathology [42–48]. Integrating interdisciplinary methods further
optimizes drug development research, leading to the evaluation of potential lead com-
pounds [27,49–52]. Promising interventions, such as brain stimulation, have the potential
to transform treatment and pave the way for new and more effective drugs for neurological
and psychiatric conditions [53–57].

In our quest to break barriers and unveil unknowns, we also delve into the realm of
mental health, exploring the biochemical basis of suicidal thoughts and the relationship
between mental illness and pain. Whether you are a clinician, researcher, or simply curious
about the complexities of the human mind, this collection of articles promises to challenge
conventional wisdom and expand your horizons [58–60]. Join us in commemorating ten
years of groundbreaking exploration and advancement in the realm of biomedicine.
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2. Special Issue Articles
2.1. Stroke and Neuroplasticity: Unraveling the Brain’s Resilience

The complex interaction between stroke and neuroplasticity is central to the process
of post-stroke recovery [61–63]. When a stroke happens, it disrupts the complex neu-
ral pathways, leading to a sequence of impairments [64–66]. Nonetheless, the brain, as
the master of adaptation, makes use of its hidden asset: neuroplasticity. This remark-
able phenomenon facilitates neuroplasticity, which involves the brain’s ability to reorga-
nize itself by forming new synaptic connections and redirecting functions to unaffected
areas [67–69]. The present section explores five fascinating studies that shed light on the
interaction between stroke consequences and the brain’s extraordinary capacity for recov-
ery. The authors of the referenced articles investigate brain legion prediction via dizziness,
cognitive symptoms caused by subcortical damage, the gut microbiota in stroke patients,
the effect of alcohol on neurogenesis, and the potential of virtual reality in cognitive re-
habilitation. These articles provide a promising and resilient perspective on overcoming
neurological challenges (Table 1).

Table 1. Major subjects covered in the Special Issue “10th Anniversary of Biomedicines—Translational
Laboratory and Experimental Medicine for the Sake of Neurological Diseases and Mental Illnesses”.

Subjects Ref.

1. Stroke and neuroplasticity

Vertigo and stroke [70]
Pontine stroke effects [71]
Gut dysbiosis and stroke [72]
Alcohol and neurogenesis [73]
VR cognitive training [74]

2. Age and behavioral studies

Ketamine vulnerability [75]
Melatonin and anxiety [76]
Platelet mitochondrial changes [77]
Guanfacine and behavior [78]

3. Neuropsychiatric disorders and treatments

Enteric nervous system and PD [79]
UBL3 and alpha-synuclein [80]
NLRP3 inflammasome in brain diseases [81]
Metabolism and MS [82]
Stem cells and febrile seizures [83]
Stem cells and ALS [84]
Rehabilitation and spinal cord injury [85]

4. Mental health and disorders

Intentional forgetting [86]
Gaze perception [87]
BDNF and major depression [88]
Autism and suicidal thoughts [89]
AI and mental illness [90]

Abbreviations: AI: artificial intelligence, ALS: amyotrophic lateral sclerosis, BDNF: brain-derived neurotrophic
factor, MS: multiple sclerosis, NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3, PD: Parkinson’s
disease, UBL3: ubiquitin-like 3, VR: virtual reality.

Vertigo is a rare symptom in people who have recently suffered from a stroke, and
there is currently a limited understanding of its significance [91]. d’Annunzio et al. make a
notable contribution by showing that vertigo in patients with acute stroke can be used as
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an indicator of the stroke’s location, specifically in the cerebellum and/or brainstem [70].
However, it does not have an impact on early outcomes or increase the risk of mortality
during hospitalization. Cortical damage is commonly associated with cognitive dysfunc-
tion, while subcortical damage is an aspect of cognitive dysfunction that is frequently
overlooked in research [92]. Shimmyo and Obayashi improve our understanding of cogni-
tive deterioration following pontine stroke, a frequently overlooked condition due to the
incorrect belief that subcortical damage is less likely to induce cognitive dysfunction [71].
The study employs two neuroimaging techniques to better understand the neurophysiology
that underpins cognitive decline. The study results suggest that the degree of cognitive
decline may be related to the responses observed in the supplementary motor area. This
phenomenon may be attributed to the breakdown of hierarchical cognitive processing in
the fronto–ponto–cerebellar–thalamic loop.

A growing body of evidence suggests that disorders of the central nervous system
(CNS) can be linked to peripheral body regions [93,94]. Park et al. investigated the gut
microbiota in individuals who have suffered from strokes, uncovering significant imbal-
ances in both the taxonomic composition and functional characteristics of the microbiota
when compared to a group of healthy individuals. Patients who have experienced a stroke
exhibit changes in their gut microbiota, which may be a sign of malnutrition. Adjusting
their diet could help restore a healthy balance of gut bacteria, leading to better outcomes
and a decrease in disability and death rates in stroke patients.

Alcohol consumption is well known to affect the risk and prognosis of ischemic
stroke [95,96]. Li et al. examined the effects of light alcohol consumption (LAC) on the
growth of new neurons in the brain in the context of ischemic stroke [73]. The find-
ings of their study indicate that LAC can considerably enhance neurogenesis in both
normal conditions and after an ischemic stroke. This process has the potential to min-
imize brain damage and enhance locomotor activity, suggesting that LAC may have a
protective effect against ischemic stroke. There is an increasing need for more objective
outcome measures in cognitive rehabilitation (CR) for stroke patients [97–99]. Gangemi
et al. contribute to the field of CR by showing that a virtual reality-based approach has
the potential to effectively promote neuroplastic changes in patients with chronic ischemic
stroke [74]. This is supported by significant improvements in electroencephalogram (EEG)-
related neural activity and variations in power spectral density in the alpha and beta band
powers (Table 1).

2.2. Age and Behavioral Studies: Unraveling the Complexities of Lifespan Influence

We gain more insight into the complex relationship between age and behavior as
we investigate the various ways that aging affects brain networks and cognitive pro-
cesses [100–102]. This section launches a journey through five illuminating studies, each
shedding light on the dynamic relationship between age and behavioral outcomes. The
section showcases various aspects of scientific research, including the vulnerability of mice
to ketamine, the complex relationship between the dosage and effects of ketamine, the
connection between melatonin and anxiety in C57/B6J mice, the role of platelet mitochon-
dria, and the involvement of noradrenaline in regulating learned and innate behaviors in
rats lacking the dopamine transporter. These articles invite us to reflect on the complex
interplay of age, behavior, and the constantly changing brain.

Ketamine is frequently abused as a psychedelic substance [103–105]. Chen et al.
examined the impact of ketamine on glutamatergic neurotransmission, which plays a vital
role in memory retention, addiction, and psychosis [75]. The authors of the study investigate
the varying sensitivity to ketamine in mice of different ages and strains. The results indicate
that an individual’s response to ketamine, as observed through their locomotor behavior, is
determined by biological factors and can differ depending on dosage and age.

The production of melatonin decreases as one ages, and its effectiveness may vary
depending on age [106–108]. The study conducted by Nasini et al. examines the impact
of melatonin on anxiety-related behavior and the circuit connecting the medial prefrontal
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cortex and dorsal hippocampus in both adolescent and adult mice [76]. The results empha-
size the variations in the effects of melatonin based on age, indicating that age can have a
substantial influence on outcomes.

Mitochondrial dysfunction, characterized by a decline in mitochondrial respiratory
function and an increase in reactive oxygen species production, is a key cellular hallmark
of aging and neurodegenerative diseases [52,109,110]. Fišar et al. utilized platelets as
a model to assess age-related mitochondrial parameters and the influence of cognitive
impairment on these parameters [77]. The study shows age-dependent changes in mi-
tochondrial function in platelets but no significant difference between individuals with
and without cognitive impairment. Platelet mitochondrial respiration may serve as a
promising biomarker for aging and a target for interventions aimed at combating aging and
neurodegenerative processes.

Developing focused treatment approaches for attention-deficit hyperactivity disor-
der requires investigation of the underlying mechanisms involving dopamine dysregula-
tion [111–113]. Volnova et al. examined the impacts of guanfacine, an α2A-adrenoceptor
agonist, on the behavior and brain activity of dopamine transporter knockout rats [78].
Guanfacine has been shown to improve spatial working memory and pre-pulse inhibition
in dopamine transporter knockout rats. This supports the role of noradrenergic modu-
lation in attention regulation and suggests potential combined treatments to maintain
dopamine–norepinephrine balance (Table 1).

2.3. Neuropsychiatric Disorders and Treatments: Unraveling Pathways and Novel Approaches

Neurodegenerative disorders pose a substantial and increasing public health issue,
impacting a considerable population worldwide [114–116]. These conditions, including
Alzheimer’s disease, Parkinson’s disease (PD), multiple sclerosis (MS), and amyotrophic
lateral sclerosis (ALS), are defined by the gradual deterioration and depletion of nerve
cells in the brain and spinal cord [117–120]. This section is focused on recent advances
in understanding these diseases, their causes, and potential treatments including neuro-
protection, highlighting innovative research that offers hope for new therapies [121]. The
six articles we feature cover a broad spectrum of neurodegeneration, each focusing on a
different aspect of these complex conditions.

The enteric nervous system (ENS) is intricately linked to the CNS and plays an im-
portant role in the pathophysiology of PD [122–124]. Montanari et al. discuss the early
involvement of the ENS in PD pathogenesis, with α-synuclein (α-syn) aggregation occur-
ring before CNS symptoms [79]. By proposing the ENS as a target for potential new PD
therapies, this could provide insights into brain health and advance the development of
novel therapeutic options.

Little is known about the interactions between ubiquitin-like 3 (UBL3) and alpha-
synuclein (α-syn), and their modulation by drugs, which are relevant for understanding
and treating α-synucleinopathies [125–127]. Chen et al. examined the interaction between
UBL3 and α-syn in order to comprehend its function in α-synucleinopathies [80]. UBL3
interacts with α-syn, and this interaction is modulated by osimertinib, an inhibitor of the
epidermal growth factor receptor pathway. This study advances the field by identifying
the UBL3 pathway as a potential new therapeutic target for α-synucleinopathies.

Neuroinflammation is increasingly recognized as a significant factor in a variety of
brain diseases, with microglia and monocytes playing an important role in the robust
activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflam-
masome [128–130]. Chiarini et al. discuss the regulation of NLRP3 and its involvement
in diverse neurological disorders [81]. The authors acknowledge the absence of proof
regarding the impact of NLRP3 inhibition on human diseases and emphasize the possibility
of other inflammasomes stepping in to fill the gap. They advocate for the use of human
neural cell-based models to gain a deeper understanding of these diseases and develop
more effective treatment strategies.
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Anomalies in the tryptophan (Trp)-kynurenine (KYN) metabolic system have been
detected in individuals with MS [131–133]. However, the specific profile of KYN metabolites
in progressive MS is still uncertain. Polyák et al. examined KYN metabolite levels in a
cuprizone-induced mouse model of demyelination [82]. The authors show significant
reductions in specific KYN metabolites, suggesting that these metabolites are potential
biomarkers for personalized MS treatment.

Sodium voltage-gated channel alpha subunit 1 (SCN1A) gene mutations cause cellular
immaturity in neurons, resulting in delayed maturation and reduced excitability, both of
which contribute to the development of febrile seizures [134–136]. Scalise et al. investigated
the effect of SCN1A gene mutations from a well-characterized Italian family on neurons
derived from induced pluripotent stem cell-derived neurons [83]. The mutations cause
reduced excitability in neurons as well as intrinsic cellular immaturity. The authors provide
strong evidence that SCN1A gene mutations play a role in the development of febrile
seizures, highlighting the potential of diseased neurons for personalized therapy and ex
vivo drug screening for human epileptic disorders.

The secretome of dental pulp stem cells (DPSCs) on motoneurons in ALS demonstrated
neuroprotective effects; however, the mechanism of action remains unknown [137–139].
Younes et al. investigated the effects of the DPSC secretome on the survival, axonal length,
and electrical activity of cultured wild-type and superoxide dismutase 1 (SOD1) G93A
motoneurons, as well as the roles of two DPSC-secreted factors, growth/differentiation
factor 15 (GDF15) and heparin-binding epidermal growth factor-like growth factor (HB-
EGF) [84]. The secretome of DPSCs has neuroprotective effects on motoneurons and could
be a therapeutic candidate for ALS, highlighting the roles of GDF15 and HB-EGF, two
DPSC-secreted factors that protect motor neurons from nitric oxide-induced death.

Individuals with spinal cord injury (SCI) experience rapid and debilitating muscle
and bone loss, necessitating the development of effective bone mass preservation and
maintenance strategies to reduce the risk of fragility and fracture in these vulnerable
populations [85,140–142]. Leone et al. investigated the pathophysiology and risk factors of
muscle and bone loss after SCI, the mechanisms that contribute to this loss, and current and
future pharmacological and non-pharmacological therapies for reducing or eliminating
neurogenic bone loss after SCI [85]. Pharmacological and non-pharmacological treatments
can lessen or completely prevent neurogenic bone loss following SCI. Additionally, people
with SCI have more rapid and severe bone and muscle loss because of a number of different
factors (Table 1).

2.4. Mental Health and Disorders: Breaking Barriers and Unveiling Secrets

Mental health is a fundamental component of our general state of being, impacting
our cognitive processes, emotions, and social interactions [143–145]. This section explores
a wide range of research articles that provide insights into different aspects of mental
health and disorders. These studies provide valuable insights into the relationship between
mental illness and pain, as well as the biochemical basis of suicidal thoughts. Let us delve
into the complex neural pathways, biological indicators, and psychological phenomena
that influence our comprehension of mental health [146].

Despite the importance of intentional forgetting (IF) in daily performance, psychologi-
cal well-being, and memory functioning, the neuropsychological mechanisms underlying
successful IF are unknown [147–149]. Gamboa et al. investigated the neural correlates of IF
using two meta-analytic algorithms, activation likelihood estimation, and latent Dirichlet
allocation, and evaluated the proposed neurobiological models’ compatibility with existing
brain imaging data [86]. IF involves the interaction of two networks: a primarily right-
lateralized frontal–parietal circuit and a less constrained supportive network that includes
frontal–hippocampal interactions. In support of the inhibitory or thought suppression
hypothesis, the study also discovered a neural signature of IF that is consistent across
various experimental paradigms and may open new avenues for developing effective
clinical interventions.
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Gaze cueing plays an important role in the reflexive orientation of attention and its
susceptibility to context [149–151]. However, the distinct functional roles of the amyg-
dala and the superior temporal lobe, particularly the superior temporal sulcus (STS), in
gaze processing remain unknown, as does the interaction of contextual factors with gaze-
cueing [152–154]. Battaglia et al. investigated the neural bases of gaze cueing and gaze
direction perception, how contextual factors interact with the gaze shift of attention, and
the distinct functional roles of the amygdala and STS in gaze perception [87]. The amygdala
and the STS are important components in gaze perception, and gaze-cueing is influenced
by a variety of context-specific factors. The idea of invariant representation is a useful
framework for further research, highlighting the disparities in attempts to characterize the
distinct functional roles of these regions in the processing of gaze. Th authors emphasize
the role of the amygdala and the STS in gaze perception and introduce the concept of
invariant representation as a valuable conceptual framework for future research on the
perceptual processing of gaze within the STS.

The differences in serum brain-derived neurotrophic factor (BDNF) levels during phar-
macotherapy in major depressive disorder (MDD) patients, particularly between treatment-
response and treatment-nonresponse groups, remain unclear [155–157]. Yoshimura et al.
studied changes in serum BDNF concentrations in first-episode, drug-naive MDD patients
during antidepressant treatment and compared them to treatment-response and treatment-
nonresponsive groups [88]. In first-episode, drug-naive MDD patients, serum BDNF levels
did not differ significantly between treatment-response and treatment-nonresponse groups.
However, the responder group showed statistically significant changes in serum BDNF,
implying that the changes in serum BDNF may differ between the two groups and that
measuring serum BDNF has the potential to be a useful predictor of pharmacotherapy in
these patients. The authors demonstrate that serum BDNF measurement has the potential
to be a useful predictor of pharmacotherapy in first-episode, drug-naive MDD patients.

Despite the emphasis on neurobiological underpinnings and the poor predictive accu-
racy of many sociodemographic risk factors and prognostic markers, understanding and
predicting suicide remain significant challenges [158–160]. Cremone et al. examined the
relationship between blood levels of serotonin, BDNF, Trp and its metabolites, interleukin-6
(IL-6), and homocysteine levels and suicidality in adults with autism and explored how
these biochemical parameters may be linked to an elevated risk of suicide [89]. There is
a link between suicidality and autism, and suicidality is associated with elevated homo-
cysteine and IL-6 levels, as well as decreased Trp and KYNA levels. The authors show
a possible transnosographic link between these biochemical parameters and increased
suicide risk, which potentially improves our understanding and prediction of suicide.

Despite the known association between psychological events and pain intensity, there
is no comprehensive mathematical model that accurately captures the multidimensional
nature of pain, particularly low back pain, and its relationship with psychological fac-
tors [161–163]. Parolini et al. investigated the development of a mathematical represen-
tation of the International Association for the Study of Pain (IASP) pain model, using an
artificial neural network to identify patterns in the relationship between various variables
related to low back pain, as well as how these patterns differ between groups with altered
patterns in the context of low back pain [90]. The authors show a direct correlation between
psychological and pain events in the context of low back pain, suggesting that mental
illness can exacerbate pain episodes and impact functionality. They also found that the
developed artificial neural network model was able to identify patterns and relationships
between variables and differentiate groups with altered patterns (Table 1).

3. Conclusions

This 10th Anniversary Special Issue of Biomedicines has thoroughly examined the field
of translational laboratory and experimental medicine in relation to neurological diseases
and mental illnesses. Within this compilation, scholars have extensively examined the
intricate mechanisms that form the basis of these conditions, offering novel perspectives
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on possible therapeutic strategies and interventions. In addition to improving our under-
standing of the human mind, this Special Issue has facilitated groundbreaking advances in
the diagnosis, treatment, and prevention of neurological and psychiatric disorders, such
as the use of neuromodulation techniques. These techniques have shown promise in the
treatment of various neurological and neuropsychiatric disorders, such as depression, anxi-
ety, PD, and chronic pain [21,164–167]. The Special Issue on “Translational Laboratory and
Experimental Medicine for Neurological Diseases and Mental Illnesses” is a testament to
our unwavering dedication and innovation in the field of biomedicine as we celebrate a
decade of pioneering exploration. The 21 papers presented herein demonstrate the diligent
work of researchers and clinicians in understanding the intricacies of brain function and
mental health. Their research provides encouraging perspectives on innovative therapeutic
approaches and possible advancements. Our future goal is to connect the work carried out
in laboratories with real-world applications, with the common objective of improving the
lives of people affected by neurological disorders and mental illnesses.
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DPSCs Pulp stem cells
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HB-EGF Heparin-binding epidermal growth factor-like growth factor
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MDD Major depressive disorder
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NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3
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SCN1A Sodium voltage-gated channel alpha subunit 1
SOD1 Superoxide dismutase 1
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UBL3 Ubiquitin-like 3
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